

3-Axis Digital Accelerometer

General Description

The RT3020 is a low power three-axis motion acceleration sensor with digital output. This device has user selectable full scale ranges of ±2g, ±4g, ±8g, ±16g, and ±32g, and it is capable of measuring acceleration with output data rates (ODR) from 6.25Hz to 400Hz.

The RT3020's low power design yields a nominal operating current rating of less than 5.8µA at 25Hz ODR and the device can automatically switch to an even lower power in Wakeup Mode with 1.4µA current at 6.25Hz ODR when no motion is detected for a given period of time. Once in this low power mode, it can be triggered by a motion to return to the normal operation mode of higher ODR automatically. In Normal Mode, the low pass filter can be enabled to limit the bandwidth according to the ODR setting. High resolution measurement data therefore can be obtained due to lower noise power bandwidth.

In order to further reduce the system power, a deep FIFO is provided to store data locally, therefore allows host processor stay in low power sleep mode longer. Upon the FIFO buffer full, an interrupt is issued to inform the host processor to fetch the entire block of data.

On-chip hardware is employed to detect most frequently used motion events and issues interrupts to the host processor, such as tapping, free fall, etc. As a result, it enables the system to respond to critical events with minimum delay time.

The RT3020 can operate over a wide 1.8V to 3.3V supply range and the operating temperature range covers from -40 to +85 degree centigrade. The RT3020 is available in LGA-12L 2x2mm package, ideal for health band, smart watch and other battery powered products.

Features

- Low Power Consumption
 - ▶ 9.1µA @ 50Hz ODR Normal Mode
 - ▶ 5.8µA @ 25Hz ODR Normal Mode
 - ▶ 1.4µA @ 6.25Hz ODR Wakeup Mode
 - ▶ 0.11µA @ Power Down Mode
- System Level Power Saving Features
 - ▶ Automatic Wakeup to Normal Mode Switching
 - ▶ Deep FIFO :
 - 120 frames for 8-bit Data
 - 80 frames for 12-bit Data
- Embedded Motion Detection Features
 - ▶ Single / Double Tap Sensing
 - ▶ Flat Detection
 - ► Orientation Recognition
 - ▶ Shock and Free-Fall Detection
 - **▶** Static Gesture Recognition
- Programmable Full Scale Range: ±2g/±4g/±8g/ ±16g/±32g
- Inputs for External Clocking and Synchronized Sampling
- Wide Supply and I/O Voltage Range: 1.8V to 3.3V
- Operation Temperature: -40°C to 85°C
- Digital I/O Interface
 - ► I²C Interface Supporting Standard Mode, Fast Mode and Fast Mode Plus
 - ▶ SPI Interface Supporting 3-Wire and 4-Wire Mode

Applications

- IoT Devices
- Mobile Phones
- Tablets
- Wearables

Ordering Information

Pin Configuration

RT3020

−Package Type QL : LGA-12L 2x2

-Lead Plating System

G: Green (Halogen Free and Pb Free)

Note:

Richtek products are:

▶ RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.

▶ Suitable for use in SnPb or Pb-free soldering processes.

2 12 11 10 CSB [1] SDO SDx 9 GND 2 (2 3 **VDDIO** 8 NC 5 6 7 4 NC VDD

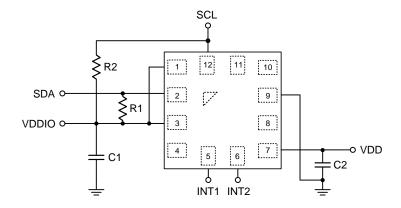
(TOP VIEW)

