Easy to Use Power Bank Solution (EZPBS[™]) Integrated Chip with Switch Charger, ADC, and Load Switch

General Description

The RT9481 is a high integration and easy to use power solution for Li-ion power bank and other powered handheld applications. We call it EZPBSTM (Easy to Use Power Bank Solution). This single chip includes a Switching Charger with Boost function, Analog to Digital Converter (ADC), USBOUT Load Switch, Adapter Detection with BC1.2, DCP controller and LDO.

Applications

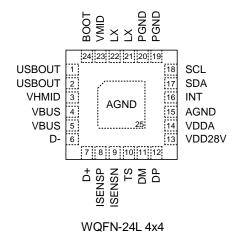
Power Bank

Ordering Information

RT9481 🖵 📮

Package Type QW : WQFN-24L 4x4 (W-Type) (Exposed Pad-Option 2)

Lead Plating System G : Green (Halogen Free and Pb Free)


Note :

Richtek products are :

- ▶ RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- ► Suitable for use in SnPb or Pb-free soldering processes.

Pin Configurations

(TOP VIEW)

Features

System

- High Accuracy Voltage/Current Regulation
 - ▶ ±1% Charge Voltage Regulation
- ▶ ±0.1A Charge Current Regulation
- ▶ ±3% Boost USBOUT Voltage Regulation
- Thermal Shutdown Protection
- Reverse Leakage Protection to Prevent Battery Drainage.
- Built-In USBOUT DCP Controller
- Built-In USBOUT Attach/Detach Detection
- Built-In USBOUT Light Load Detection
- Built-In Load Switch with Current Regulation Thermal Regulation and Output Short Current Protection
- Built-In Adapter Detection with BC1.2
- Built-In Accurate ADC to Measure VBAT, VBUS, TS, IBAT, USBOUT and IUSBOUT
- Built-In LDO
- Interrupt Output for Event Notification
- I²C Interface with 400kHz

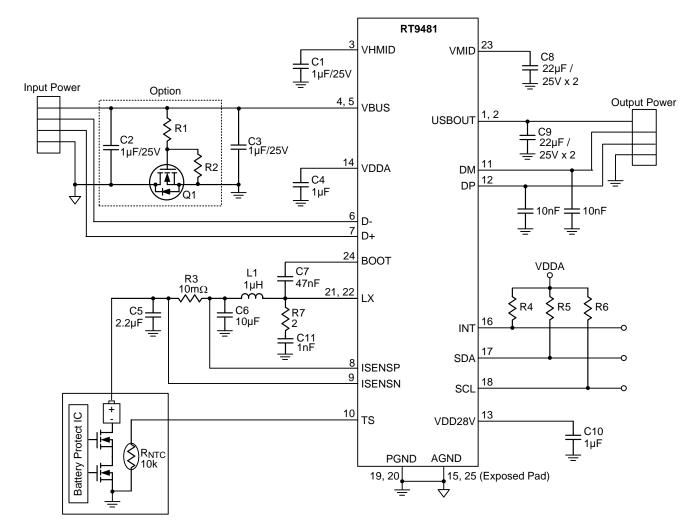
Charge Mode

- Charge Voltage Regulation : 3.65V to 4.6V
- Charge Current Regulation : 0.7A to 2.7A
- Minimum Input Voltage Regulation (MIVR) : 4.2V to 4.8V
- Average Input Current Regulation (AICR) : 0.1A to 2A
- Charge Termination Current : 0.15A to 0.6A
- Pre-charge Threshold : 2.3V to 3.8V
- Pre-charge Current : 0.2A to 0.5A
- Thermal Regulation
- VMID Under Voltage Protection
- VBUS Over Voltage Protection
- Battery Over Voltage Protection
- Bad Adapter Detection

Boost Mode

- Boost Output Current Up to 3A
- Boost Output Voltage : 3.65V to 5.2V
- Battery Under Voltage Protection : 2.5V to 3.2V
- VMID Over Voltage Protection

1

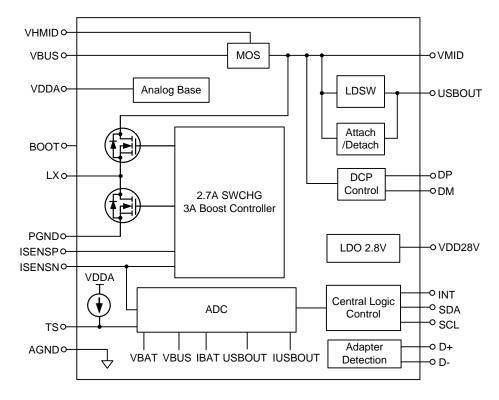


Marking Information

	3X=YM
	DNN
_	

3X= : Product Code YMDNN : Date Code

Typical Application Circuit



Functional Pin Description

Pin No.	Pin Name	Pin Function			
1, 2	USBOUT	USB Power Output.			
3	VHMID	Internal Use Only.			
4, 5	VBUS	VBUS Power Supply.			
6	D-	D- Input for Adapter Detection.			
7	D+	D+ Input for Adapter Detection.			
8	ISENSP	Charging Current Sensing Positive Node.			
9	ISENSN	Charging Current Sensing Negative Node and Connect to Battery Plus Terminal.			
10	TS	Battery Temperature Detection Pin.			
11	DM	DCP Controller DM Output.			
12	DP	DCP Controller DP Output.			
13	VDD28V	Internal Use LDO Output.			
14	VDDA	Internal Power for Analog Blocks, Put 1µF to GND.			
15, 25 (Exposed Pad)	AGND	Analog Ground Node. The exposed pad must be soldered to a large PCB and connected to AGND for maximum power dissipation.			
16	INT	Interrupter Signal. Connect an external pull-up resistor.			
17	SDA	Data Input and Output for I ² C Serial Port. Connect an external pull-up resistor.			
18	SCL	Clock Input for I ² C Serial Port. Connect an external pull-up resistor.			
19, 20	PGND	Power Ground for Switching Charger.			
21, 22	LX	Internal Switch Node to Output Inductor Connection.			
23	VMID	Connection Point Between Reverse Blocking and High-Side.			
24	BOOT	Bootstrap Power Node for Switching Charger.			

Functional Blocks Diagram

Operation

The RT9481 is a high integrated IC for Li-Ion battery power bank. It includes a Switch charger 2.7A, a synchronous Boost 5V.

Charge Current

Base on thermal regulation function, the charging current can support up to 2.7A.

VBUS Over Voltage Protection

If the input voltage (VBUS) is higher than the threshold voltage VovP, the internal OVP signal will go high and the charger will stop charging until VIN is below VovP – hysteresis.

VMID Over Voltage Protection

If the internal voltage (VMID) is higher than the threshold voltage V_{OVP} , the internal OVP signal will go high and the charger will stop charging until VMID is below V_{OVP} – hysteresis.

VMID Under Voltage Protection

If the internal voltage (VMID) is lower than the threshold voltage VUVP, the internal VMID_UVP signal will go high and the system will disable LDSW

function in order to protect system from short-toground current damages.

USBOUT SCP

The USBOUT short circuit protection (SCP) function will prevent system from burning out by monitoring the voltage drop between LDSW. If the USBOUT is short to ground, the inrush current will make the VDS voltage too large to damage chip. The SCP function also reports this condition to protect chip in time.

Boost OCP

The converter senses the current signal when the high-side P-MOSFET turns on. As a result, The OCP is cycle by-cycle current limitation. If the OCP occurs, the converter holds off the next on pulse until inductor current drops below the OCP limit.

ΟΤΡ

The converter has an over-temperature protection.

When the junction temperature is higher than the thermal shutdown rising threshold, the system will be latched and the output voltage will no longer be

regulated until the junction temperature drops under the falling threshold.

CC/CV/TR Multi Loop Controller

There are constant current loop, constant voltage loop and thermal regulation loop to control the charging current.

Base Circuits

Base circuits provide the internal power, VDDA and reference voltage and bias current.

Buck Regulator for Charging and Boost Regulator as BOOST

The multi-loop controller controls the operation of charging process and current supply to the system. It also controls the circuits as a Boost converter for BOOST applications.

USB Charger Detection

The RT9481 detects USB Charger (Standard Charger Port, Charging Downstream Port and Dedicated Charger Port) via D+ and D- pins.

USBOUT Attach/Detach Detection

RT9481 includes an auto attach detection for the power bank product. The attach detection has a current threshold which represent an attach condition. When the attach detection is enable, the USBOUT will generate a 1.6V to monitor the load current. Once load current is greater than 5μ A, the attach flag will be reported until the load current is removed.

I²C Controller

The key parameters of charging and BOOST are programmable through I^2C commands.

Absolute Maximum Ratings (Note 1)

VBUS, VHMID Supply Input Voltage	–0.3V to 18V
• VMID	–0.3V to 6.7V
• LX, BOOT	-0.3V to 6V
• VMID – VBUS, BOOT– LX	–0.3V to 6V
Others	–0.3V to 6V
 Power Dissipation, P_D @ T_A = 25°C WQFN-24L 4x4	3.57W
Package Thermal Resistance (Note 2)	
WQFN-24L 4x4, θ_{JA}	28°C/W
WQFN-24L 4x4, θ_{JC}	7.1°C/W
Lead Temperature (Soldering, 10 sec.)	260°C
• Junction Temperature	150°C
Storage Temperature Range	–65°C to 150°C
ESD Susceptibility (Note 3)	
HBM (Human Body Model)	2kV
MM (Machine Model)	200V

Recommended Operating Conditions (Note 4)

•	Supply Input Voltage	4.3V to 5.65V
•	Junction Temperature Range	–40°C to 125°C
•	Ambient Temperature Range	–40°C to 85°C

Electrical Characteristics

$(V_{BUS} = 5V, V_{BATS} = 4.2V, T_A = 25^{\circ}C$	unless otherwise specified)
(1003 - 00, 1003 - 1.20, 10 - 200)	

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Power Source	nput Power Source					
VBUS Operation Range			4		5.65	V
		PWM switching, I _{CHG} = I _{BAT} = 0mA		10		mA
VBUS Supply Current	lq	High Impendence Mode			200	μA
Leakage Current from Battery	IBAT_LEAK	$V_{BAT} = 4.2V, V_{BUS} = 0V,$ Charger off. 1/80 ADC execution time duty		40	60	μA
Protection						
VBUS OVP Threshold Voltage	VBUS_OVP	VBUS Rising	5.7	6	6.3	V
VBUS OVP Hysteresis	V _{BUS_OVP_} Hys	VBUS Falling		200		mV
VBUS UVLO	VBUS_UVLO	VBUS Rising	3	3.25	3.5	V

