
3A, 36V, Synchronous Step-Down Converter

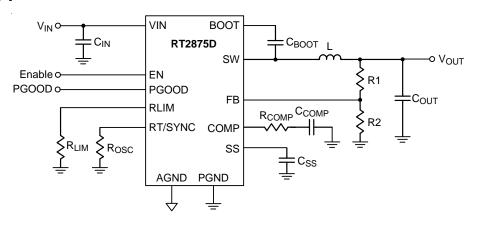
General Description

The RT2875D is a high efficiency, current-mode synchronous DC/DC step-down converter that can deliver up to 3A output current over a wide input voltage range from 4.5V to 36V. The device integrates $95m\Omega$ high-side and $70m\Omega$ low-side MOSFETs to achieve high conversion efficiency. The current-mode control architecture supports fast transient response and simple external compensation. A cycle-by-cycle current limit function provides protection against shorted output and an external soft-start eliminates input current surge during start-up. The RT2875D provides complete protection functions such as input under-voltage lockout, output under-voltage protection, over-current protection and thermal shutdown.

The RT2875D is available in the thermal enhanced TSSOP-14 (Exposed Pad) package.

Pin Configurations

TSSOP-14 (Exposed Pad)


Features

- 3A Output Current
- Internal N-MOSFETs
- Current Mode Control
- Adjustable Switching Frequency : 300kHz to 2.1MHz
- Adjustable Current Limit : 1.5A to 6A
- Synchronous to External Clock : 300kHz to 2.1MHz
- Adjustable Output Voltage from 0.6V to 24V
- High Efficiency Up to 95%
- Stable with Low ESR Ceramic Output Capacitors
- Cycle-by-Cycle Current Limit
- Input Under-Voltage Lockout
- Output Under-Voltage Protection
- 0.6V ± 1% Reference Voltage Over Temperature
- Thermal Shutdown
- AEC-Q100 Grade 2 Qualified
- RoHS Compliant and Halogen Free

Applications

- Point of Load Regulator in Distributed Power Systems
- Digital Set Top Boxes
- Broadband Communications
- Vehicle Electronics

Simplified Application Circuit

Ordering Information

RT2875D Package Type CP: TSSOP-14 (Exposed Pad) Lead Plating System G : Green (Halogen Free and Pb Free) DQ : Hiccup Mode UVP

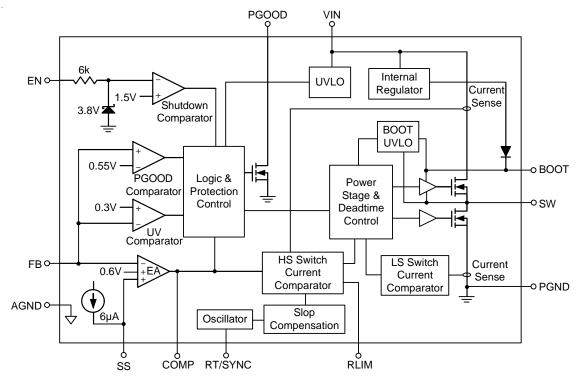
Note :

Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Pin No. **Pin Name Pin Function** 1, 2 SW Switch Node, Connect to external L-C filter, 3. Power Ground. The exposed pad must be soldered to a large PCB and PGND 15 (Exposed Pad) connected to PGND for maximum power dissipation. Oscillator Resistor and External Frequency Synchronization Input. Must connect **RT/SYNC** a resistor from this pin to GND to set the switching frequency. If SYNC clock is 4 requested, connect an external clock to change the switching frequency. 5 AGND Analog Ground. Current Limit Setting. Connect a resistor from this pin to GND to set the current 6 RLIM limit value. Feedback Voltage Input. The pin is used to set the output voltage of the 7 FB converter to regulate to the desired via a resistive divider. Feedback reference = 0.6V. Compensation Node. COMP is used to compensate the regulation control loop. COMP Connect a series RC network from COMP to GND. In some cases, an additional 8 capacitor from COMP to GND is required. Soft-Start Time Setting. Connect a capacitor from SS to GND to set the 9 SS soft-start period. ΕN 10 Enable Control Input. High = Enable. PGOOD Power Good Indicator Output. 11 Power Input. Support 4.5V to 36V input voltage. Must bypass with a suitable VIN 12, 13 large ceramic capacitor at this pin. Bootstrap Supply for High-Side Gate Driver. Connect a 0.1µF ceramic capacitor 14 BOOT between the BOOT and SW pins.