LGA-12L 2x2

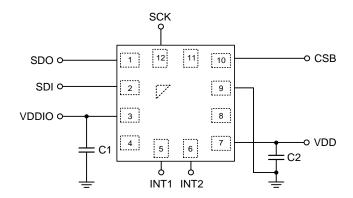
Marking Information

4X : Product Code W : Date Code

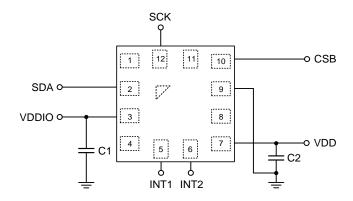
Functional Pin Description


Pin No.	Pin Name	I/O Type	Description			
		I	Part of the device address during I ² C communication. Do not leave floating.			
1	SDO	I	Can be connected to VDDIO, GND or leave floating for 3-wire SPI communication.			
		0	Serial data output pin during 4-wire SPI communication.			
			SDA. Serial data input/output pin during I ² C communication.			
2	2 SDx	I/O	SDA. Serial data input/output pin during 3-wire SPI communication.			
			SDI. Serial data input pin during 4-wire SPI communication.			
3	VDDIO		The power supply input for I/O.			
4, 8, 11	NC		No internal connection.			
5	INT1	0	Interrupt 1 output			
5	IINTT	I	Serves as an input pin for external clocking.			
6	INT2	0	Interrupt 2 output			
0	INIZ	I	Severs as an input pin for synchronized sampling.			
7	VDD		Power supply for analog and digital domain.			
9	GND		Ground.			
10	CCD	I	Can be connected to VDDIO or leave floating for I ² C communication.			
10	CSB	I	Chip select (active LOW) for SPI communication.			
12	SCx	I	SCL. I ² C communication clock.			
12	SUX	I	SCK. SPI communication clock			

www.richtek.com


Typical Application Circuit

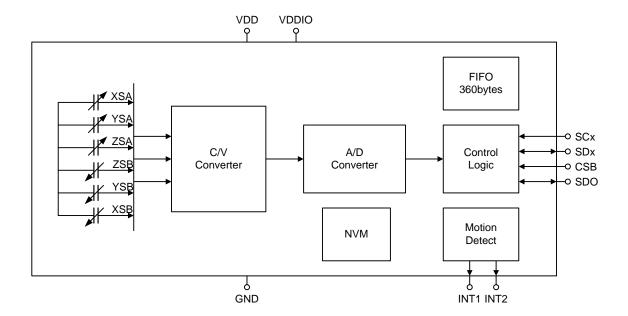
I²C Interface


Note : The recommended value for C1 and C2 is $0.1 \mu F$.

SPI Interface (4-wire)

Note : The recommended value for C1 and C2 is $0.1 \mu F$.

SPI Interface (3-wire)


Note: The recommended value for C1 and C2 is 0.1µF.

Copyright © 2019 Richtek Technology Corporation. All rights reserved.

www.richtek.com

Functional Block Diagram

Absolute Maximum Ratings (Note1)

• VDD Supply Voltage----- -0.2V to 4V

• VDDIO Supply Voltage----- -0.2V to 4V

• Logic Pin Voltage----- -0.2V to (VDDIO + 0.3V)

• Storage Temperature Range ----- --- -40°C to 125°C

• ESD Susceptibility (Note 2)

HBM (Human Body Model) ----- 2kV

CDM (Charged Device Model) ----- 500V

• Mechanical Shock------ 10000g for 0.2ms

Electrical Characteristics

(V_{DD} = 2.5V, T_A = 25°C, unless otherwise specified)

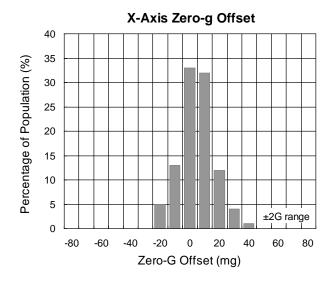
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage – Core (Note 3)	V _{DD}		1.8	2.5	3.3	V
Supply Voltage – I/O	V _{DDIO}	$V_{DDIO} \leq V_{DD}$	1.8		V_{DD}	V
Input Voltage Low	VIL	l ² C		1	0.3 x V _{DDIO}	V
Input Voltage High	V _{IH}	l ² C	0.7 x V _{DDIO}	1	-	V
Output Voltage Low	VoL	I _{OL} = 4mA		1	0.2 x V _{DDIO}	V
Output Voltage High	V _{OH}	I _{OH} = 4mA	0.8 x V _{DDIO}	1	-	V
Operating Ambient Temperature Range	TA		-40		85	°C