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
VBUS UVLO Hysteresis	V _{BUS_UVLO_} HYS	VBUS Falling		150		mV
ISENSN OVP	VBAT_OVP	VISENSN Rising	103	107	114	%
ISENSN OVP Hysteresis	V _{BAT_OVP_} HYS	VISENSN Falling		5		%
Over Temperature Protection	T _{OTP}	(Note 5)		160		°C
OTP Hysteresis	T _{OTP_HYS}			20		°C
Thermal Regulation Threshold	T _{REG}	Optional 100/120/135°C by I ² C (Default value is 120°C)		120		°C
Input Power Source Detection	n					
Poor Source Detect Threshold	V _{BUS_pr}	Bad Voltage Source Detection	3.6	3.8	4	V
Poor Source Detect Deglitch	t∨BUS_pr_dg			30		ms
Poor Source Detect Hysteresis	V _{BUS_pr_hys}	VBUS Rising	100		200	mV
Current Sink to GND	I _{VBUS_pr}	During Poor Source Detection		50		mA
Detection Interval Time	t∨BUS_pr_int		-	2		S
Sleep Mode Comparator						
Sleep-Mode Entry Threshold VBUS – ISENSN	V _{SLP}	3V < VISENSN < VBATREG, VBUS Falling		40	100	mV
Sleep-Mode Exit Hysteresis VBUS Symbol ISENSN	VSLPEXIT	3V < VISENSN < VBATREG, VBUS Rising	40	120	200	mV
Sleep-Mode Deglitch Time	t _{SLP}	VBUS Rising Above V _{SLP} + V _{SLPEXIT}		30		ms
Minimum Input Voltage Regu	lation (MIVR)					
Minimum Input Voltage Regulation	Vmivr	Optional 4.2V to 4.8V by I ² C per 0.1V (Default value is 4.7V)	4.2		4.8	V
V _{MIVR} Accuracy			-5		5	%
	IAICR_100mA	I _{AICR} = 100mA	80	90	100	
Average Input Current	IAICR_500mA	I _{AICR} = 500mA	400	450	500	mA
Regulation (AICR) Accuracy	IAICR_700mA	I _{AICR} = 700mA	560	630	700	ШA
	IAICR_1000mA	IAICR = 1000mA	800	900	1000	
AICR Range	IAICR	Optional 100mA to 2000mA by I ² C (Default value is 0.5A)	100		2000	mA
VDDA Regulator						
VDDA Voltage	VDDA	V _{VBUS} > 4.5V		4.5		V
VUDA VUllage	VUUA	VVBUS < VISENSN		VISENSN		V
VDDA UVLO	Vdda_uv	VDDA Risling	2.4	2.5	2.6	V
VDDA UVLO Hysteresis	V _{DDA_UV_hys}	VDDA Falling		150		mV

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Battery Voltage Regulation						
Battery Voltage Regulation	VBATREG	Optional 3.65V to 4.6V by I ² C per 25mV (Default value is 4.2V)	3.65		4.6	V
VBATREG Accuracy			-1		1	%
Re-Charge Threshold	ΔV_{REG}	Visensn Falling, ∆Vreg = (Vbatreg – Vrec)	50	125	200	mV
Re-Charge Deglitch Time	t _{REC}			128		ms
Charging Current Regulation	1					
Output Charging Current	Існд	$R_{SENSE} = 10m\Omega$, Optional 0.7A to 2.7A by I ² C per 0.25A (Default value is 0.7A)	0.7		2.7	A
ICHG Accuracy	ICHG_ACC	$R_{SENSE} = 10m\Omega$	-100		100	mA
Pre-Charge Threshold	VPREC	Rising, Optional 2.3V to 3.8V by I ² C per 0.1V (Default value is 3V)	2.3		3.8	V
VPREC Accuracy			-5		5	%
Pre-Charge Current	IPREC	Optional 200mA to 500mA by I ² C per 100mA (Default value is 300mA)	200		500	mA
IPREC Accuracy			-20		20	%
Charge Termination Detection	'n					
End of Charge Current	IEOC	R _{SENSE} = $10m\Omega$, Optional 150mA to 600mA by I ² C (Default value is 200mA)	150		600	mA
IEOC Accuracy		$R_{SENSE} = 10m\Omega$	-100		100	mA
Deglitch Time for EOC	tEOC	ICHG < IEOC, VISENSN > (VBATREG – Δ VREG) Optional 4ms to 32ms by I ² C (Default value is 32ms)	4		32	ms
Charger Timer Protection	I	- 1			1	
Fast-Charge Time-Out		Optional 6Hrs to 20Hrs by I ² C per 2Hrs (Default value is 20Hrs)	6		20	Hrs
Pre-Charge Time-Out		Optional 30Mins to 60Mins by I ² C per 15Mins (Default value is 60Mins)	30		60	Mins
PWM Switching Charger						
VBUS to LX Resistance	R ds(on)_ Vbus_lx	From VBUS to LX, as IAICR disable or $I_{AICR} = 2A$		97		mΩ
VBUS to USBOUT Resistance	R ds(ON)_ VBUS_USBOUT	From VBUS to USBOUT		98		mΩ
Low-Side On-Resistance	R _{DS(ON)} _LS	From LX to PGND		35		mΩ

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Efficiency for Charge	EFF_CHG	$V_{BUS} = 5V$, $V_{ISENSN} = 4V$, and $I_{CHG} = 2A$		90		%
Oscillator Frequency	fosc			0.75		MHz
Frequency Accuracy			-10		10	%
Maximum Duty Cycle	D _{MAX}	At Minimum Voltage Input		95		%
Minimum Duty Cycle	D(MIN)		0			%
Peak OCP as Charger Mode				4.5		А
Boost Mode Operation						
Output Voltage Level	VBOOST	To VMID Optional 3.625V to 5.2V by I ² C per 25mV (Default value is 5.1V)	3.625		5.2	V
Output Voltage Accuracy			-3		3	%
Output Current On VMID	I _{BST}	V _{BAT} > 3V	3			А
Efficiency for Boost	EFF_BST	$V_{MID} = 5V, V_{ISENSN} = 4V$, and Loading = 2A		92		%
Peak OCP as Boost Mode	IOCP_BST			6		А
VMID OVP as Reverse Boost	VOVP_BST	VMID Rising		6		V
VMID OVP Hysteresis	Vovp_bst_ hys	VMID Falling		200		mV
Battery UVP for Boost	VBATMIN	Falling, I ² C Programmable Per 0.1V Optional 2.5V to 3.2V by I ² C per 0.1V (Default value is 3V)	2.5		3.2	V
NTC Function						
Current Source for NTC $10k\Omega$	ITS_10k		33	35	37	μΑ
Load Switch for USBOUT						
Supply Voltage	V _{SW}		2.5	5	5.5	V
Load Switch On Resistance of MOSFET	Rds(on)_sw	V _{MID} = 5V, I _O = 1000mA		35		mΩ
Load Switch UVP Delta	V _{SW_UVP_D}	VMID – VUSBOUT		1.4		V
Light Load Detection Current	IDET_10mA	Detection current		10		mA
Thermal Regulation Threshold of the Load Switch	T _{REG_LSW}	Optional 100°C to 135°C by I ² C (Default value is 100°C)		100		°C
Adapter Detection						
D+ Voltage Source	V _{D+_SRC}		0.5		0.7	V
VDAT_REF Voltage	Vdat_ref		0.25		0.4	V
VLGC Voltage	Vlgc		0.8		2	V
D- Sink Current	I _{DN_SINK}		50		150	μA

Parame	ter	Symbol	Test Conditions	Min	Тур	Max	Unit
USBOUT Attach/	Detach Dete	ction					
USBOUT Attach	Voltage		I _{USBOUT} = 1.5μA	1.4	1.6	1.8	V
USBOUT Attach/I Threshold	Detach		C _{USBOUT} = 40µF, Note 6	1	5	10	μA
Detect Time 1			V _{BAT} = 3V, C _{OUT} = 30μF, 0X24[4:2] = 010		375		ms
Detect Time 2			V _{BAT} = 3V, C _{OUT} = 50µF, 0X24[4:2] = 100		600		ms
LDO 2.8V		•					
Output Voltage		Vout_2.8v	$C_{OUT} = 1 \mu F$	2.66	2.8	2.94	V
Output Current		IOUT_2.8V	VDDA > 3V	10			mA
The Time for VOL	JT Ready	trdy_2.8V	Coυτ = 1μF	1			ms
ADC Characteris	tics						
Resolution					12		Bit
			VBAT, TS	-10		10	mV
			VBUS, USBOUT	-50		50	mV
	• #		I _{BAT} < 1A	-100		100	mA
Measurement Error		Vgerr	I _{BAT} > 1A	-10		20	%
			IUSBOUT < 1A	-100		100	mA
			I _{USBOUT} > 1A	-10		10	%
Conversion Time		T _{CONV}				25	ms
Logic Inputs (SD	A SCL)						
SDA, SCL Input	High-Level			1.5			
Threshold Voltage	Low-Level					0.4	V
Open Drain Low	/oltage	VODL	ISINK = 1mA			0.4	V
I ² C Timing Chara	acteristics	1					
SCL Clock Rate		fscl	VDDA = 3.3V			400	kHz
Hold Time (Repea Condition. After th the first clock puls generated	is period,	thd;sta		0.6			ms
Input Power							
DCP Controller F Threshold Voltage		VUVLO_R_DCP _CTRL	Rising	3.9	4.1	4.3	V
UVLO Hysteresis		Vuvlo_f_cp_ ctrl	Falling	100	200	300	mV
DCP Controller Supply Current		IDCP_CTRL	4.5V < V _{UID} < 5V		150	200	μA
BC1.2 DCP Mode	9	•		•		-	
DP and DM Short Resistance	ing	R _{DPM_SHORT}	V _{DP} = 0.8V, I _{DM} = 1mA		157	200	Ω