Functional Pin Description


2

Marking Information

RT2875DQ GCPYMDNN RT2875DQGCP : Product Number YMDNN : Date Code

Function Block Diagram

Operation

The RT2875D is current-mode synchronous step-down converter. In normal operation, the high-side N-MOSFET is turned on when the S-R latch is set by the oscillator and is turned off when the current comparator resets the S-R latch. While the high-side N-MOSFET is turned off, the low-side N-MOSFET is turned on to conduct the inductor current until next cycle begins.

Error Amplifier

The error amplifier adjusts its output voltage by comparing the feedback signal (V_{FB}) with the internal 0.6V reference. When the load current increases, it causes a drop in the feedback voltage relative to the reference, and then the error amplifier's output voltage rises to allow higher inductor current to match the load current.

Switching Frequency

The switching frequency can be set by using extra resister RT or external clock. Switching frequency range is from 300kHz to 2.1MHz.

Internal Regulator

The regulator provides low voltage power to supply the internal control circuits and the bootstrap power for high-side gate driver.

Enable

The converter is turned on when the EN pin is higher than 1.6V. When the EN pin is lower than 0.4V, the converter will enter shutdown mode and reduce the supply current lower than 10μ A.

Soft-Start (SS)

In order to prevent the converter output voltage from overshooting during the startup period, the soft-start function is necessary. The soft-start time is adjustable by an external capacitor.

UV Comparator

If the feedback voltage is lower than 0.3V, the UV Comparator will go high to turn off the high-side MOSFET. The output under voltage protection is designed to operate in Hiccup mode. When the UV condition is removed, the converter will resume switching.

Current Setting

The current limit of high side MOSFET is adjustable by an external resistor connected to the RLIM pin. The current limit range is from 1.5A to 6A.

Thermal Shutdown

The over-temperature protection function will shut down the switching operation when the junction temperature exceeds 180°C. Once the junction temperature cools down by approximately 15°C, the converter will automatically resume switching.

Copyright ©2016 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

4

Absolute Maximum Ratings (Note 1)

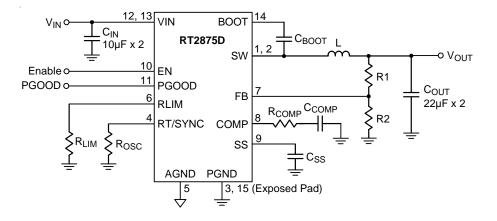
• Supply Voltage, VIN	–0.3V to 40V
Switch Voltage, SW	-0.3V to (V _{IN} + 0.3V)
BOOT to SW	–0.3V to 6V
Power Good Voltage, PGOOD	–0.3V to 40V
Other Pins	–0.3V to 6V
• Power Dissipation, $P_D @ T_A = 25^{\circ}C$	
TSSOP-14 (Exposed Pad)	4.464W
Package Thermal Resistance (Note 2)	
TSSOP-14 (Exposed Pad), θ_{JA}	28°C/W
TSSOP-14 (Exposed Pad), θ_{JC}	4.3°C/W
Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	–65°C to 150°C
ESD Susceptibility (Note 3)	
HBM (Human Body Model)	2kV

Recommended Operating Conditions (Note 4)

Supply Input Voltage, VIN	- 4.5V to 36V
Junction Temperature Range	 –40°C to 150°C
Ambient Temperature Range	- −40°C to 105°C