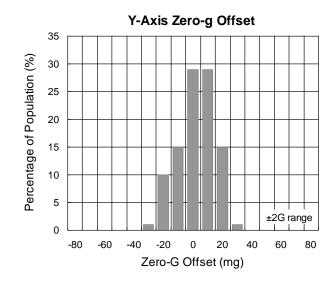
Specification

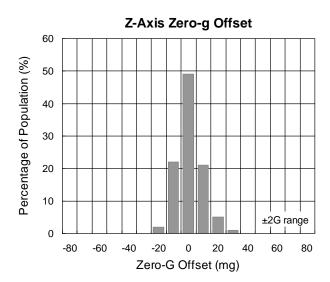
(V_{DD} = 2.5V, T_A = 25°C, Resolution = 12bits, unless otherwise specified)

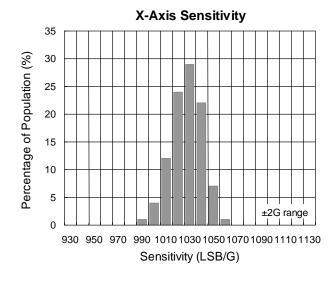
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
	FS _{2g}			±2		
	FS _{4g}			±4		
Acceleration Range	FS _{8g}			±8		g
	FS _{16g}			±16		
	FS _{32g}			±32		

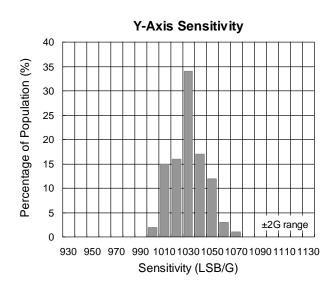
DS3020-01 August 2019 www.richtek.com

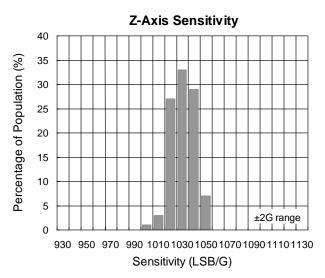

Parameter	Symbol	Cond	itions	Min	Тур	Max	Unit	
	R _{BITS}	Output resolution	า		12		bits	
	S _{2g}	Sensitivity of FS2	2g		1		mg/LSB	
	S _{4g}	Sensitivity of FS	4g		2		mg/LSB	
	S _{8g}	Sensitivity of FS	Sensitivity of FS _{8g}				mg/LSB	
	S _{16g}	Sensitivity of FS	16g		8		mg/LSB	
Sensitivity	S _{32g}	Sensitivity of FS	32g		16		mg/LSB	
	C _{2g}	Counts of FS _{2g}			1024		LSB/g	
	C _{4g}	Counts of FS _{4g}			512		LSB/g	
	C _{8g}	Counts of FS _{8g}			256		LSB/g	
	C _{16g}	Counts of FS _{16g}			128		LSB/g	
	C _{32g}	Counts of FS _{32g}			64		LSB/g	
Sensitivity Temperature Coefficient	TCS _{2g}	FS _{2g}	FS _{2g}				%/°C	
Zoro a Officet	OFS _{new}	FS _{2g} , before soldering	(Note 4)		±15		mg	
Zero-g Offset	OFS	FS _{2g} , over life-time		TBD		mg		
Zero-g Offset Temperature Coefficient	TCO _{2g}	FS _{2g} ,			±0.8		mg/°C	
Non-Linearity	NL	Percentage of fu Best fit straight li			±0.5		%	
Cross Axis Sensitivity	CAS	Coupling between	n two axis		±1.25		%	
RMS Noise	N _{rms}	25Hz ODR with Corner at ODR/3			0.65		mg	
	IDD.	Measurement	ODR = 50Hz		9.1			
Comment Consumentian	IDD _{ME}	mode	ODR = 25Hz		5.8			
Current Consumption	IDD _{WU}	Wakeup mode, 0	DDR = 6.25Hz		1.4		μΑ	
	IDD _{PD}	Power-Down mo	de		0.11			
Self-Test Output	Vot	X/Y axis			120		ma	
Change	V _{ST}	Z axis			300		mg	
Wake Time	twu	From Wakeup n mode			1.3	ms		
Start-Up Time	tsu	Power up to Pow	ver-Down mode		60		ms	