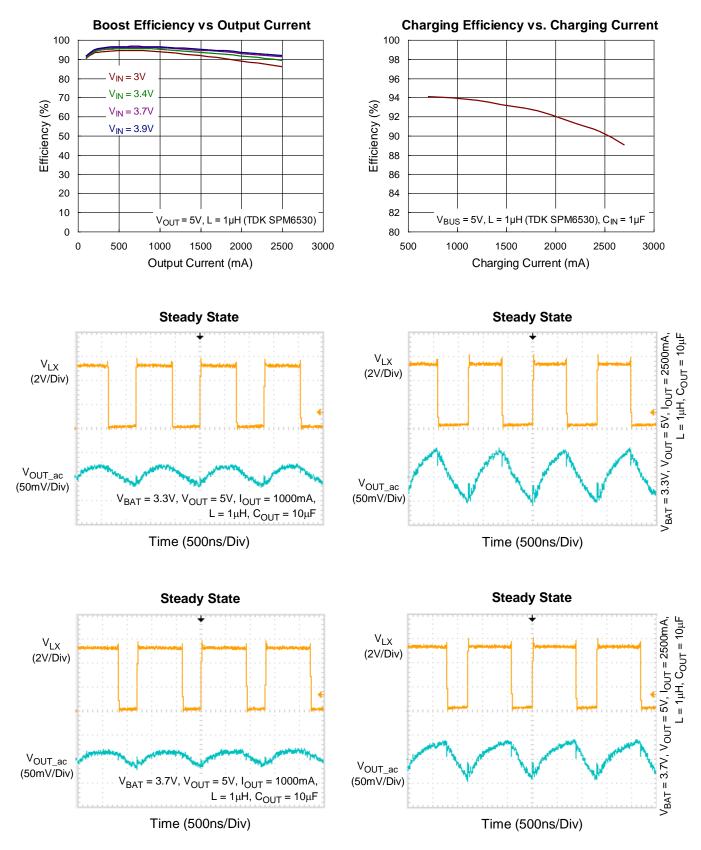
Copyright © 2016 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. www.richtek.com

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Resistance Between DP/DM and GND	RDCHG_ SHORT	DP = 0.8V	350	656	1150	kΩ
Voltage Threshold on DP1 under which the Device Goes Back to Divider Mode	Vdpl_th_det	Falling	310	330	350	mV
Hysteresis	Vdpl_th_det _hys	Rising		50		mV
DIVIDER Mode						
DP Output Voltage for DIVIDER Mode	V _{DP_2.7V}	V _{UID} = 5V	2.57	2.7	2.84	V
DM Output Voltage for DIVIDER Mode	V _{DM_2.7V}	V _{UID} = 5V	2.57	2.7	2.84	V
DP Output Impedance for DIVIDER Mode	R _{DP_PAD1}	$I_{DP} = -5\mu A$	24	30	36	kΩ
DM Output Impedance for DIVIDER Mode	R _{DM_PAD1}	$I_{DM} = -5\mu A$	24	30	36	kΩ
DP and DM Shorting Resistance	R _{PM_short}			150	200	Ω
1.2V / 1.2V Mode						
DP Output Voltage for 1.2V Mode	V _{DP_1.2V}		1.12	1.2	1.28	V
DP Output Impedance for 1.2V Mode	R _{DP_PAD}		80	102	130	kΩ

Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Note 2. θ_{JA} is measured at $T_A = 25^{\circ}C$ on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θ_{JC} is measured at the exposed pad of the package.

Note 3. Devices are ESD sensitive. Handling precaution recommended.


Note 4. The device is not guaranteed to function outside its operating conditions.

Note 5. Guarantee by design.

Note 6. It will attach when only plug-in APPLE charging line.

Typical Operating Characteristics

 Copyright © 2016 Richtek Technology Corporation. All rights reserved.
 RICHTEK is a registered trademark of Richtek Technology Corporation.

 www.richtek.com
 DS9481-04 August 2016

Application Information

Switching Charger

The switching charger integrates a synchronous PWM controller with power MOSFETs to provide Minimum Input Voltage Regulation (MIVR), Average Input Current Regulation (AICR), high accuracy current and voltage regulation, and charge termination.

In charge mode, the switching charger supports a precision charging system for single cell. In boost mode, the switching charger works as the boost converter. And in high impedance mode, the switching charger stops charging or boosting and operates in a mode with low current from battery to reduce the power consumption when the portable device is in standby mode.

Notice that the switching charger does not integrate input power source (AC adapter or USB input) charging detection. Thus, the switching charger does not set the charge current automatically. The charge current needs to be set via I^2C interface by the host. The switching charger application mechanism and I^2C compatible interface are introduced in later sections.

Charge Mode Operation

Minimum Input Voltage Regulation (MIVR)

The switching charger features Minimum Input Voltage Regulation function to prevent input voltage drop due to insufficient current provided by the adaptor or USB input. If MIVR function is enabled, the input voltage decreases when the over current of the input power source occurs. VBUS is regulated at a predetermined voltage level which can be set as 4.2V to 4.8V per 0.1V by I²C interface. At this time, the current drawn by the switching charger equals to the maximum current value that the input power can provide at the predetermined voltage level, instead of the set value.

MIVR[2:0]	V _{MIVR}
000	Disable
001	4.2V
010	4.3V
011	4.4V
100	4.5V
101	4.6V
110	4.7V (default)
111	4.8V

Table 1.	MIVR	Register	Setting	Table

Charge Profile

The switching charger provides a precision Li-ion or Lipolymer charging solution for single-cell applications. Input current limit, charge current, termination current, charge voltage and input voltage MIVR are all programmable via the I²C interface. In charge mode, the switching charger has five control loops to regulate input current, charge current, charge voltage, input voltage MIVR and device junction temperature. During the charging process, all five loops (if MIVR is enabled) are enabled and the dominant one will take over the control.

For normal charging process, the Li-ion or Li-polymer battery is charged in three charging modes depending on the battery voltage. At the beginning of the charging process, the switching charger is in pre-charge mode. When the battery voltage rises above pre-charge threshold voltage (V_{PREC}), the switching charger enters fast-charge mode. Once the battery voltage is close to the regulation voltage (V_{BATREG}), the switching charger enters constant voltage mode.

Pre-Charge Mode

For life-cycle consideration, the battery cannot be charged with large current under low battery condition. When the ISENSN pin voltage is below pre-charge threshold voltage (V_{PREC}), the charger is in pre-charge mode with a weak charge current witch equals to the pre-charge current (I_{PREC}). In pre-charge mode, the charger basically works as a Linear Charger. The pre-charge current also acts as the current limit when the ISENSN pin is shorted.

The Pre-Charge current levels are 200mA to 500mA programmed by I^2C per 100mA.

Copyright © 2016 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

RICHT	'EK
-------	-----

Table 2. VPREC Register Setting Table			
VPREC[2:0]	Pre-Charge Threshold		
0000	2.3V		
0001	2.4V		
0010	2.5V		
0011	2.6V		
0100	2.7V		
0101	2.8V		
0110	2.9V		
0111	3V (default)		
1000	3.1V		
1001	3.2V		
1010	3.3V		
1011	3.4V		
1100	3.5V		
1101	3.6V		
1110	3.7V		
1111	3.8V		

Table 3. IPREC Register Setting Table

IPREC[1:0]	Pre-Charge Current		
00	200mA		
01	300mA (default)		
10	400mA		
11	500mA		

Fast-Charge Mode and Settings

As the ISENSN pin rises above VPREC, the charger enters fast-charge mode and starts switching. Notice that the switching charger does not integrate input power source (AC adapter or USB input) detection. Thus, the switching charger does not set the charge current automatically. Unlike the linear charger (LDO), the switching charger (Buck converter) is a current amplifier. The current drawn by the switching charger is different from the current into the battery. The user can set the Average Input Current Regulation (AICR) and output charge current (I_{CHRG}) respectively.

Cycle-by-Cycle Current Limit

14

The charger of the switching charger has an embedded cycle-by-cycle current limit for inductor. Once the inductor current touches the threshold, the charger stops charging immediately to prevent over current from damaging the device. Notice that, the mechanism cannot be disabled by any way.

Adapter Detection

RT9481 includes the VBUS detection function. When VBUS plugs in, CHGGOODADP STAT will reset to 0 once VBUS not rising exceeds 3.8V after 16ms. Besides, if VBUS falling below 3.8V during the charging interval, CHGBADADP_ STAT is set as 1 to inform customer the poor adapter situation.

Average Input Current Regulation (AICR)

The AICR levels are 100mA to 2A programmed by I²C per 50mA.

Charge Current (ICHRG)

The charge current into the battery is determined by the sense resistor (R_{SENSE}) and ICC setting by I^2C . The voltage between the ISENSP and ISENSN pins is regulated to the voltage control by ICC setting.

As the R_{SENSE} is $10m\Omega$, the Fast-Charge currents are 700mA to 2.7A programmed by I²C per 250mA.

ICHG[3:0] VCC		ICHG R_{SENSE} is 10m Ω			
0000	7mV	0.7A (default)			
0001	9.5mV	0.95A			
0010	12mV	1.2A			
0011	14.5mV	1.45A			
0100	17mV	1.7A			
0101	1.95mV	1.95A			
0110	2.2mV	2.2A			
0111	2.45mV	2.45A			
1000	2.7mV	2.7A			

Table 4. ICHG Register Setting Table

Constant Voltage Mode and Settings

The switching charger enters constant voltage mode when the VBAT voltage is close to the output-charge voltage (VBATREG). Once in this mode, the charge current begins to decrease. For default settings (charge current termination is disabled), the switching charger does not turn off and always regulates the battery voltage at VBATREG. However, once the charge current termination is enabled, the charger terminates if the charge current is below termination current (I_{EOC}) in constant-voltage mode. The charge current termination function is controlled by the I^2C interface.

After termination, a new charge cycle restarts when one of the following conditions is detected :

- ► The ISENSN pin voltage falls below the V_{BATREG} as V_{REC} threshold.
- ► VBUS Power On Reset (POR).
- ► Enable bit toggle or Charger reset (via I²C interface)

Battery Charge Voltage (VBATREG)

The output-charge voltage is set by the I^2C interface. Its range is from 3.65V to 4.6V per 25mV.

Termination Current (IEOC)

If the charger current termination is enabled (TE bit = "1"), the end-of-charge current is determined by both the termination current sense voltage (V_{EOC}) and sense resistor (R_{SENSE}). As R_{SENSE} is 10m Ω , I_{EOC} is set by the I²C interface from 150mA to 600mA.

EOC[2:0]	VEOC	IEOC R_{SENSE} is 10m $\!\Omega$	
000	Disable	Disable	
001	1.5mV	150mA	
010	2mV	200mA (default)	
011	2.5mV	250mA	
100	3mV	300mA	
101	4mV	400mA	
110	5mV	500mA	
111	6mV	600mA	

Table 5. EOC Register Setting Table

VBUS Voltage Protection in Charge Mode

During charge mode, there are two protection mechanisms against if input power source capability is less than the charging current setting. One is AICR and the other is minimum input voltage regulation. A suitable level of AICR can prevent VBUS drop by the insufficient capability. As the AICR setting is not suitable, MIVR will regulate the VBUS in the setting level and sink the maximum current of power source.