Electrical Characteristics

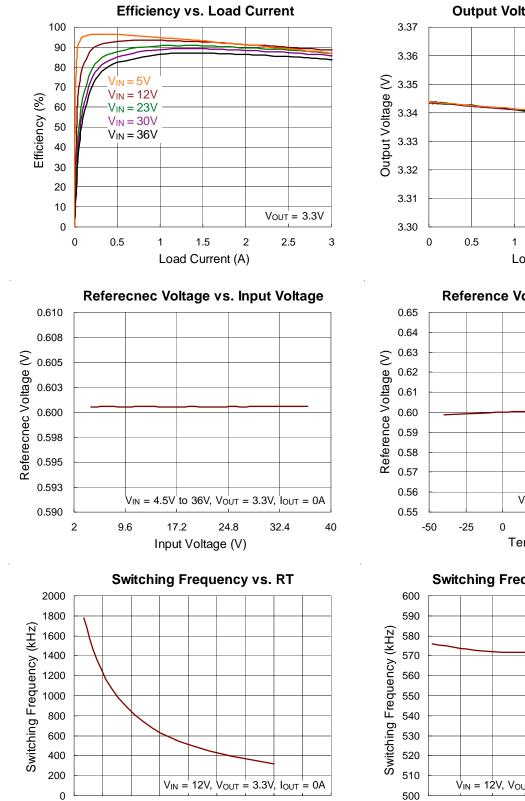
(V_IN = 12V, $T_A = -40^\circ C$ to 105°C, unless otherwise specified)

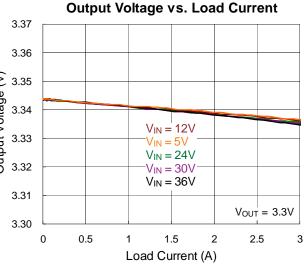

Para	ameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Shutdown Supp	ly Current		V _{EN} = 0V			10	μA
Switching quiescent current with no load at DCDC output			V _{EN} = 2V, V _{FB} = 0.64V, R _{LIM} = 91k, R _{OSC} = 169k			1.3	mA
Feedback Volta	ge	V _{FB}	$4.5V \le V_{IN} \le 36V$	0.594	0.6	0.606	V
Error Amplifier 7	Frans-conductance	G _{EA}	$\Delta IC = \pm 10 \mu A$		950		μA/V
Switch On-	High-Side	R _{DS(ON)1}			95		
Resistance Low-Side		R _{DS(ON)2}			70		mΩ
High-Side Switc Current	h Leakage		V _{EN} = 0V, V _{SW} = 0V		1		μA
Current Limit Se	etting Rage		(Note 5)	1.5		6	А
High-Side Switc	h Current Limit 1	H _{OC1}	R _{LIM} = 100kΩ	1.79	2.1	2.41	А
High-Side Switc	h Current Limit 2	Hoc ₂	$R_{\text{LIM}} = 47 k\Omega$	3.52	4	4.48	А
High-Side Switch Current Limit 3		H _{OC3}	$R_{\text{LIM}} = 33 k\Omega$	4.84	5.5	6.16	А
Low-Side Switch Current Limit			From Drain to Source		2		А
COMP to Current Sense Transconductance		G _{CS}			5.2		A/V
Switching Frequency Range			Include Sync mode and RT mode set point	300		2100	kHz

Parameter		Symbol	Test Conditions	Min	Тур	Мах	Unit	
Switching Frequency1		fosc1	$R_t = 169k\Omega$	275	305	335	kHz	
Switching Frequency	2	fosc2	$R_t = 51 k\Omega$	0.83	0.98	1.13	MHz	
Switching Frequency	3	fosc3	$R_t = 23k\Omega$	1.89	2.1	2.31	MHz	
Short Circuit Oscillati Frequency	on		$V_{FB} = 0V, R_{OSC} = 100k\Omega,$ $V_{IN} = 12V$		31.25		kHz	
Minimum SYNC Puls	e width				20		ns	
	High-Level					2	V	
SYNC Input Voltage	Low-Level			0.8				
Minimum On-Time		ton			100		ns	
	Logic-High	V _{IH}		1.4	1.5	1.6		
EN Input Voltage	Hysteresis		EN hysteresis voltage		0.2		V	
Input Under-Voltage Lockout Threshold		V _{UVLO}	VIN Rising		4.1		V	
		ΔV_{UVLO}	Hysteresis		300		mV	
Power Good Threshold			Rising		90		- %	
			Falling		85			
Power Good Output High Leakage Current			$V_{FB} = V_{REF}, V_{PGOOD} = 5.5V$		30		nA	
Power Good Output Low			I _{PGOOD} = 0.4mA			0.3	V	
Soft-Start Charge Current		I _{SS}			6		μA	
SW Discharge Resistance					80		Ω	
Thermal Shutdown		T _{SD}		160	180	200	°C	
Thermal Shutdown Hysteresis		ΔT_{SD}			15		°C	

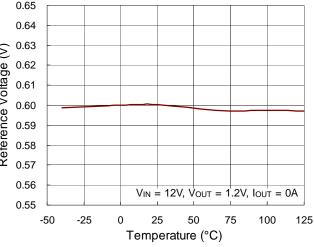
- **Note 1.** Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 2. θ_{JA} is measured at $T_A = 25 \text{ °C}$ on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θ_{JC} is measured at the exposed pad of the package.
- Note 3. Devices are ESD sensitive. Handling precaution is recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.
- Note 5. Guarantee by design.