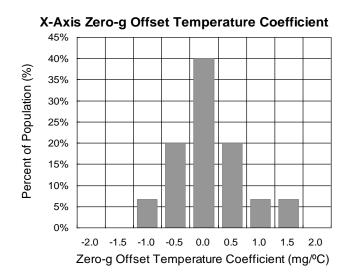

Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

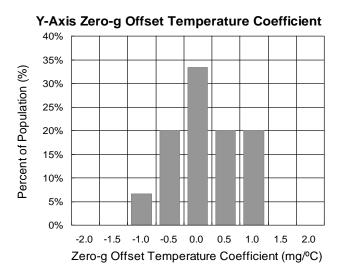

- Note 2. Devices are ESD sensitive. Handling precaution is recommended.
- Note 3. Maximum supply voltage must be controlled within +5% of its rating.
- Note 4. X and Y values are factory calibrated and trimmed at Z-axis 1G position. Z values are trimmed at Y-axis 1G position.

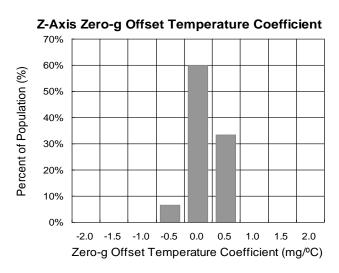


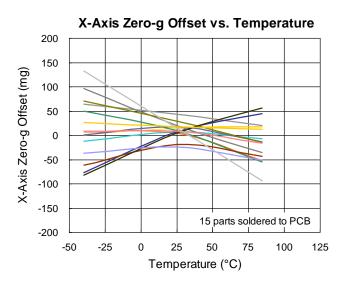

Typical Operating Characteristics

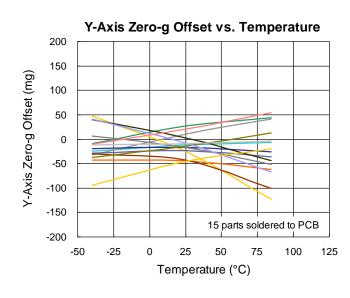


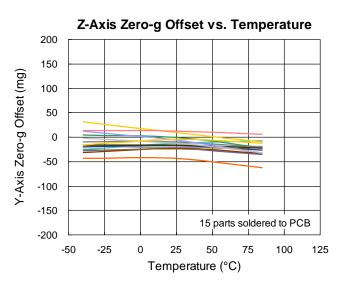

Copyright © 2019 Richtek Technology Corporation. All rights reserved.

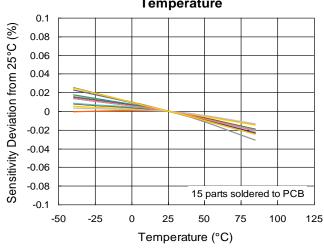

RICHTEK

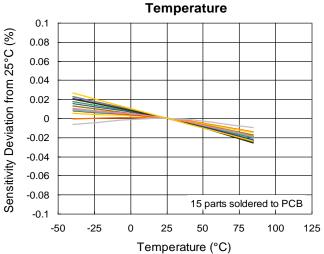

is a registered trademark of Richtek Technology Corporation.


