

Type-C CC and SBU Short to VBUS Over-Voltage and IEC ESD Protection Switch

General Description

The RT1738C is an USB Type-C interface over-voltage protection IC.

The RT1738C protects CC/SBU pins which are adjacent to VBUS from high voltage up to 28V since USB Power Delivery (PD) allows VBUS can be sourced from 3.3V to 21V.

The RT1738C is integrated with the protection ESDs which can meet IEC61000-4-2 to withstand contact discharge ±8kV on CON_CC1/CON_CC2 and ±6kV on CON_SBU1/ CON_SBU2. Besides, the ultra-fast OVP response time can protect the application IC on system side from the risks of high voltage damage.

Ordering Information

RT1738C□

Package Type

WSC: WL-CSP-16B 1.62x1.62 (BSC)

Note:

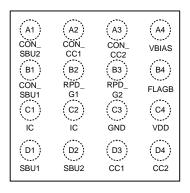
Richtek products are:

- ▶ RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- ► Suitable for use in SnPb or Pb-free soldering processes.

Marking Information

87 YM DNN 87 : Product Code YMDNN : Date Code

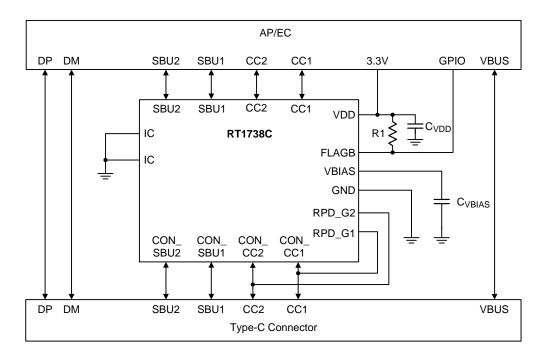
Features


- 4-Channels of short to VBUS Over-Voltage
 Protection (CON_CC1, CON_CC2, CON_SBU1, CON_SBU2)
- IEC61000-4-2 Contact Discharge Protection
 - ► CON_CC1/CON_CC2: ±8kV
 - ► CON_SBU1/CON_SBU2: ±6kV
- High Absolute Maximum Ratings = 28V of CON_CC1, CON_CC2, CON_SBU1 and CON_SBU2
- 60ns Ultra-Fast OVP Response Time of SBU
- 80ns Ultra-Fast OVP Response Time of CC
- 255mΩ Ultra-Low Ron of CC Switch Typical
- 3.6Ω Low Ron of SBU Switch Typical
- 40μA Low Quiescent Current in Standby
- High Bandwidth of 1GHz for SBU Switch
- Dead Battery Support
- WL-CSP-16B 1.62x1.62 (BSC) Package

Applications

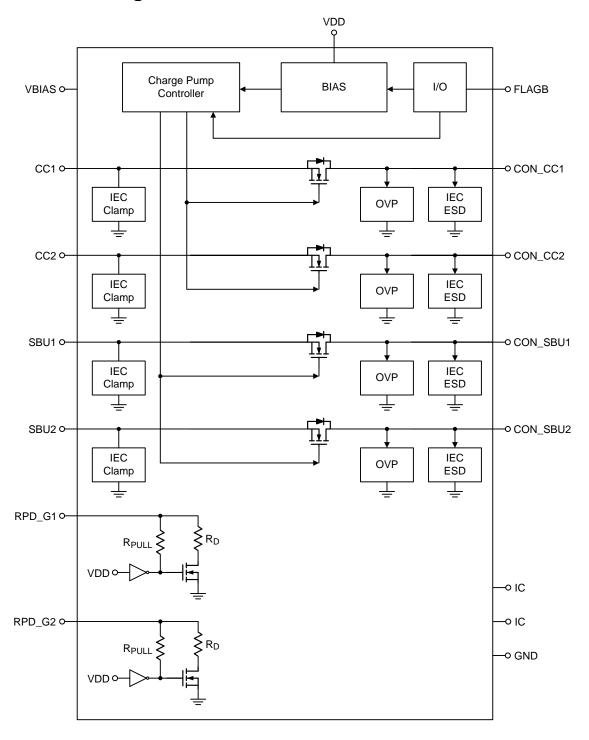
- PC/Notebook
- Smart Phone/Tablet
- TV/Monitor
- USB-C Dongle/Docking/Hubs