Typical Application Circuit

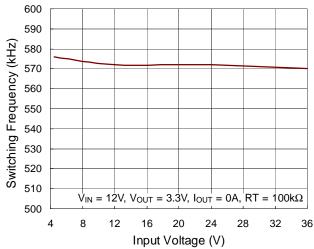



For 500kHz Only

Vout	R1 (k Ω)	R2 (k Ω)	Rosc (k Ω)	R _{COMP} (kΩ)	С _{СОМР} (nF)	L (μ H)
12	102	5.36	100	32	3.9	10
8	102	8.25	100	20	3.3	8.2
5	110	15	100	15	3.3	6.8
3.3	115	25.5	100	10	3.3	4.7
2.5	25.5	8.06	100	7.5	3.3	3.6
1.2	10	10	100	4.3	3.9	2.2



Typical Operating Characteristics



Reference Voltage vs. Temperature

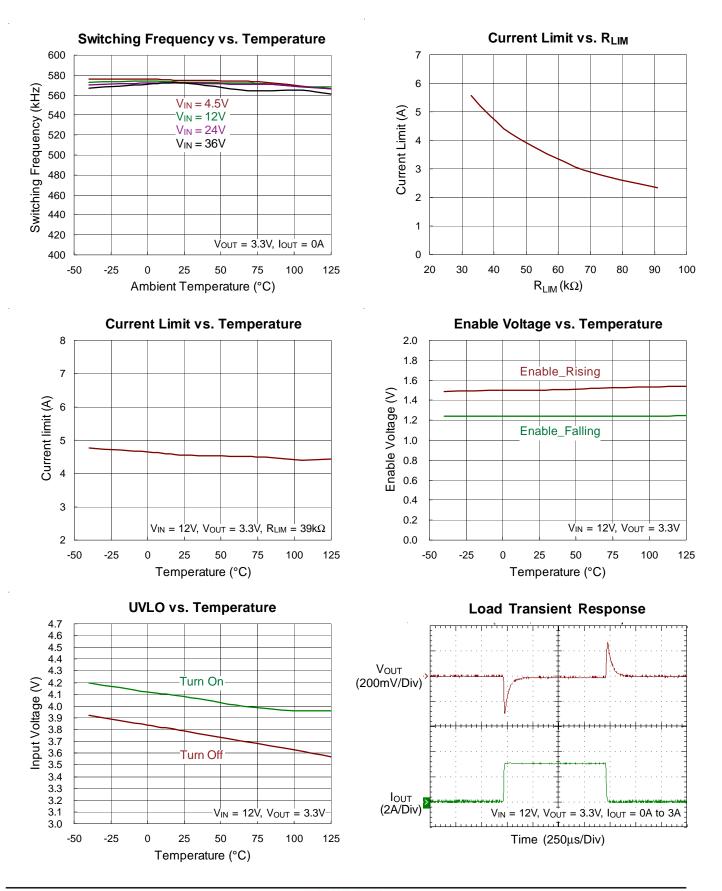
Switching Frequency vs. Input Voltage

Copyright ©2016 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

180 200

20

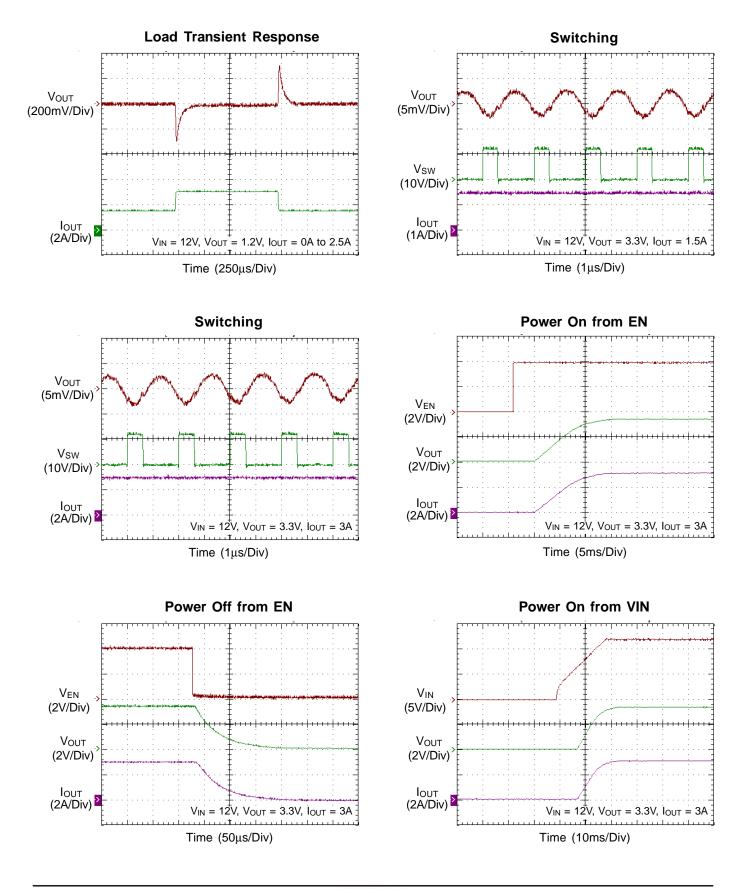
40

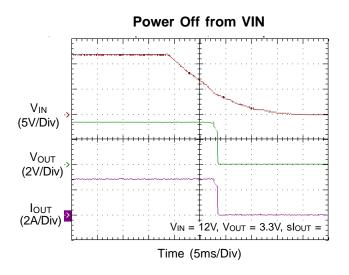

60

80

100 120

RT(kΩ)


140 160


Copyright ©2016 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

www.richtek.com

RICHTEK

Application Information

Output Voltage Setting

The resistive divider allows the FB pin to sense the output voltage as shown in Figure 1.

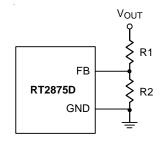


Figure 1. Output Voltage Setting

The output voltage is set by an external resistive voltage divider according to the following equation :

 $V_{OUT} = V_{REF} \left(1 + \frac{R1}{R2} \right)$

Where V_{REF} is the reference voltage (0.6V typ.).

External Bootstrap Diode

Connect a 0.1μ F low ESR ceramic capacitor between the BOOT and SW pins. This capacitor provides the gate driver voltage for the high side MOSFET.