DS3020-01 August 2019 www.richtek.com

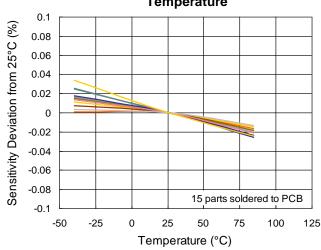


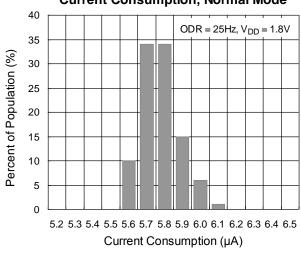


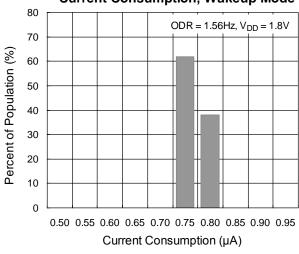


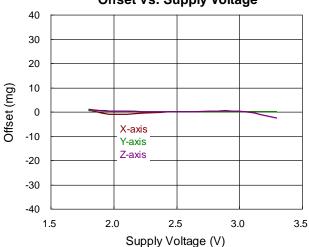


www.richtek.com


X-Axis Sensitivity Deviation from 25°C vs. Temperature


Y-Axis Sensitivity Deviation from 25°C vs.


Z-Axis Sensitivity Deviation from 25°C vs. Temperature


Current Consumption, Normal Mode

Current Consumption, Wakeup Mode

Offset vs. Supply Voltage

Copyright © 2019 Richtek Technology Corporation. All rights reserved.

RICHTEK

is a registered trademark of Richtek Technology Corporation.

DS3020-01 August 2019 www.richtek.com

Operation

Operating Modes

The RT3020 provides four different operating modes for users to select in order to meet specific application requirements with minimum power consumption. As the RT3020 is intended to be an "Always-ON" sensor, by setting the operation in Wake-up mode, a low ODR and a subset of function is configured to only detect the occurrence of an event and wake up the measurement function for detailed acceleration data. In normal mode the full measurement functionality is available as well as a higher ODR is usually chosen, therefore higher power consumption is observed. When no activity is detected for a period of time, the Normal Mode will return to Wakeup mode to save power. Noted that switching between wakeup and normal mode is carried out seamlessly without host processor's intervention.

The power down and high resolution mode can be set through the host processor and stays in the same mode until a different mode setting is issued by the host. When high accuracy data is required, the High Resolution mode can be selected where internal filtering is added to limit the noise bandwidth to ODR/3. A state diagram of the operating mode is shown in Figure 1.

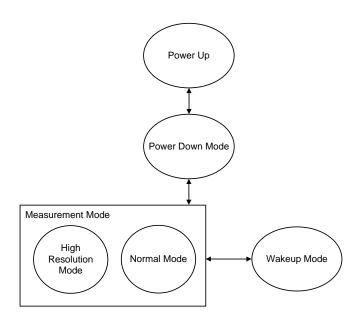


Figure 1 Operating Mode State Diagram

Power-Down Mode

In power down mode, almost all internal blocks are switched off, and only the digital interface is kept alive to allow communication to the host. All previous states before entering power down mode are not preserved. When switching from power down mode to other operation modes, a wait time of 60msec is required before writing or reading the RT3020 registers via I²C.

Wakeup Mode

Wakeup mode is used to activate the sensing on an asneeded basis when a motion event arises. The power consumption is extremely low, about 1.4 μ A at 6.25Hz ODR and can go down to 0.7 μ A at 1.5Hz ODR. The wakeup mode can be used to implement a motion activated ON/OFF switch in a system to replace the mechanical switch.

The acceleration event that is larger than a pre-set threshold will automatically switch the device to normal measurement mode with higher sampling frequency.

The RT3020 can enter into the wakeup mode either by a time based manner when no motion is detected in a predefined time window or by forcing the register control bit in 0x08 at any time. The default ODR in this mode is 6.25Hz and can be set from 1.5Hz to 50Hz.

Normal Measurement Mode

All salient features are supported in normal measurement mode, they are: motion detection, FIFO buffer, data filtering and wide ODR range from 6.25Hz to 400Hz. Due to its full functionality and higher ODR, the power consumption is higher than wakeup or power down mode.