Pin Configuration


(TOP VIEW)

WL-CSP-16B 1.62x1.62 (BSC)

Simplified Application Circuit



Functional Pin Description

Pin No.	Pin Name	Pin Function
A1	CON_SBU2	Type-C connector side SBU2 switch. Connect SBU2 pin of the USB Type-C connector.
A2	CON_CC1	Type-C connector side CC1 switch. Connect CC1 pin of the USB Type-C connector.
A3	CON_CC2	Type-C connector side CC2 switch. Connect CC2 pin of the USB Type-C connector.
A4	VBIAS	VBIAS pin connect capacitor for ESD protection. Put a $0.1 \mu F$ capacitor on this pin to ground.
B1	CON_SBU1	Type-C connector side SBU1 switch. Connect SBU1 pin of the USB Type-C connector.
B2	RPD_G1	If dead battery resistors are required, short pin to CON_CC1. If dead battery resistors are not required, short pin to GND.
В3	RPD_G2	If dead battery resistors are required, short pin to CON_CC2. If dead battery resistors are not required, short pin to GND.
B4	FLAGB	Open-drain output cautioning fault condition.
C1, C2	IC	Internal connection. They must be connected to GND.
C3	GND	Ground.
C4	VDD	2.5V to 5.5V power supply. Bypass VDD to GND with a 1μF capacitor.
D1	SBU1	System side of the SBU1 switch. Connect to SBU pin of the SBU MUX.
D2	SBU2	System side of the SBU2 switch. Connect to SBU pin of the SBU MUX.
D3	CC1	System side of the CC1 switch. Connect to CC pin of the CC/PD controller.
D4	CC2	System side of the CC2 switch. Connect to CC pin of the CC/PD controller.

Functional Block Diagram

Absolute Maximum Ratings (Note1)	
• CON_CC1/CON_CC2/CON_SBU1/CON_SBU2	0.3V to 28V
• VBIAS/RPD_G1/RPD_G2	0.3V to 28V
• CC1/CC2/SBU1/SBU2/VDD/FLAGB	0.3V to 6V
• Other Pins	0.3V to 1V
Output Current (CON_CC1/CON_CC2/CC1/CC2)	1.25A to 1.25A
Output Current (CON_SBU1/CON_SBU2/SBU1/SBU2)	100mA to 100mA
 Power Dissipation, PD @ TA = 25°C 	
WL-CSP-16B 1.62x1.62 (BSC)	- 2.69W
Package Thermal Resistance (Note 2)	
WL-CSP-16B 1.62x1.62 (BSC), θ JA	- 37.1°C/W
Lead Temperature (Soldering, 10 sec.)	- 260°C
Junction Temperature	- 150°C
Storage Temperature Range	- −65°C to 150°C
• ESD Susceptibility (Note 3)	
HBM (Human Body Model)	- ±2kV
CDM	- ±500V
CON_CC1/CON_CC2 (IEC 61000-4-2 Contact Discharge)	- ±8kV
CON_CC1/CON_CC2 (IEC 61000-4-2 Air Discharge)	- ±15kV
CON_SBU1/CON_SBU2 (IEC 61000-4-2 Contact Discharge)	- ±6kV
CON_SBU1/CON_SBU2 (IEC 61000-4-2 Air Discharge)	- ±15kV
CON_CC1/CON_CC2 (Connect to RPD_G1/G2) (IEC 61000-4-5 Surge)	- ±35V
Recommended Operating Conditions (Note 4)	
Supply Input Voltage, VDD	- 2.5V to 5.5V
• CON_CC1/CON_CC2/CC1/CC2/RPD_G1/RPD_G2/FLAGB	
• CON_SBU1/CON_SBU2/SBU1/SBU2	
Ambient Temperature Range	40°C to 85°C
Junction Temperature Range	- –40°C to 125°C