It is recommended to add an external bootstrap diode between an external 5V and BOOT pin for efficiency improvement when input voltage is lower than 5.5V or duty ratio is higher than 65% .The bootstrap diode can be a low cost one such as IN4148 or BAT54. The external 5V can be a 5V fixed input from system or a 5V output of the RT2875D. Note that the external boot voltage must be lower than 5.5V

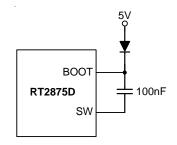


Figure 2. External Bootstrap Diode

Chip Enable Operation

The EN pin is the chip enable input. Pulling the EN pin low (<0.4V) will shutdown the device. During shutdown mode, the RT2875D quiescent current drops to lower than 10 μ A. Driving the EN pin high (>1.6V) will turn on the device again. For external timing control, the EN pin can also be externally pulled high by adding a R_{EN} resistor and C_{EN} capacitor from the VIN pin (see Figure 3).

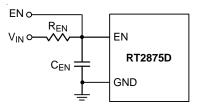


Figure 3. Enable Timing Control

An external MOSFET can be added to implement digital control on the EN pin when no system voltage above 2.5V is available, as shown in Figure 4. In this case, a 100k Ω pull-up resistor, R_{EN}, is connected between V_{IN} and the EN pin. MOSFET Q1 will be under logic control to pull down the EN pin.