Sleep Mode ($V_{VBUS} - V_{VBAT} < V_{SLP}$)

The switching charger enters sleep mode if the voltage drop between the VBUS and ISENSN pins falls below V_{SLP} . In sleep mode, the reverse blocking switch and PWM are all turned off. This function prevents battery drain during poor or no input power source.

VBUS Over Voltage Protection

When VBUS rises above the input over voltage threshold, the switching charger stops charging and then sets fault status bits. The condition is released when VBUS falls below OVP threshold. The switching charger then resumes charging operation.

Reverse Boost Mode Operation Trigger and Operation

The switching charger features Boost support. When BOOST function is enabled, the synchronous boost control loop takes over the power MOSFETs. In boost mode, the VMID pin is regulated to 5V (typ.) to support other BOOST devices connected to the USB connector.

USBOUT Over-Voltage Protection

In boost mode, the output over voltage protection is triggered when the VMID voltage is above the output OVP threshold. When OVP occurs, the boost converter stops switching and turns off immediately.

Battery Protection

Battery Over-Voltage Protection in Charge Mode

The switching charger monitors the VBAT voltage for output over voltage protection. In charge mode, if the VBAT voltage rises above V_{OVP_BAT} x V_{BATREG}, such as when the battery is suddenly removed, the switching charger stops charging and then sets fault status bits and sends out fault pulse at the INT pin. The condition is released when the VBAT voltage falls below (V_{OVP_BAT} – Δ V_{OVP_BAT}) x V_{OVP_BAT}. The switching charger then resumes charging process with default settings and the fault is cleared.

Low Battery Voltage Protection (LBP)

When the Battery voltage is lower than a specified value, the converter will stop switching. Until the battery voltage rises above the low battery voltage protection threshold plus hysteresis voltage value, the converter resumes switching. The low battery voltage protection can be programmed with 8 different levels (2.5V to 3.2V).

Copyright © 2016 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

RICHTEK	
---------	--

Table 6. LBP Register Setting Table				
LBP[2:0] Low Battery Protection Le				
000	2.5V			
001	2.6V			
010	2.7V			
011	2.8V			
100	2.9V			
101	3V (default)			
110	3.1V			
111	3.2V			

. **T** - 1. 1

USB Battery Charging Specification

The RT9481 supports adapter detection for dedicated charging port, Charging downstream port and Standard downstream port by D- and D+.

USB Dedicated Charging Port Controller

The RT9481 supports an USB dedicated charging port (DCP) controller. The DCP controller detects USB data line voltage, and automatically provides the correct electrical signatures on the data lines (DM and DP) to charge compliant devices. D+ =2.7V and D- =2.0V. BC1.2 DCP, required to short the D+ Line to the D-Line and 1.2 V on both D+ and D- Lines.

IRQ and STA Operation

RT9481 summarize all IRQ items in the register table. All IRQ_status registers are implemented as reset after read. If IRQ_enable bit is Low, the IRQ_status bit will not update status. IRQ_enable will mask IRQ_status to trigger IRQ Low, so the system can decide which interrupt is necessary.

When STA low to high or high to low IRQ will be trigger but STA will keep situation and cannot be masked only mask IRQ.

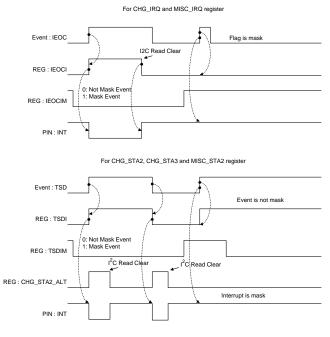
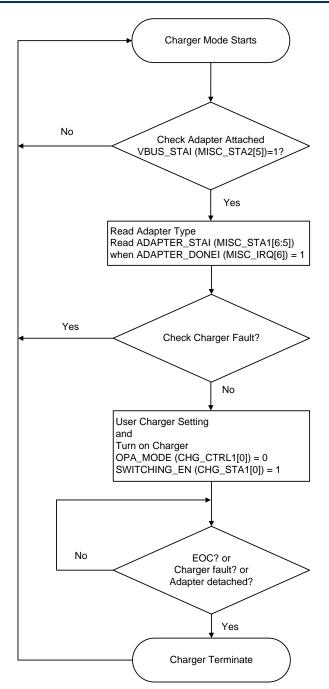
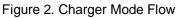




Figure 1. IRQ and STA Operation

Charger Mode Flow

The Charger mode is start from adapter attached, the flag of VBUS_STAI (MISC_STA2[5]) will be set to high and the host can read this bit to check adapter attached or not. Then adapter type detection will auto start to detect the type of adapter with BC1.2 standard. Its detection result is show in the flag ADAPTER_STAI (MISC_STA1[6:5]) when ADAPTER_DONE (MISC_IRQ[6]) is set.

The host could decide the user Charger setting by adapter type, like AICR or ICHG etc... For example, set IAICR to 0.5A, if the adapter type is SDP. Set IAICR to 1.5A, if the adapter type is CDP or DCP.

If there is no Charger fault event triggered in registers CHG_STAT1 or CHG_STAT2, the host can decide to turn on Charger or not. Set user Charger setting from registers CHG_CTRL1 to CHG_CTRL6 before turn on Charger. Please refer to I2C register map for detailed functional setting. To enable Charger by setting OPA_MODE (CHG_CTRL1[0]) to low and setting SWITCHING_EN (CHG_STA1[0]) to high.

When charging is start the host can check CHG_STAT (CHG_STA1[5]) to make sure the charging is in progress.

If system want to implement the charge and bypass feature, the host can set EN_LDSW (USBOUT_CTL[6]) to high to turn on Load Switch and set EN_DCP (USBOUT_CTL[7]) to high to turn on DCP Controller, then the power of adapter could bypass to device when battery is under charging.

Charger Terminate

There are three conditions to terminate Charger and the host could set SWITCHING_EN (CHG_STA1[0]) to low to turn off Charger.

End of Charge (EOC)

Set TE (CHG_CTRL1[1]) to high to enable Termination function, then the Charger will terminate automatically and CHTERMI (CHG_IRQ[7]) is set to high when the charging current is below IEOC (CHG_CTRL5[2:0]) and charging voltage is above re-charge threshold. The host could turn on Charger again when CHRCHGI (CHG_IRQ[5]) is set.

Charger Fault

The Charger automatically terminates when Charger fault event be triggered in Table 7.

Table 7. Charger Fault Event					
Charger Fault Event Flag Register					
Power Status	$PWR_Rdy = 0$	CHG_STA1[2]			
Thermal Shutdown	TSD_STAT = 1	CHG_STA2[7]			
VBUS OVP	VBUSOVP_STAT = 1	CHG_STA2[6]			
Reverse Protection	CHRVP_STAT = 1	CHG_STA2[5]			
Battery OVP	CHBATOV_STAT = 1	CHG_STA2[4]			
Good Adaptor Detection	CHGGOODADP_STAT = 0	CHG_STA2[1]			
Bad Adaptor Detection	CHGBADADP_STAT = 1	CHG_STA2[0]			

Adapter Detach

The flag of VBUS_STAI will be set to low when adapter detached and it will terminate Charger directly.

Copyright © 2016 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation. www.richtek.com

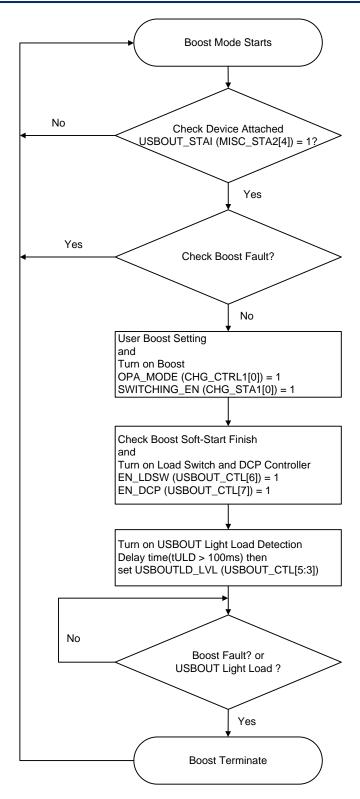


Figure 3. Boost Mode Flow

Boost Mode Flow

The Boost mode could start from device attached, and the flag of USBOUT_STAI (MISC_STA2[4]) will be set to high for indicate the device attached. The USBOUT attach detection is control by register ATTACH_CTL[5].

If there is no any Boost fault triggered in registers CHG_STAT2 or BST_IRQ or MISC_IRQ, the host can decide to turn on Boost or not. The host can set user Boost setting before turn on the Boost from registers CHG_CTRL1 to CHG_CTRL6 and please refer to I2C register map for detailed functional setting.

The Boost could be enable by set OPA_MODE (CHG_CTRL1[0]) to high and setting SWITCHING_EN (CHG_STA1[0]) to high.

Before enable the Load Switch suggest to wait Boost soft start (CHG_IRQ[3]) finish, it can guarantee the Boost ready for output.

Then the host could set EN_LDSW (USBOUT_CTL[6]) to high to turn on Load Switch and the Boost would start output current to device. For let device identify the power bank is a powerful adapter, to set EN_DCP (USBOUT_CTL[7]) to high to turn on DCP controller at the same time.

USBOUT light load detection (USBOUTLD_CTL[5:3]) can help the host to check the device charging full or device detached by the condition of USBOUT current is under the threshold or not. But according to USB standard, the device will start charging after it connect to adapter 100 millisecond. We suggest to add delay time t_{ULD} over 100 millisecond before enable USBOUT light load detection after Load Switch turn on. It could avoid USBOUT light load detection trigger early.

The host could read BOOST_STAT (CHG_STA1) to make sure the Boost is in progress.

Discharging Terminate

There are two conditions to terminate discharging.

Boost Fault

The Boost automatically terminates when Boost fault event be triggered in Table 8.

BOUT Thermal TS

Boost Fault

Event

Thermal Shutdown	TSD_STAT	CHG_STA2[2]
Boost Thermal Shutdown	BSTTSDI	BST_IRQ[7]
VMID Over Voltage Protect	BSTVMIDVPI	BST_IRQ[6]
Battery Voltage is too Low	BSTLOWVI	BST_IRQ[5]
Load Switch Short Current Protect	LDSW_SCPI	MISC_IRQ[5]
VMID Short Current Protect	VMIDSCPI	MISC_IRQ[1]
VMID Under Voltage Protect	VMIDUVPI	MISC_IRQ[0]

Table 8. Boost Fault Event

Flag

USBOUT Light Load

It means device charging full or device detached when USBOUTLD_STAT (MISC_STA2) set to high. According to USBOUTLD_STAT, the host could decide to turn off Boost or not.