Electrical Characteristics

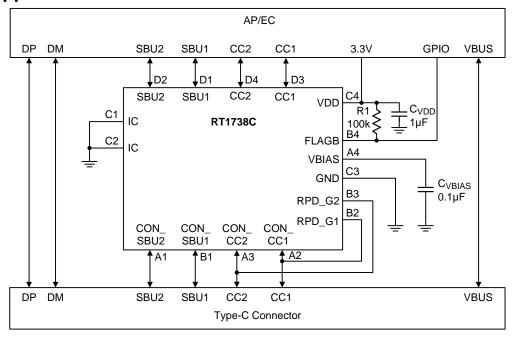
 $(V_{DD} = 3.3V, T_A = 25^{\circ}C, unless otherwise specified)$

Parameter	Parameter Symbol Test Conditions		Min	Тур	Max	Unit
Static Characteristics						
V _{DD} Under-Voltage Lockout	VVDD_UVLO	V _{DD} = 1.5V, and the rises V _{DD} until CC and SBU switches turn on.	2	2.2	2.45	V
VDD Under-Voltage Lockout Hysteresis	VVDD_UVLO_HYS	VDD = 3V, and the lower VDD until CC and SBU switches turn off measure the difference between rising and falling.		165	260	mV
Quiescent Supply Current	Iq	V _{DD} = 3.3V (Typical)		40	70	μΑ
Leakage Current for CC Pins when Device is Powered	ICC_LEAK	VDD = 3.3V, VCON_CCx = 5V; CCx floating	1		5	μΑ
Leakage Current for SBU Pins when Device is Powered	ISBU_LEAK	VDD = 3.3V, VCON_SBUx = 3.6V; SBUx floating	ļ		2	μΑ
Leakage Current for CON_CC Pins when Device is in OVP	ICON_CC_LEAK_OVP	VDD = 3.3V, VCON_CCx = 24V; VCCx = 0V, measure the current of CON_CCx	-1	350	800	μΑ
Leakage Current for CON_SBU Pins when Device is in OVP	ICON_SBU_LEAK_OVP	V _{DD} = 3.3V, V _{CON_SBUx} = 24V; V _{SBUx} = 0V, measure the current of CON_SBUx	-1	350	800	μА
Leakage Current for CC Pins when Device is in OVP	ICC_LEAK_OVP	VDD = 3.3V, VCON_CCx = 24V; VCCx = 0V, measure the current into CCx	-1		30	μΑ
Leakage Current for SBU Pins when Device is in OVP	ISBU_LEAK_OVP	VDD = 3.3V, VCON_SBUx = 24V; VSBUx = 0V, measure the current into SBUx	-1		1	μА
CC Switch Characteristics						
Switch Turn On Resistance	Ron_cc	VDD = 3.3V, $VCCx = 5V$		255	390	mΩ
Switch Turn On Resistance Flatness	RON_CC_FLAT	Sweep CCx voltage between 0V and 3.6V			5	mΩ
Threshold Voltage of the		External 80μA	0.3		1.2	
Pull-Down Switch in Series	VTH_DB	External 180μA	0.5		1.2	V
with Rd during Dead Battery		External 330μA	0.9		2.13	
OVP Threshold on CC Pins	Vovpcc	V _{DD} = 3.3V, CON_CCx rises from 5.5V until FLAGB goes from H to L	5.7	5.9	6.1	V
Hysteresis on CC OVP	Vovpcc_Hys	VDD = 3.3V, CON_CCx falls from 6.1V until FLAGB goes from L to H		75		mV