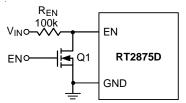


Figure 4. Digital Enable Control Circuit

Under Voltage Protection

Hiccup Mode

The RT2875D provides Hiccup Mode Under Voltage Protection (UVP). When the V_{FB} voltage drops below 0.3V, the UVP function will be triggered to shut down switching operation. If the UVP condition remains for a period, the RT2875D will retry automatically. When the UVP condition is removed, the converter will resume operation. The UVP is disabled during soft-start period.

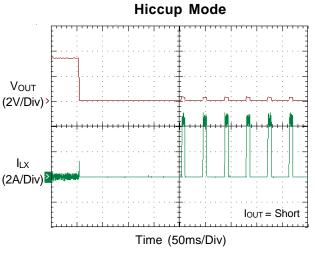
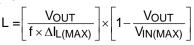


Figure 5. Hiccup Mode Under Voltage Protection

Over Temperature Protection

The RT2875D features an Over Temperature Protection (OTP) circuitry to prevent from overheating due to excessive power dissipation. The OTP will shut down switching operation when junction temperature exceeds 180°C. Once the junction temperature cools down by approximately 15°C, the converter will resume operation. To maintain continuous operation, the maximum junction temperature should be lower than 150°C.


Inductor Selection

The inductor value and operating frequency determine the ripple current according to a specific input and output voltage. The ripple current ΔI_L increases with higher V_{IN} and decreases with higher inductance.

$$\Delta I_{L} = \left[\frac{V_{OUT}}{f \times L}\right] \times \left[1 - \frac{V_{OUT}}{V_{IN}}\right]$$

Having a lower ripple current reduces not only the ESR losses in the output capacitors but also the output voltage ripple. High frequency with small ripple current can achieve the highest efficiency operation. However, it requires a large inductor to achieve this goal.

For the ripple current selection, the value of $\Delta I_L = 0.24(I_{MAX})$ will be a reasonable starting point. The largest ripple current occurs at the highest V_{IN}. To guarantee that the ripple current stays below the specified maximum, the inductor value should be chosen according to the following equation :

The inductor's current rating (caused a 40°C temperature rising from 25°C ambient) should be greater than the maximum load current and its saturation current should be greater than the short circuit peak current limit. Please see Table 2 for the inductor selection reference.

RT2875D

Component Supplier	Series	Dimensions (mm)
TDK	VLF10045	10 x 9.7 x 4.5
TDK	SLF12565	12.5 x 12.5 x 6.5
TAIYO YUDEN	NR8040	8 x 8 x 4

Table 2. Suggested Inductors for Typical Application Circuit

CIN and COUT Selection

The input capacitance, C_{IN} is needed to filter the trapezoidal current at the Source of the high side MOSFET. To prevent large ripple current, a low ESR input capacitor sized for the maximum RMS current should be used. The approximate RMS current equation is given :

$$I_{RMS} = I_{OUT}(MAX) \frac{V_{OUT}}{V_{IN}} \sqrt{\frac{V_{IN}}{V_{OUT}} - 1}$$

This formula has a maximum at $V_{IN} = 2V_{OUT}$, where $I_{RMS} = I_{OUT}$ / 2. This simple worst case condition is commonly used for design because even significant deviations do not offer much relief.

Choose a capacitor rated at a higher temperature than required. Several capacitors may also be paralleled to meet size or height requirements in the design.

For the input capacitor, two 10μ F low ESR ceramic capacitors are suggested. For the suggested capacitor, please refer to Table 3 for more details.

The selection of C_{OUT} is determined by the required ESR to minimize voltage ripple.

Moreover, the amount of bulk capacitance is also a key for C_{OUT} selection to ensure that the control loop is stable. Loop stability can be checked by viewing the load transient response as described in a later section.

The output ripple, ΔV_{OUT} , is determined by :

$$\Delta V_{OUT} \leq \Delta I_L \left[\text{ESR} + \frac{1}{8 f C_{OUT}} \right]$$

RICHTEK

The output ripple will be the highest at the maximum input voltage since ΔI_{L} increases with input voltage. Multiple capacitors placed in parallel may be needed to meet the ESR and RMS current handling requirement. Higher values, lower cost ceramic capacitors are now becoming available in smaller case sizes. Their high ripple current, high voltage rating and low ESR make them ideal for switching regulator applications. However, care must be taken when these capacitors are used at input and output. When a ceramic capacitor is used at the input and the power is supplied by a wall adapter through long wires, a load step at the output can induce ringing at the input, V_{IN}. At best, this ringing can couple to the output and be mistaken as loop instability. At worst, a sudden inrush of current through the long wires can potentially cause a voltage spike at VIN large enough to damage the part.