High Resolution Measurement Mode

High resolution measurement is obtained by using higher internal sampling frequency and through a decimation lowpass filter to remove the out of band noise. The lowpass corner frequency is fixed at ODR/3 to insure no noise is aliased into data band. Noted that lower ODR setting implies lower noise bandwidth and therefore higher resolution. The power consumption in this mode is the highest and it is used when high

www.richtek.com

resolution is required. The ODR supported is from 6.25Hz to 400Hz.

Programmable Measurement Range

The RT3020 has measurement ranges of ±2g, ±4g, ±8g, ±16g and ±32g. Acceleration samples are always converted by a 12bits ADC. When the acceleration exceeds the measurement range, data is clipped at the full scale value 0x7FF of maximum positive value or 0x800 of minimum negative value. Users can access three axis data from register, which 0x10 to 0x15 provide full 12bits data for accessing.

The measurement range (±2g, ±4g, ±8g, and ±16g) are configured by setting two bits (FULL_SCALE[1:0]) of CTRL CFG2 (0x0A) register. For ±32g range selection, it can be done by following pseudo code example below:

```
I2C Write(0x0A, 0x03)
                         // 0x0A register config.
I2C_Write(0x2F, 0x03)
                          // Unlock 32G setting
Value=I2C Read(0x67,1)
                         // Get register value
Value=(Value&0x3F) | 0x40
I2C Write(0x67, Value)
                         // Set to 32G range
I2C Write(0x2F, 0x00)
                         // Back to lock status.
```

Programmable Output Data Rate

The RT3020 reports acceleration data at various data rates ranging from 6.25Hz to 400Hz in measurement mode. In wakeup mode, ODR can be configured from 1.5Hz to 50Hz.

FIFO Operation

DS3020-01

The RT3020 includes a 360 bytes first in, first out (FIFO) buffer. The FIFO can be configured to a maximum of 120 frames (3 bytes for x/y/z axis data) with 8 bits data resolution or 80 frames (4.5 bytes for x/y/z axis data) with 12bits data resolution. While the FIFO is enabled, the accelerometer data is written into the FIFO. Host processor only needs to move the data to the host memory upon FIFO full status flag assertion. There are four FIFO operating modes that can be selected for different application scenarios.

Stream Mode

Once the buffer is full in stream mode, the new data will overwrite the oldest data that was recorded in the FIFO. It is different from the FIFO mode which always holds the oldest data. In Stream Mode, on the other hand, the FIFO always keeps the latest data while the oldest is dropped to gives space for the new arriving data.

FIFO Mode

When the FIFO function is enabled, the three axis data are stored in the FIFO and the data collection is stopped when FIFO is full. Once the buffer is full, new data are ignored and the captured data are locked in the FIFO permanently.

To reset the "FIFO Full" state, it is necessary to force the FIFO into bypass mode first before restarting the FIFO Mode operation.

Bypass Mode

Bypass mode is used to bypass the FIFO buffer and at the same time clears or reset its contents. It is recommended to enter Bypass Mode first before using other FIFO modes.

Trigger Mode

Trigger mode is also called Stream-to-FIFO mode. As the name indicates, the trigger mode combines the characteristics of the stream mode and the FIFO mode. When it is first enabled, it operates under the Stream Mode until a trigger condition is met, then it switches to the FIFO mode where the data from trigger event are captured and locked in the FIFO for further analysis. The trigger event is programmable and can be from one of many detected motion sources.

Same as in FIFO mode, the locked data and state can be reset and cleared by forcing it into the bypass mode.

Copyright © 2019 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

August 2019

11

Motion Detect

Tap Sensing

Tapping or clicking is an action that is manifested by a narrow acceleration pulse, it is defined by a window within which the pulse is confined. When this condition is met, an interrupt is issued. The pre- or post-window cursor shall not be detected in order to qualify a tapping motion. Two consecutive tapping separated within a given duration is defined as a double-tapping or double-clicking action and an interrupt is issued for this motion. Single and double tapping is often used to control a device (e.g true wireless earpods) where mechanical switch or touch sensing switch is not practical.