Copyright © 2021 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

DS1738C-00 October 2021 www.richtek.com

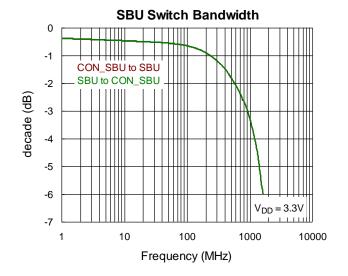
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
On Bandwidth Single Ended (-3dB)		Single ended, 50Ω terminal, $V_{CCx} = 0.1V$ to 1.2V		400		MHz
Clamp Voltage on System Side	VCLAMP	Hot plug voltage CON_CCx from 0V to 24V, 40V/μs; load 30Ω in series to GND on CCx		8		V
SBU Switch Characteristics	S					
Switch Turn on Resistance	RON_SBU	V _{DD} = 3.3V, V _{SBUx} = 3.6V		3.6	6.5	Ω
Switch Turn on Resistance Flatness	RON_SBU_FLAT	Sweep SBUx voltage between 0V and 3.6V		30	150	mΩ
OVP Threshold on SBU Pins	Vovpsbu	V _{DD} = 3.3V, CON_SBUx rises from 4.5V until FLAGB goes from H to L	4.35	4.5	4.7	V
Hysteresis on SBU OVP	Vovpsbu_Hys	VDDf = 3.3V, CON_SBUx falls from 4.8V until FLAGB goes from L to H		60		mV
On Bandwidth Single Ended (-3dB)	BWsBu	Single ended, 50Ω terminal, $VSBUx = 0.1V$ to 1.2V		1		GHz
Crosstalk	Xtalk	Swing 1VPP at 1MHz, measure the SBU1 to CON_SBU2 or SBU2 to CON_SBU1 with 50Ω terminal		- 7 5		dB
Clamp Voltage on System Side	VCLAMP	Hot plug voltage CON_SBUx from 0V to 24V, 40V/μs; load 100nF cap and 40Ω in series to GND on SBUx	1	8		V
Over-Temperature Protection	on					
Over-Temperature Protection Shutdown Threshold Rising	TsD	V _{DD} = 3.3V	-	150		°C
Over-Temperature Protection Shutdown Threshold Hysteresis	Tsd_HYS	VDD = 3.3V		20		°C
FLAGB Characteristics						
Low-Level Output Voltage	VoL	IoL = 5mA			0.4	V
VIH High-Level Leakage Current	Іон	VFLAGB = 5.5V			1	μΑ
Switch Dynamic Character	istics					
Turn-On Time, Time form Rising VDD UVLO to CC Switches Turn on	ton_cc	VDD power-up from UVLO until CCx switches fully turn on		1.5		ms
Turn-On Time, Time from Rising VDD UVLO to SBU Switches Turn On	ton_sbu	VDD power-up from UVLO until SBUx switches fully turn on		1.3		ms

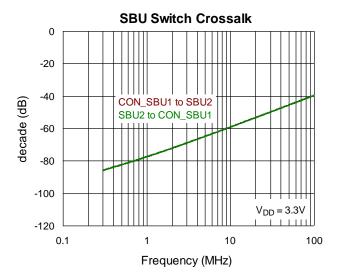

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Time from Crossing Rising VDD UVLO until CC and SBU Switches Turn On and the Dead Battery Resistors Turn Off	tON_DB	VDD power-up from UVLO until the dead battery resistors turn off	1	5		ms
Minimum Slew Rate Allowed to Ensure CC and SBU Switches Turn Off during a Power Off	dVDD_OFF/dt	1μF cap to GND on VDD	-0.5	1		V/μs
OVP Response Time on the CC Switches. Time from OVP Predicated until Switches Turn Off	tovp_response_cc	Time from OVP trip voltage predicated to switches to turn OFF	1	80		ns
OVP Response Time on the SBU Switches. Time from OVP Predicated until Switches Turn Off	tovp_response_sbu	Time from OVP trip voltage predicated to switches to turn OFF	1	60		ns
OVP Recovery Time on the CCx	tovp_recovery_cc	CON_CCx OVP remove until CCx switches fully turn back on	!	0.87		ms
OVP Recovery Time on the SBUx	tOVP_RECOVERY_SBU	CON_SBUx OVP remove until SBUx switches fully turn back on	!	0.75		ms
OVP Recovery Time on the CON_CCx's Dead Battery Resistors	tovp_recovery_cc_	CON_CCx OVP remove until the dead battery resistors turn back off	!	5		ms
Time from OVP Asserted to FLAGB Assertion	tovp_flagb_ assertion	Switches OVP asserted until FLAGB pull down	10	20	40	μS
Time from Switches Turn On after an OVP to FLAGB De-Assertion	tOVP_FLAGB_ DEASSERTION	Switches OVP de-asserted until FLAGB pull high		5		ms
Time from OTP to FLAGB Assertion	tOTP_FLAGB_ ASSERTION	Switches OTP de-asserted until FLAGB pull down	10	20	40	μs

- **Note 1.** Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 2. θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}C$ with the component mounted on a high effective-thermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard.
- Note 3. Devices are ESD sensitive. Handling precaution is recommended.
- **Note 4.** The device is not guaranteed to function outside its operating conditions.