Switching Frequency Setting

The switching frequency can be set by using extra resister RT or external clock. Switching frequency range is from 300kHz to 2.1MHz. Through extra resister RT connect to RT/SYNC pin to setting the switching frequency F_S , below offer approximate formula equation :

Setting Frequency = F_S (kHz)

 $x = [F_S - 31.379] / 47691$

 R_{OSC} (k Ω) = (1 / x)

The RT2875D can be synchronized with an external clock ranging from 300kHz to 2.1MHz applied to the RT/SYNC pin. The external clock duty cycle must be from 10% to 90%. The RT/SYNC pin is at logic-high level (>2V). If the EN pin is pulled to low-level for 10μ s above, the IC will shut down.

Current Setting

The current limit of high side MOSFET is adjustable by an external resistor connected to the RLIM pin. The current limit range is from 1.5A to 6A. When the inductor current reaches the current limit threshold, the COMP voltage will be clamped to limit the inductor current. Inductor current ripple current also should be considered into current limit setting. Current limit minimum value should be set as below :

Current limit minimum = $(I_0(max) + 1/2 \text{ inductor current ripple}) \times 1.2$

Through extra resister RLIM connect to RLIM pin to setting the current limit value below offer approximate formula equation :

 $I_{SET} = \text{current limit value (A)}$ $y = (I_{SET} - 0.4206) / 167.79$ $R_{LIM} (k\Omega) = (1 / y)$

Soft-Start

The RT2875D provides soft-start function. The soft-start function is used to prevent large inrush current while converter is being powered-up. The soft-start timing can be programmed by the external capacitor C_{SS} between SS and GND. An internal current source I_{SS} (6µA) charges an external capacitor to build a soft-start ramp voltage. The V_{FB} voltage will track the internal ramp voltage during softstart interval. The typical soft start time is calculated as follows :

Soft-Start time $t_{SS} = C_{SS} \times 0.6 / 6\mu A$

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :

 $\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}) / \theta_{\mathsf{J}\mathsf{A}}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is 150°C. The junction to ambient thermal resistance, θ_{JA} , is layout dependent. For TSSOP-14 (Exposed Pad) package, the thermal resistance, θ_{JA} , is 28°C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at T_A = 25°C can be calculated by the following formula :

 $P_{D(MAX)}$ = (150°C - 25°C) / (28°C/W) = 4.464W for TSSOP-14 (Exposed Pad) package

The maximum power dissipation depends on the operating ambient temperature for fixed $T_{J(MAX)}$ and thermal resistance, θ_{JA} . The derating curve in Figure 6 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

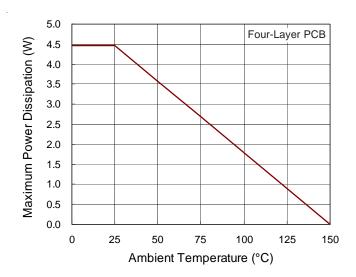
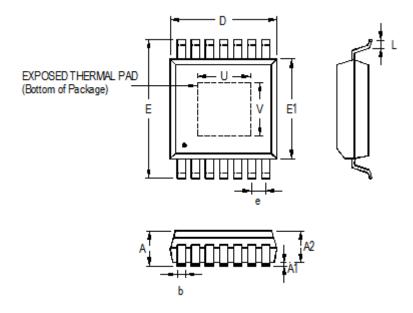



Figure 6. Derating Curve of Maximum Power Dissipation

RT2875D

Outline Dimension

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	1.000	1.200	0.039	0.047	
A1	0.000	0.150	0.000	0.006	
A2	0.800	1.050	0.031	0.041	
b	0.190	0.300	0.007	0.012	
D	4.900	5.100	0.193	0.201	
е	0.6	50	0.026		
E	6.300	6.500	0.248	0.256	
E1	4.300	4.500	0.169	0.177	
L	0.450	0.750	0.018	0.030	
U	1.900	2.900	0.075	0.114	
V	1.600	2.600	0.063	0.102	

14-Lead TSSOP (Exposed Pad) Plastic Package

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.