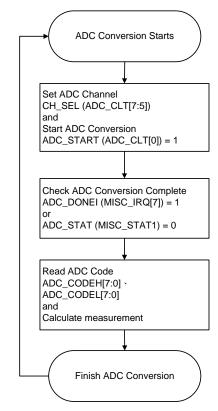


Figure 4. ADC Conversion Operation Flow

Register

ADC Conversion Operation Flow

Figure 4 shows ADC conversion operation flow. ADC conversion starts from set ADC channel CH_SEL (ADC_CLT[7:5]) and set ADC_START (ADC_CLT[0]) to high. ADC conversion time is 25ms and ADC_DONEI (MISC_IRQ[7]) will set to high and ADC_STAT (MISC_STAT1) will set to low also, the host could read them to make sure ADC conversion completes.

The host could read ADC code high byte (ADC_CODEH[7:0]) and low byte (ADC_CODEL[7:0]) to calculate the voltage or current measurement relative to ADC channel.

Table 9 shows the every measurement equation of ADC channel. Please pay attention to the calculation of IBAT, it need to consider the setting of ICHG (CHG_CTRL6[7:4]).

ADC code format is unsigned. If operation is Charger mode, IBAT means battery charging current. If operation is boost mode, IBAT means battery discharging current.

The code of IBAT is invalid if SWITCHING_EN (CHG_STA1[0]) is set to low. And the code of IUSBOUT is invalid if EN_LDSW (USBOUT_CTL[6]) is set to low.

The TS pin will automatic output 35uA during ADC TS channel under conversion. It will cause the IR drop on NTC thermistor and then ADC measure the voltage on TS pin. The host could get the temperature by mapping the voltage. We suggest to use $10k\Omega$ NTC which the beta (B25/85) is 3435k, like SEMITEC 103AT.

Table 9. Calculate voltage of Current measurement				
ADC Channel	Measurement Equation	Measurement Range		
VBAT	VBAT = ((ADC_CODEH x 256) + ADC_CODEL) x 1.25 mV	0V to VDDA		
VBUS	VBUS = ((ADC_CODEH x 256) + ADC_CODEL) x 6.25 mV	1V to 18V		
USBOUT	USBOUT = ((ADC_CODEH x 256) + ADC_CODEL) x 6.25 mV	1V to 6V		
TS	TS = ((ADC_CODEH x 256) + ADC_CODEL) x 1.25 mV	0V to VDDA		
IBAT	IBAT = ((ADC_CODEH x 256) + ADC_CODEL) x ICHG x 1.25 mA	0A to 6A		
IUSBOUT	IUSBOUT = ((ADC_CODEH x 256) + ADC_CODEL) x 2.5 mA	0A to 6A		

Table 9. Calculate Voltage or Current Measurement

	Table 10. Protection Items					
	Protection Type	Threshold (typical) Refer to Electrical Spec.	Protection Methods	IC Shutdown Delay Time	Reset Method	
_	LBP	VBAT < LPB setting	Exist boost mode	None	VDDA power reset	
VBAT	OVP	VBAT > 1.07 x CHG_CV	Stop charging	None	VDDA power reset or VBAT falling to 1.02 x CHG_CV	
VDDA	UVP	VDDA < 2.35V	analog circuit disable	None	VDDA >2.5V	
	OVP	VBUS > 6V	Stop charging, UUG disable	None	VDDA power reset or VBUS falling to VBUSOVP-hysteresis	
	Bad adapter	VBUS < 3.8V	None	None	VDDA power reset or VBUS rising to VBUS_BAD + hysteresis	
	Good adapter	None	None	None	None	
VBUS	RVP	VBUS < VBAT	Stop charging, UUG disable	None	VDDA power reset or VBUS rising above VBAT	
	TREG	Temp. ≒ Thermal regulation setting	None	None	VDDA power reset or thermal loop release	
	MIVR	VBUS ≒ MIVR setting	None	None	VDDA power reset or MIVR loop release	
	AICR	IBUS ≒ AICR setting	None	None	VDDA power reset or AICR loop release	
	OVP	N/A	N/A		N/A	
VMID	UVP	3.5V	Absolute voltage below threshold		sEn_VMIDUVP	
	SCP	3.5V	Absolute voltage below threshold		sEn_VMIDUVP	
USBOUT	LDSWREG	1.5A/2A/2.5A/3A	Load current is above current limit		sEn_LDSW	
	LDSWSCP	VDS~1.4V	VDS voltage is too high		sEn_LDSW	
	Current limit	1.5A/2A/2.5A/3A	Load current reach to limit-point		sEn_LDSW	
Boost	Current limit	Inductor current > 6A	cycle by cycle, inductor current limit	None	Inductor current < 6A	
OTP	Thermal Shutdown	Temp > 160°C	Stop charging, UUG disable	None	Temp < 160°C	

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :

$\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}) / \theta_{\mathsf{J}\mathsf{A}}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is 125°C. The junction to ambient thermal resistance, θ_{JA} , is layout dependent. For WQFN-24L 4x4 package, the thermal resistance, θ_{JA} , is 28°C /W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at T_A = 25°C can be calculated by the following formula :

 $P_{D(MAX)}$ = (125°C - 25°C) / (28°C /W) = 3.57W for WQFN-24L 4x4 package

The maximum power dissipation depends on the operating ambient temperature for fixed $T_{J(MAX)}$ and thermal resistance, θ_{JA} . The derating curve in Figure 5 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

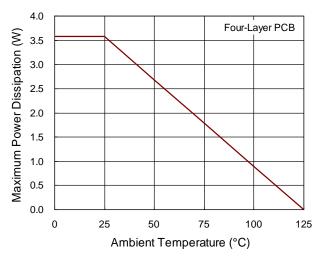
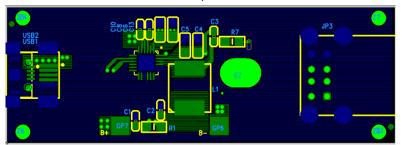
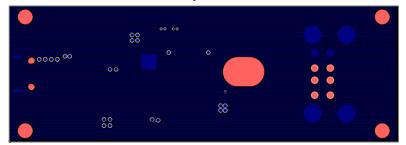


Figure 5. Derating Curve of Maximum Power Dissipation

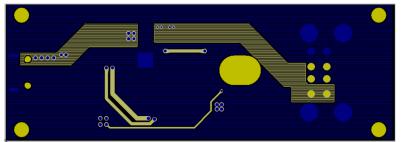
Layout Considerations


Some PCB layout guidelines for optimal performance of RT9481 list as following. Following figure shows the real PCB layout considerations and it is based on the real component size whose unit is millimeter (mm).

- Place the input and output capacitors as close to the input and output pins as possible.
- Keep the main power traces as wide and short as possible.
- ► The output inductor and boot capacitor should be placed close to the chip and LX pins.
- ► The battery voltage sensing point should be placed after the output capacitor.
- To optimize current sense accuracy, connect the traces to RSENSE with Kelvin sense connection by ISENSN and ISENSP.
- LX node is with high frequency voltage swing and should be kept small area. Keep analog components away from LX node to prevent stray capacitive noise pick-up.
- Add Snubber in LX: 2Ω resister 0805 package and 1nF capacitor.


Copyright © 2016 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. DS9481-04 August 2016 www.richtek.com

RT9481


Top:

layer2 :

Layer3 :

Bottom :

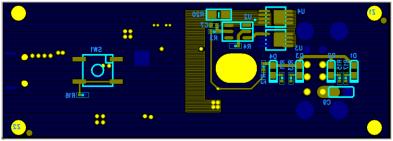
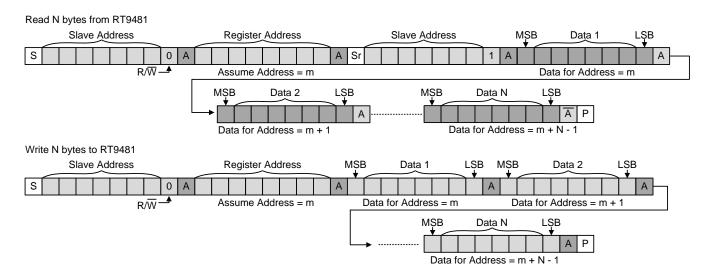



Figure 6. PCB Layout Guide

I²C Interface

RT9481 I^2C slave address = 7'b1101100.

 I^2C interface support fast mode (bit rate up to 400kb/s). The write or read bit stream (N \ge 1) is shown below :

I²C Register Map

Register of the SWCHG

Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)
		Meaning	Fix_ Freq	Sel_ SWFreq	Higher_ OCP	HZ	LBP Enable		LBP[2:0]	
Low BAT CTRL	0X00	Default	1	1	0	0	1	1	0	1
CIRL		Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
F	Fix_Freq		Control the sw 0 : Auto-chang 1 : Fixed frequ	e frequency		ynamic or fix				
Se	l_ SWFr	eq	The switching 0 : The switchi 1 : The switchi	ng frequency	is 1.5MHz	Charger/ Boost) (default)				
Hig	jher_O	CP	Higher_OCP e 0 : Disable (de 1 : Higher IL O	fault)	ection of buc	k mode and bo	ost mode			
	HZ		0 : Not high im 1 : High imped		de (default)					
LE	3P Enab	le	Low Battery Pr 0 : Disable 1 : Enable (def		ble					
			Define Low Ba	ttery Protecti	on Level. Th	ne default voltag	ge is 3V.			
			Code	Voltage	Code	Voltage	Code	Voltage	Code	Voltage
I	_BP[2:0]		000	2.5V	010	2.7V	100	2.9V	110	3.1V
			001	2.6V	011	2.8V	101	3V (default)	111	3.2V

Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)
		Meaning			IAICE	R[5:0]			TE	OPA_ MODE
Charger Control 1	0X01	Default	0	0	1	0	1	0	0	0
		Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			Define AICR c	urrent. The d	efault currer	nt is 0.5A.				
			Code	Current	Code	Current	Code	Current	Code	Current
			000000	Disable	010000	0.8A	100000	1.6A	110000	2A
			000001	0.1A	010001	0.85A	100001	1.65A	110001	2A
			000010	0.1A	010010	0.9A	100010	1.7A	110010	2A
			000011	0.15A	010011	0.95A	100011	1.75A	110011	2A
			000100	0.2A	010100	1A	100100	1.8A	110100	2A
			000101	0.25A	010101	1.05A	100101	1.85A	110101	2A
		_	000110	0.3A	010110	1.1A	100110	1.9A	110110	2A
14	AICR[5:0	0]	000111	0.35A	010111	1.15A	100111	1.95A	110111	2A
			001000	0.4A	011000	1.2A	101000	2A	111000	2A
			001001	0.45A	011001	1.25A	101001	2A	111001	2A
			001010	0.5A (default)	011010	1.3A	101010	2A	111010	2A
			001011	0.55A	011011	1.35A	101011	2A	111011	2A
			001100	0.6A	011100	1.4A	101100	2A	111100	2A
			001101	0.65A	011101	1.45A	101101	2A	111101	2A
			001110	0.7A	011110	1.5A	101110	2A	111110	2A
			001111	0.75A	011111	1.55A	101111	2A	111111	2A
	TE		Termination er 0 : Disable cha 1 : Enable cha	arge current t		default)				
OF	PA_MOE	DE	0 : Charger mo 1 : Boost mode	. ,						

RT9481

Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)
		Meaning			CHG_(CV[5:0]			Reserved	Reserved
Charger	0X02	Default	0	1	0	1	1	0	0	0
Control 2		Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			Define battery 4.2V.	regulation vo	oltage. The d	lelta-V of the Ba	attery regulat	ion voltage is	25mV. The defa	ault voltage is
			Code	Voltage	Code	Voltage	Code	Voltage	Code	Voltage
			000000	3.65V	010000	4.05V	100000	4.45V	110000	4.6V
			000001	3.675V	010001	4.075V	100001	4.475V	110001	4.6V
			000010	3.7V	010010	4.1V	100010	4.5V	110010	4.6V
			000011	3.725V	010011	4.125V	100011	4.525V	110011	4.6V
			000100	3.75V	010100	4.15V	100100	4.55V	110100	4.6V
			000101	3.775V	010101	4.175V	100101	4.575V	110101	4.6V
СН	G CV[5	01	000110	3.8V	010110	4.2V (default)	100110	4.6V	110110	4.6V
CI	0_0v[0	.0]	000111	3.825V	010111	4.225V	100111	4.6V	110111	4.6V
			001000	3.85V	011000	4.25V	101000	4.6V	111000	4.6V
			001001	3.875V	011001	4.275V	101001	4.6V	111001	4.6V
			001010	3.9V	011010	4.3V	101010	4.6V	111010	4.6V
			001011	3.925V	011011	4.325V	101011	4.6V	111011	4.6V
			001100	3.95V	011100	4.35V	101100	4.6V	111100	4.6V
			001101	3.975V	011101	4.375V	101101	4.6V	111101	4.6V
			001110	4V	011110	4.4V	101110	4.6V	111110	4.6V
			001111	4.025V	011111	4.425V	101111	4.6V	111111	4.6V
			CHG : 3.65V +	CHG_CV x	0.025V, max	k. : 4.6V				

Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)
		Meaning			Boost _	CV[5:0]			TREG_S	SEL[1:0]
Charger	0X03	Default	1	1	1	0	1	1	0	1
Control 3	0,100	Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			Define Boost r	egulation vol	tage. The de	elta-V of the Bo	ost v oltage i	s 25mV. The	default voltage i	s 5.1V.
			Code	Voltage	Code	Voltage	Code	Voltage	Code	Voltage
			000000	3.625V	010000	4.025V	100000	4.425V	110000	4.825V
			000001	3.65V	010001	4.05V	100001	4.45V	110001	4.85V
			000010	3.675V	010010	4.075V	100010	4.475V	110010	4.875V
			000011	3.7V	010011	4.1V	100011	4.5V	110011	4.9V
			000100	3.725V	010100	4.125V	100100	4.525V	110100	4.925V
			000101	3.75V	010101	4.15V	100101	4.55V	110101	4.95V
			000110	3.775V	010110	4.175V	100110	4.575V	110110	4.975V
Boo	st_CV[5:0]	000111	3.8V	010111	4.2V	100111	4.6V	110111	5V
			001000	3.825V	011000	4.225V	101000	4.625V	111000	5.025V
			001001	3.85V	011001	4.25V	101001	4.65V	111001	5.05V
			001010	3.875V	011010	4.275V	101010	4.675V	111010	5.075V
			001011	3.9V	011011	4.3V	101011	4.7V	111011	5.1V (default)
			001100	3.925V	011100	4.325V	101100	4.725V	111100	5.125V
			001101	3.95V	011101	4.35V	101101	4.75V	111101	5.15V
			001110	3.975V	011110	4.375V	101110	4.775V	111110	5.175V
			001111	4V	011111	4.4V	101111	4.8V	111111	5.2V
			Boost : 3.625 -	+ Boost _CV	x 0.025V, B	oost max.: 5.2V	,			
TRE	G_SEL[[1:0]	Define therma 00 : 100°C 01 : 120°C (de 10 : 135°C 11 : 135°C	C C	evel					

Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)
		Meaning	TMR2X_EN	JEITA		WT_FC		W	ſ_PRC	EN_TMR
Charger	0X04	Default	1	0	1	1	1	1	0	0
Control 4		Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
TN	/IR2X_E	N	Run charge tin 0 : Disable 2X 1 : Enable 2X	extended cha	arger timer	ng MIVR, AICR default)	and thermal	regulation.		
	JEITA		JEITA function 0 : Charging re 1 : Charging re	gulation curr		· ,				
			Define Fast ch	arge Timer. 1	The default t	ime is 20 hours				
			Code	Hours	Code	Hours	Code	Hours	Code	Hours
,	WT_FC		000	6 hours	010	10 hours	100	14 hours	110	18 hours
			001	8 hours	011	12 hours	101	16 hours	111	20 hours (default)
v	VT_PRC	;	Define Pre-cha 00 : 30mins 01 : 45mins 10 : 60mins (du 11 : 60mins	0	imer	<u>.</u>	·	<u>.</u>		·
E	N_TMR	R	0 : Disable inte 1 : Enable inte			ult)				

Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)
		Meaning		MIVR[2:0]		IPREC	[1:0]		EOC[2:0]	
Charger	0X05	Default	1	1	0	0	1	0	1	0
Control 5	0,000	Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			Define VMIVR	voltage. The	default volt	age is 4.7V.				
		_	Code	Voltage	Code	Voltage	Code	Voltage	Code	Voltage
N	IIVR[2:0]	000	Disable	010	4.3V	100	4.5V	110	4.7V (default)
			001	4.2V	011	4.4V	101	4.6V	111	4.8V
			Define Pre-Ch	arge Current						
			00 : 200mA							
IP	REC[1:0	0]	01 : 300mA (d	efault)						
			10 : 400mA							
			11 : 500mA							
			Define Termin	ation Current	(IEOC RSE	NSE is 10mΩ).	The default	current is 20	0mA.	
			Code	Current	Code	Current	Code	Current	Code	Current
E	OC[2:0]]	000	Disable	010	200mA (default)	100	300mA	110	500mA
			001	150mA	011	250mA	101	400mA	111	600mA

Copyright © 2016 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation. www.richtek.com

Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)
		Meaning		ICHG	[3:0]			VF	PREC[3:0]	
Charger	0X06	Default	0	0	0	0	0	1	1	1
Control 6	0,100	Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			Define chargin	g regulation	current. The	e default current	is 7mV (0.7	A).		
	Code Current Code Current Code Current Code									Current
			0000	7mV (0.7A) (default)	0100	17mV (1.7A)	1000	27mV (2.7A)	1100	27mV (2.7A)
10	CHG[3:0]	0001	9.5mV (0.95A)	0101	19.5mV (1.95A)	1001	27mV (2.7A)	1101	27mV (2.7A)
			0010	12mV (1.2A)	0110	22mV (2.2A)	1010	27mV (2.7A)	1110	27mV (2.7A)
			0011	14.5mV (1.45A)	0111	24.5mV (2.45A)	1011	27mV (2.7A)	1111	27mV (2.7A)
			External Sensi	ing R : Charg	e current se	ense voltage (cu	rrent equiva	lent for 10mΩ	sense resistor)	
			Define Pre-Ch	arge Thresho	old. The defa	ault voltage is 3	V.			
			Code	Voltage	Code	Voltage	Code	Voltage	Code	Voltage
		01	0000	2.3V	0100	2.7V	1000	3.1V	1100	3.5V
VE	PREC[3:	ol	0001	2.4V	0101	2.8V	1001	3.2V	1101	3.6V
			0010	2.5V	0110	2.9V	1010	3.3V	1110	3.7V
			0011	2.6V	0111	3V (default)	1011	3.4V	1111	3.8V

Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)
	Meaning		Reserved	erved Reserved Reserved Reserved TDEG_						
Charger Control 7	0X07	Default	0	0	0	0	0	1	1	1
Control 7		Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			EOC de-glitch	time						
			Code	Time	Code	Time	Code	Time	Code	Time
TDE	G_EOC	[2:0]	000	32µs	010	128µs	100	4ms	110	16ms
			001	64µs	011	256µs	101	8ms	111	32ms (default

Copyright © 2016 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation. DS9481-04 August 2016 www.ri

Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)
		Meaning	UUGPUMP_ STAT	VBAT_ LVL	CHG_ STAT	CHG_ Done	BOOST_ STAT	PWR_ Rdy	SWBASE_EN	SWITCHING_ EN
Charger Status1	0X08	Default	0	1	0	0	0	0	1	0
Status		Read/ Write	R	R	R	R	R	R	R/W	R/W
UUGI	PUMP_	STAT	UUG pump en 0 : UUG pump 1 : UUG pump	is disable						
VI	BAT_LV	L	Battery voltage 0 : Battert volta 1 : Battery volt	ige is lower t	han pre-cha	rge level				
Cł	HG_STA	т	Charging Statu 0 : Charging is 1 : Charging is	not in progre	ess					
СІ	HG_Dor	e	Charger Done 0 : Charging is 1 : Charging is	not done						
BO	OST_ST	AT	0 : Not in Boos 1 : Boost mode							
Р	WR_Rd	у	Power status b 0 : VBUS > VE 1 : VBUS_UVL	BUS_OVP or					, ,	
SW	BASE_	EN	Switching char 0 : Disabled 1 : Enabled	ger base circ	uit enable					
SWIT	rching	_EN	Charger/ Boos 0 : Charger/ Bo 1 : Charger/ Bo	oost is disabl						

Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)		
Channer		Meaning	TSD_STAT	VBUSO VP_STAT	CHRVP_ STAT	CHBATOV_ STAT	Reserved	Reserved	CHGGOODA DP_STAT	CHGBADADP _ STAT		
Charger Status 2	0X09	Default	0	0	0	0	0	0	1	0		
Status 2		Read/ Write	R	R	R	R	R	R	R	R		
т	SD_STA	Т	0 : Thermal sh	al shutdown fault. Set when the die temperature exceeds thermal shutdown threshold. rmal shutdown is not on going rmal shutdown is on going								
VBUS	SOVP_S	БТАТ	0 : VBUS is no	US over voltage protection. Set when VBUS > VIN_OVP is detected. VBUS is not over voltage VBUS is over voltage								
СНІ	RVP_ST	AT	Charger fault. 0 : Reverse pro 1 : Reverse pro	otection is no	t occur	VBUS < ISENS	SN + VSLP)					
СНВ	ATOV_S	STAT	Charger fault. 0 : Battery is n 1 : Battery is C	ot OVP								
CHGGC	ODADF	P_STAT	and enable cha	adaptor detection. It is only enabled in the VBUS plug-in. Once it pass the detection, it will always high enable charging. daptor is not good adaptor								
СНСВ	ADADP_	_STAT		etection. It is not bad adap	used to indi	cate the adaptc	or input volta	ge is lower th	an 3.8V during th	ne charging		

Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)		
		Meaning	CHTREG_ STAT	CHMIVR_ STAT	CHAICR_ STAT	CHRCHG_ STAT	Reserved	Reserved	Reserved	Reserved		
Charger Status 3	0X0A	Default	0	0	0	0	0	0	0	0		
Status 5		Read/ Write	R	R	R	R	R/W	R/W	R/W	R/W		
СНТ	REG_S	ТАТ	Charger warni 0 : Thermal re 1 : Thermal re	gulation loop	is not active	•						
CHM	/IVR_ST	ΓΑΤ	0 : MIVR loop	Charger warning. Input voltage MIVR loop active. 0 : MIVR loop is not active 1 : MIVR loop is active								
CHAICR_STAT 0 : AICR loop is active 1 : AICR loop is not active												
CHR	CHG_S	TAT	Indicate batter 0: Battery volta 1 : Battery volt	age higher re	-charge leve	l	charging					

Copyright © 2016 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation. DS9481-04 August 2016 www.ri

Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)
CLIC		Meaning	CHTER MI	IEOC	CHRC HGI	CHTM RFI	SOFTSTA RTI	Reserved	CHG_ STAT2_ALT	CHG_ STAT3_ALT
CHG_ IRQ	0X0B	Default	0	0	0	0	0	0	0	0
		Read/ Write	R/C	R/C	R/C	R/C	R/C	R/W	R/C	R/C
CHTERMI Charge terminated.										
	IEOC		Charge current	is lower tha	n EOC curre	nt.				
С	HRCHG	i	Re-Charge req	uest.						
C	HTMRF	Ĩ	Charger fault. t	ime-out (faul	t).					
SOFTSTARTI Charger or Boost soft-start finish										
CHG_	_STAT2	_ALT	The status of C	HG_STAT2	register is c	hange				
CHG	CHG_STAT3_ALT The status of CHG_STAT3 register is change									

Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)		
		Meaning	BSTTSDI	BSTVMID OVPI	CHRC HGI	Reserved	Reserved	Reserved	Reserved	Reserved		
BST_ IRQ	0X0C	Default	0	0	0	0	0	0	0	0		
integ	Read/ Write		R/C	R/C	R/C	R/W	R/W	R/W	R/W	R/W		
В	STTSD	I	Boost fault. Th	ermal shutdo	wn; auto set	OPA_MODE a	and SWITCH	IING_EN to lo	ow.			
BST	VMIDO	VPI	Boost fault. VM	Boost fault. VMID OVP; auto set OPA_MODE and SWITCHING_EN to low.								
BSTLOWVI Boost fault. Battery voltage is too low; auto set OPA_MODE and SWITCH						WITCHING_E	EN to low.					

 Copyright © 2016 Richtek Technology Corporation. All rights reserved.
 RICHTEK is a registered trademark of Richtek Technology Corporation.

 www.richtek.com
 DS9481-04
 August 2016

Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)
Charger		Meaning	TSDI_ STATM	VBUSOV P_STATM	CHRVP_ STATM	CHBATOV_ STATM	Reserved	Reserved	CHGGOODA DP_STATM	CHGBADADP _STATM
Status 2	0X0D	Default	0	0	0	0	0	0	0	0
Control		Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
TSI	DI_ STA	ТМ	Thermal shutd 0 : Interrupt is 1 : Interrupt is	not masked	mask					
VBUS	OVP_ST	ГАТМ	VBUS over vol 0 : Interrupt is 1 : Interrupt is	not masked	on interrupt i	mask				
CHR	VP_STA	ΑТМ	Reverse protection 0 : Interrupt is 1 : Interrupt is	not masked	t mask					
СНВА	TOV_ST	ГАТМ	Battery OVP in 0 : Interrupt is 1 : Interrupt is	not masked						
CHGGO	DDADP_	_STATM	Good adaptor 0 : Interrupt is 1 : Interrupt is	not masked	errupt mask					
CHGBA	DADP_	STATM	Bad adaptor do 0 : Interrupt is 1 : Interrupt is	not masked	rupt mask					
Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)
Charger		Meaning	CHTREG_ STATM	CHMIVR_ STATM	CHAICR_ STATM	CHGRCHG _STATM	Reserved	Reserved	Reserved	Reserved
Status 3	0X0E	Default	0	0	0	1	0	0	0	0
Control		Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
СНТЕ	REG_ST	ATM	Thermal regula 0 : Interrupt is 1 : Interrupt is	not masked	ive interrupt	mask				
СНМ	IVR_ST	ATM	Input voltage N 0 : Interrupt is 1 : Interrupt is	not masked	tive interrupt	mask				
CHA	ICR_ST	ΑΤΜ	Input current A 0 : Interrupt is 1 : Interrupt is	not masked	ive interrupt	mask				
CHGR	CHG_S	ТАТМ	Battery voltage 0 : Interrupt is r 1 : Interrupt is r	not masked	vel interrupt	mask				

Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)
Charger		Meaning	CHTERMIM	IEOCM	CHRCHG IM	CHTMRFIM	SOFTSTA RTIM	Reserved	CHG_ STAT2_ALTM	CHG_ STAT3_ALTM
IRQ Control	0X0F	Default	0	0	0	0	0	0	0	0
Control		Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
CF	ITERMI	Μ	Charge termina 0 : Interrupt is 1 : Interrupt is	not masked	t mask					
	IEOCM		Charge current 0 : Interrupt is 1 : Interrupt is	not masked	n EOC curre	nt interrupt ma	sk			
CH	IRCHGI	M	Charger Re-Ch 0 : Interrupt is 1 : Interrupt is	not masked	t interrupt m	ask				
Cł	ITMRFI	M	CHTMRFI inte 0 : Interrupt is 1 : Interrupt is	not masked						
SOF	TSTAR	ТІМ	SOFTSTARTI 0 : Interrupt is 1 : Interrupt is	not masked	sk					
CHG_	STAT2_	ALTM	CHG_ STAT2_ 0 : Interrupt is 1 : Interrupt is	not masked	ot mask					
CHG_	STAT3_	ALTM	CHG_ STAT3_ 0 : Interrupt is 1 : Interrupt is	not masked	ot mask					
Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)
Boost		Meaning	BSTTSDIM	BSTVMID OVPIM	BSTLOW VIM	Reserved	Reserved	Reserved	Reserved	Reserved
IRQ	0X10	Default	0	0	0	0	0	0	0	0
Control		Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
B	STTSDI	М	Boost fault. Th 0 : Interrupt is 1 : Interrupt is	not masked	own interrupt	mask				
BST	/MIDOV	'PIM	Boost fault. VM 0 : Interrupt is 1 : Interrupt is	not masked	rrupt mask					
BS	TLOWV	IM	Boost fault. Ba 0 : Interrupt is 1 : Interrupt is	not masked	is too low in	terrupt mask				

				1	•	Detection &				
Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)
		Meaning		CH_SEL		Reserved	Reserved	Reserved	Reserved	ADC_ START
ADC_ CTL	0X20	Default	0	0	0	0	0	0	0	0
OIL		Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			ADC channel s	election.						
			Code	Chanel	Code	Chanel	Code	Chanel	Code	Chanel
(CH_SEL	-	000	VBAT (default)	010	USBOUT	100	IBAT	110	Reserved
			001	VBUS	011	TS	101	IUSBOUT	111	Reserved
AD	C_STA	RT		rol sion not active (onversion (auto	,					

Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)
		Meaning				ADC_COE	DEH			
ADC	0X21	Default	0	0	0	0	0	0	0	0
CODEH		Read/ Write	R	R	R	R	R	R	R	R
ADC_CODEH		ADC code high	byte							

Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)
		Meaning				ADC_CO	DEL			
ADC	0X22	Default	0	0	0	0	0	0	0	0
CODEL	-	Read/ Write	R	R	R	R	R	R	R	R
AD	ADC_CODEL		ADC code low b	yte						

Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)
		Meaning	EN_ DCP	EN_ LDSW	U	SBOUTLDI_LV	′L	Reserved	LDSW_	TREG[1:0]
USBOUT	0X23	Default	0	0	0	0	0	1	0	1
Control	0,120	Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
F	EN_DCP controller Enable 0 : DCP controller disable (default) 1 : DCP controller enable									
E	N_LDS\	N	Load Switch Ena 0 : Load switch o 1 : Load switch o	disable (defaul	t)					
			USBOUTLDI_L\	/L		1				
			Code		Current		Code		Current	
	ים ידי יכ	1.1/1	000		Disable		100		50mA	
0360	OUTLDI	_LVL	001		NA		101		100mA	
			010		10mA		110		150mA	
			011		30mA		111		150mA	
Thermal regulation level 00 : Disable LDSW_TREG[1:0] 01 : 100°C (default) 10 : 120°C 11 : 135°C										

Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)
		Meaning	EN_ ADAPTERDET	EN_ VBUSAT	EN_ USBOUTAT	USI	BOUTAT_T	IME	USBOUTAT_ Mode	Reserved
ATTACH Control	0X24	Default	1	1	1	0	1	1	0	0
Control		Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
EN_A	DAPTE	RDET	Adapter type det 0 : Adapter detec 1 : Adapter detec	t disable	ault)					
EN	I_VBUS	AT	VBUS attach/det 0 : VBUS attach/ 1 : VBUS attach/	detach detect	disable)				
EN_	USBOU	ТАТ	USBOUT attach/ 0 : USBOUT atta 1 : USBOUT atta	ch/detach det	ect disable	ault)				
			USBOUT attach/	detach detect	ion time.					
			Code	Ti	me	Code			Time	
			000	Detection	time 150ms	100		Det	ection time 600ms	
USBC	DUTAT_	TIME	001	Detection	time 250ms	101		Det	ection time 700ms	
			010	Detection	time 375ms	110		Det	ection time 925ms	i
			011	Detection	time 475ms	111		Dete	ection time 1125m	8
USBC	DUTAT_	Mode	USBOUT attach 0 : Normal Mode 1 : Power Saving		save 50% and	detection tim	ne increase	100%		

Copyright © 2016 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

RT9481

Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)
		Meaning	ADC_STA	ADAPT	ER_STA	Reserved	Reserved	Reserved	Reserved	Reserved
MISC_	0X25	Default	0	1	1	0	0	0	0	0
STA1		Read/ Write	R	R	R	R/W	R/W	R/W	R/W	R/W
			ADC status							
A	DC_ST	A	0 : ADC is idle							
			1 : ADC convers	ion is on going	9					
			VBUS adapter ty	pe						
			00 : SDP with D-	⊦ / D- floating						
ADA	PTER_	STA	01 : SDP							
			10 : CDP							
			11 : DCP							

Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)		
MICO		Meaning	LDSWREG _STAT	USBOUTLD _STAT	VBUS_STAT	USBOUT_ STAT	VDDAUVP_ STAT	LDSW_ STAT	Reserved	Reserved		
MISC_ STA2	0X26	Default	0	0	0	0	0	0	0	0		
0		Read/ Write	R	R	R	R	R	R	R/W	R/W		
LDSV	WREG_	STAT	0 : LDSW output	Load switch warning. LDSW output current regulation loop active) : LDSW output current regulation loop is not active 1 : LDSW output current regulation loop is active								
USBC	OUTLD_	STAT	0 : USBOUT loa	SBOUT light load indicator : USBOUT loading > USBOUTLC_LVL or disable : USBOUT loading < USBOUTLC_LVL								
VE	BUS_ST	AT	VBUS connectio 0 : VBUS has no 1 : VBUS has ac	adapter conn		_ ,	SENSN + VSLF	?)				
USE	BOUT_S	ТАТ	USBOUT device 0 : USBOUT has 1 : USBOUT has	s no device co	nnect							
VDD.	AUVP_S	'P_STAT VDDA under voltage protect, disable SWCHG, LDSW, DCP Control, Adapter Detection, ADC and TS driver when VDDAUVP is occur. 0: VDDA UVP is not trigger 1: VDDA UVP is trigger										
LD	LDSW_STAT 0 : Load switch is turn off 1 : Load switch is turn on											

Copyright © 2016 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation. DS9481-04 August 2016 www.ri

Function		gister dress	b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)
MISC		Meaning	ADC_DONEI	ADAPTER_ DONEI	LDSW_ SCPI	LDSWRDYI	MISC_ STA2_ALT	WDTI	VMIDSCPI	VMIDUV PI
IRQ	0X27	Default	0	0	0	0	0	0	0	0
	Read/ Write R/C R/C R/C R/C R/C R/C R/C						R/W			
AD	DC_DONEI ADC conversion done interrupt									
ADAF	PTER_D	ONEI	Adapter detectio	n done interru	ot					
LD	SW_SC	PI	Load switch sho	rt current prote	ect interrupt					
L	DSWRD	YI	Load switch turn	on ready						
MISC	_ STA2	_ALT	The status of MI	SC_ STA2_AL	T register is ch	ange				
	WDTI		WDT interrupt							
V	MIDSCI	P	VMID short curre	ent protect inte	rrupt, auto set	EN_LDSW to (0			
V	VMIDUV PI VMID under voltage protect interrupt, auto set EN_LDSW to 0									

Function	Register Address		b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)			
MISC_		Meaning	LDSWREG_S TATM	USBOUTLD _STATM	VBUS_ STATM	USBOUT_ STATM	VDDAUVP_ STATM	LDSW_ STATM	Reserved	Reserved			
STA2	0X28	Default	0	0	0	0	0	0	0	0			
Control		Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
LDSW	REG_S	ТАТМ	LDSWREG_STAT interrupt mask 0 : Interrupt is not masked 1 : Interrupt is masked										
USBO	UTLD_S	БТАТМ	USBOUTLD_STAT interrupt mask 0 : Interrupt is not masked 1 : Interrupt is masked										
VBI	US_STA	ТМ	0 : Interrupt is no	VBUS_STATI interrupt mask 0 : Interrupt is not masked 1 : Interrupt is masked									
USBO	OUT_ST	ATM	USBOUT_STAT interrupt mask 0 : Interrupt is not masked 1 : Interrupt is masked										
VDDAUVP_STATM		VDDAUVP_STA 0 : Interrupt is no 1 : Interrupt is m	T interrupt ma ot masked	sk									
LDS	SW_STA	ATM	0 : Interrupt is no	LDSWM_STAT interrupt mask 0 : Interrupt is not masked 1 : Interrupt is masked									

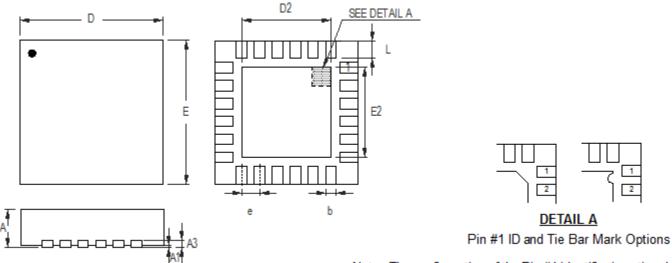
 Copyright © 2016 Richtek Technology Corporation. All rights reserved.
 RICHTEK is a registered trademark of Richtek Technology Corporation.

 www.richtek.com
 DS9481-04
 August 2016

Function	Register Address		b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)			
MISC_		Meaning	ADC_ DONEIM	ADAPTER_ DONEIM	LDSW_ SCPIM	LDSWR DYIM	MISC_ STA2_ ALTM	Reserved	VMIDSC PIM	VMIDUV PIM			
IRQ_ CTRL	0X29	Default	0	0	0	0	0	0	0	0			
CIRL		Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
AD	C_DONI	EIM	0 : Interrupt is no	ADC_DONEI interrupt mask 0 : Interrupt is not masked 1 : Interrupt is masked									
ADAP ⁻	TER_DO	DNEIM	ADAPTER_DONEI mask 0 : Interrupt is not masked 1 : Interrupt is masked										
LDS	SW_SCI	PIM	LDSW_SCPI mask 0 : Interrupt is not masked 1 : Interrupt is masked										
LD	SWRDY	ΊM	0 : Interrupt is no	LDSWRDYIM mask 0 : Interrupt is not masked 1 : Interrupt is masked									
MISC_	MISC_STA2_ALTM		MISC_STA2_ALT mask 0 : Interrupt is not masked 1 : Interrupt is masked										
VMIDSCPIM		VMIDSCPI mas 0 : Interrupt is no 1 : Interrupt is m	ot masked										
VMIDUVPIM			VMIDUVPI mask 0 : Interrupt is not masked 1 : Interrupt is masked										

Function	Register Address		b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)		
	0X2A	Meaning		RESET								
RESET		Default	0	0	0	0	0	0	0	0		
		Read/ Write	W	W	W	W	W	W	W	W		
RESET			Reset control reg 0X96 : RESET, r 0X3C : REG_RS	eset whole ch								

Copyright © 2016 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation. DS9481-04 August 2016 www.ri



Function	Register Address		b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)	
		Meaning	WDT_ EN	Reserved	WE	т	Reserved	Reserved	Reserved	WDT_ REFR ESH	
WDT_ CTRL	0X2B	Default	0	0	0	0	0	0	0	0	
OTTLE		Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	W	
WDT_EN				WDT enable control 0 : WDT disable (default) 1 : WDT enable							
WDT			Watch Dog Time 00 : 8 second (d 01 : 16 second 10 : 32 second 11 : 64 second		vhole chip whe	n time out					
WDT_REFRESH			Watch Dog Time 0 : No action 1 : Refresh watc								

Function	Register Address		b[7] (MSB)	b[6]	b[5]	[5] b[4] b[3]		b[2]	b[1]	b[0] (LSB)
LDSW		Meaning	Reserved	Reserved	LDSW_ILIM_FUSE					
ILIM_FUSE	0X2C	Default	0	0	0	0	0	0	0	0
		Read	R	R	R	R	R	R	R	R
LDSW_ILIM_FUSE			Report the fuse setting of LDSW current regulation							

Function	Function Register Address		b[7] (MSB)	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (LSB)	
		Meaning	LDSW_II	LIM_LVL	LDSW_ILIM_CTRL						
LDSW_ ILIM CTRL	0X2D	Default	0	1	1	0	0	0	0	0	
		Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
LDSW	/_ILIM_I	LVL	LDSW current regulation 00 : Min = 1.0A, TYP = 2.0A, MAX = 3.0A 01 : Min = 1.5A, TYP = 2.5A, MAX = 3.5A 10 : Min = 2.0A, TYP = 3.0A, MAX = 4.0A								
LDSW_ILIM_CTRL			LDSW_ILIM_CTRL = LDSW_ILIM_FUSE-[2500-TARGET+(LDSW_ILIM_LVL-1)x567]/35 Target = the target USBOUT current regulation setting, the unit is mA.								

Outline Dimension

Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

	vmh ol	Dimensions	In Millimeters	Dimension	s In Inches
Symbol		Min	Max	Min	Max
А		0.700	0.800	0.028	0.031
	A1	0.000	0.050	0.000	0.002
	A3	0.175	0.250	0.007	0.010
	b	0.180	0.300	0.007	0.012
	D	3.950	4.050	0.156	0.159
D2	Option 1	2.400 2.500		0.094	0.098
DZ	Option 2	2.650	2.750	0.104	0.108
	E	3.950	4.050	0.156	0.159
E2	Option 1	2.400	2.500	0.094	0.098
	Option 2	2.650	2.750	0.104 0.108	
	е	0.5	500	0.0)20
L		0.350	0.450	0.014	0.018

W-Type 24L QFN 4x4 Package

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City

Hsinchu, Taiwan, R.O.C.

Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2016 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

DS9481-04 August 2016