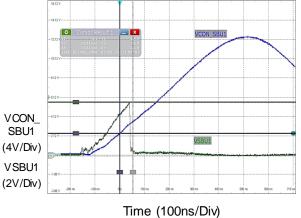
DS1738C-00 October 2021 www.richtek.com

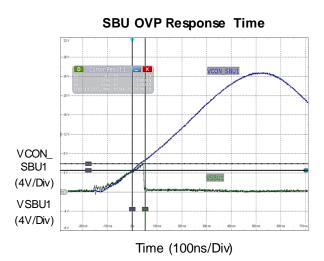
Typical Application Circuit

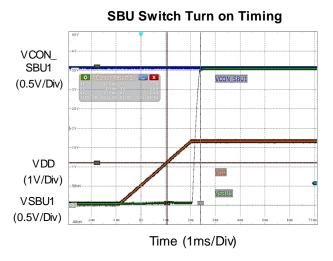



Table 1. Recommended Components Information

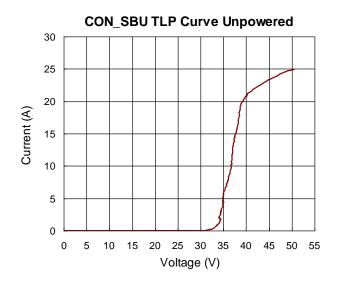
Reference	Q'ty	Part Number	Description	Package	Manufacturer
CVDD	1	GRM155R61E105KA12	1μF/X5R/25V	0402	Murata
CVBIAS	1	0402B104K500CT	0.1μF/50V/X7R	0402	WALSIN
R1	1	RTT021003FTH	100k	0402	RALEC

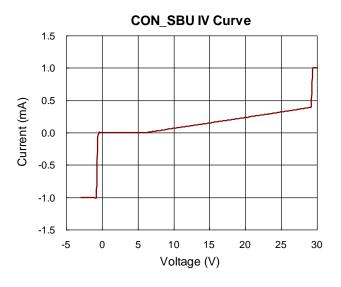


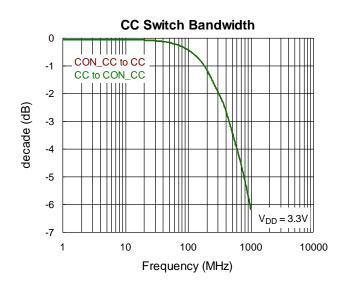

Typical Operating Characteristics

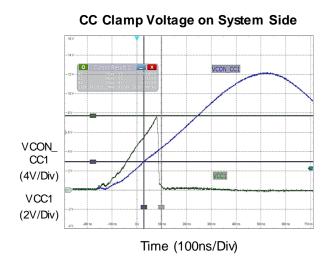


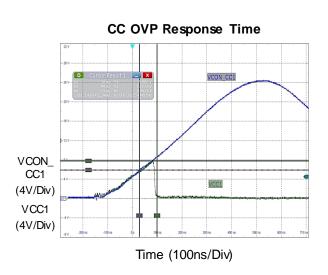
SBU Clamp Voltage on System Side VCON_ SBU1 (4V/Div) VSBU1

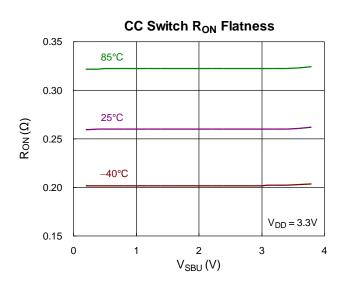


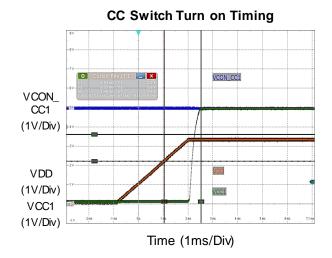


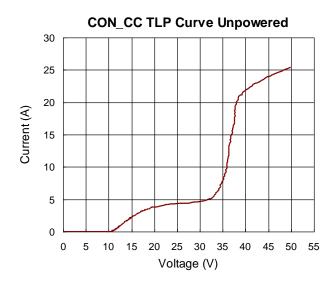

Copyright © 2021 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

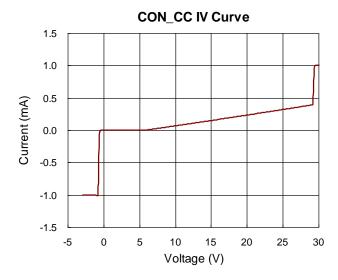

DS1738C-00 October 2021 www.richtek.com











Copyright © 2021 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

DS1738C-00 October 2021 www.richtek.com 11

Application Information

4-Channels of IEC 61000-4-2 ESD Protection (CON_CC1, CON_CC2, CON_SBU1, CON_SBU2)

The RT1738C provides 4-Channels of IEC 61000-4-2 system level ESD protection for the CC1, CC2, SBU1, SBU2 pins. That USB Type-C interface is needed to achieve ESD protection of IEC system level can avoid the ESD events from the connector inducing from end users.

Input Over-Voltage Protection

There are 4-channels of Short to VBUS over-voltage protection for the CC1, CC2, SBU1 and SBU2 pins respectively in the USB Type-C receptacle via internal OVP circuit in the RT1738C. When the input voltage exceeds the OVP level, the RT1738C will ultra-fast turn off internal switches around 60/80ns to prevent the high input voltage from damaging the end system. When the CC/SBU input voltage returns to normal operation voltage range with hysteresis 75/60mV, the channels will be turned on again normally.

There are individual OVP circuits in CC1/2 and SBU1/2 by themselves to control their own switches. If any one of channel voltage exceed OVP threshold, the channel switch is turned off, and the other switches are all turned off.

Over-Temperature Protection (OTP)

The RT1738C monitors its internal temperature to prevent thermal failures. The chip turns off the switches when the junction temperature reaches 150°C. The IC will resume after the junction temperature is 20°C below the threshold.

Dead Battery

The RT1738C supports dead battery function. Connecting RPD_G1 pin to CON_CC1 pin and RPD_G2 pin to CON_CC2 pin can make RT1738C achieve dead battery function. When it is connected to a Source, DRP or Sourcing Device, the system will receive the default VBUS.

If dead battery function is not required in application, connect the RPD_G1 and RPD_G2 pins to ground.

FLAGB Pin Operation

The FLAGB operation is used for fault indicator. When OVP or OTP event occurs, FLAGB pin will be pulled low until fault event is asserted. Time from OVP or OTP to FLAGB pull down is around $20\mu s$, then time from OVP asserted to FLAGB assertion is around 5ms.

How to Connect Unused Pins

If the RPD_Gx pins and the IC pin C1, C2 are unused in a design, they must be connected to GND.

Device Functional Modes

The RT1738C all functional modes.

MODE		VDD	RPD_Gx	TJ	FLAGB	CC Switches	SBU Switches
Normal	Powered Off No Dead Battery Support	< UVLO	Grounded		High-Z	OFF	OFF
Operating Conditions	Powered Off Dead Battery Support	< UVLO	Shorted to CON_CCx		High-Z	OFF	OFF
	Powered On	> UVLO	Forced OFF	< OT	High-Z	ON	ON
	Thermal shutdown	> UVLO	Forced ON	> OT	Low	OFF	OFF
Fault Conditions	CC Over-Voltage Condition	> UVLO	Forced ON	< OT	Low	OFF	OFF
	SBU Over-Voltage Condition	> UVLO	Forced ON	< OT	Low	OFF	OFF

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature T_J(MAX), listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

 $PD(MAX) = (TJ(MAX) - TA) / \theta JA$

where TJ(MAX) is the maximum junction temperature, TA is the ambient temperature, and θ JA is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a WL-CSP-16B 1.62x1.62 (BSC) package, the thermal resistance, θ_{JA} , is 37.1°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at $T_A = 25$ °C can be calculated as below :

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (37.1^{\circ}C/W) = 2.69W$ for a WL-CSP-16B 1.62x1.62 (BSC) package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curves in Figure 1 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

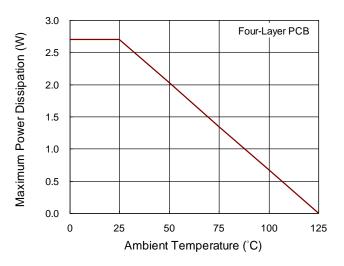


Figure 1. Derating Curve of Maximum Power Dissipation

Layout Considerations

Appropriate routing and placement is significant to maintain the signal integrity the SBU, CC signals. The following guidelines apply to the RT1738C: Place the bypass capacitors close to the VDD pin, and ESD protection capacitor close to the VBIAS pin. Capacitors must be attached to a solid ground. This minimizes voltage disturbances during such as short to VBUS and ESD event. The SBU trace need to be routed straight and sharp bends must be minimized.

Standard ESD suggestion apply to the CON_CC1, CON _CC2, CON _SBU1 and CON _SBU2 pins as well:

The optimum placement for the device is as close to the connector as possible. The PCB designer must be keeping out unprotected traces away from the protected traces which are between the RT1738C and the connector.

Route the protected path as straight as possible. Reduce any sharp corners on the protected traces between the connector by using rounded corners with the largest radii as possible.

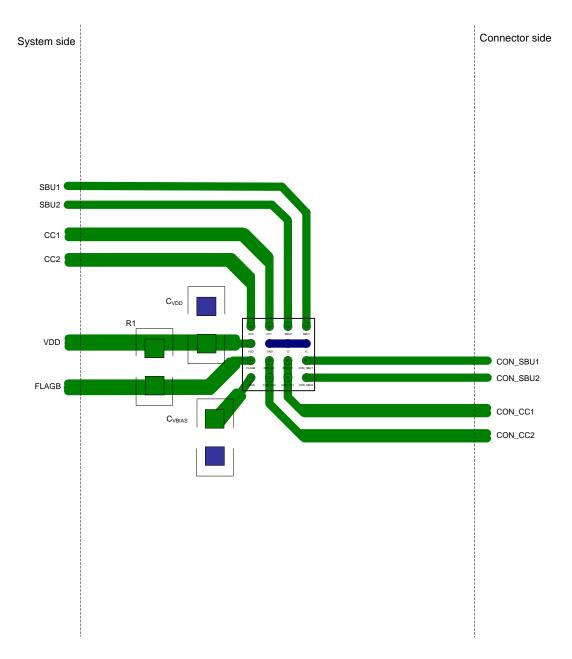
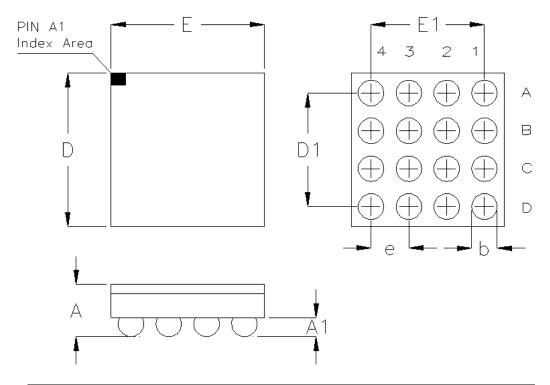
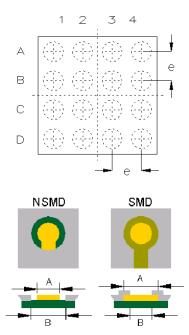



Figure 2. RT1738C Layout Guide

Outline Dimension



Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	0.500	0.600	0.020	0.024	
A1	0.170	0.230	0.007	0.009	
b	0.240	0.300	0.009	0.012	
D	1.580	1.660	0.062	0.065	
D1	1.2	1.200 0.047			
Е	1.580	1.660	0.062	0.065	
E1	1.200		0.047		
е	0.4	100	0.0)16	

WL-CSP-16B 1.62x1.62 (BSC) Package

Footprint Information

Dookogo	Number of	Typo	Footpri	Tolerance			
Package	Pin	Type	е	Α	В	Tolerance	
WL-CSP1.62x1.62-16(BSC)	P1.62x1.62-16(BSC) 16		0.400	0.240	0.340	.0.025	
WL-CSP1.02X1.02-10(BSC)	10	SMD	0.400	0.270	0.240	±0.025	

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C.

Tel: (8863)5526789

RICHTEN

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.