Shock Detect

Shock is defined as a motion driven by a long sustaining force in which acceleration is above a predefined threshold for a specified duration. Events meeting the shock criteria, interrupts are issued to signify such motion. For example, it can be used to detect the impact force in car accident in EDR (Event Data Recorder) devices. The recording will be stopped upon large impact detection to protect the data being overwritten.

Free Fall Detect

The free fall is the state of weightlessness. It means all three axis are zero acceleration or gravity. Once free fall is detected it can alert the system to take precautionary action to protect sensitive parts. For example a hard drive may incorporate the free fall sensor to detect the drop of the device and prevent the drive head from crashing on the magnetic disk, therefore causes data loss.

Display Profile Switch

Display profile switch is mainly intended for smart phone or tablet devices where either landscape or portrait display mode is automatically switched depending on the detected gravity with respect to the three axis (x/y/z). Using this built-in function, it allows efficient display rotation without host processor having to read the three axis data and calculate display's angle position.

Gesture Recognition

A gesture is a static position defined by the three accelerometer axis. The RT3020 can set the threshold and its region of tolerance on each individual axis to define a certain gesture. It is particularly useful in applications such as detecting a smart band's position for reading or glancing the display, therefore power on the screen, when the device is not at "glance position" the screen is off to save power.

Power

Power Supply Requirements

It's recommended to power up the RT3020 always from 0V. When the RT3020 is in operation, any time supply power falls below the operating voltage range, all the supplies must be discharged to 0V before re-applying the power.

It is recommended to use a voltage regulator with a shutdown discharge function, such as RT9078.

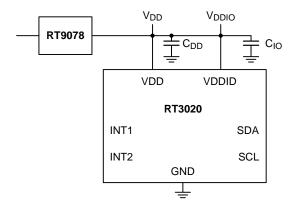


Figure 2. Single Power Supply Design Using the RT9078

Additional Features

Latch Interrupt

The RT3020 provides programmable interrupt active duration for microcontroller. Latch mode, non-latch mode, and programmable latch mode are implemented in the RT3020. The INT1 and INT2 have different settings for different requirements. While it is set to non-latch mode, the pulse width with 25µsec will be signaled when specific interrupt occurs. The latch mode is selected to prevent missing any interrupt event. The interrupt flag will be hold till the interrupt status has been read. The programmable latch mode holds the active duration from 2.5msec to maximum 20.5sec no matter host has read interrupt status or not.

Self-Test

The RT3020 has the self-test feature for the sensor functionality check by applying electrostatic force to the sensor element. A static offset of the acceleration data can be observed when the self-test is activated. The acceleration measurement range should be set to 2g before self-test is enabled. When the self-test bit is set, an actuation force is applied to the sensor, simulating a definite input acceleration. The typical offset differences of self-test for XY axis are about 120mg and Z axis is about 300mg.

External Clock Mode

External clock can be used to obtain a specific clock frequency that is not available from the internally generated ODR clocks (i.e. 400Hz divided by a programmable 6-bit binary counter). An external clock frequency range between 20kHz to 38kHz can be applied and will yield the ODR clock frequency according to:

 $ODR_{EXT} = ODR_{INT} x (f_{EXT} / 40kHz)$

Where ODR_{EXT} is the ODR frequency using an external clock of frequency f_{EXT}. ODR_{INT} is the selected ODR frequency when internal clock is used. For example, 62.5Hz ODR can be obtained when a 25kHz clock is applied to INT1 pin and ODR_{INT} of 100Hz is selected.

Synchronized Data Sampling Mode

When INT2 is set to input, it serves as an external data synchronization trigger. This feature insures data from different sensors taken at the same time instance to be used in situations where sensor fusion is to be performed.

The frequency ranges of synchronized data sampling can be input from 6.25Hz to 400Hz.

Copyright © 2019 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Communications

I²C: Inter-Integrated Circuit

There are two signals associated with the I²C bus: the serial clock line (SCx) and the serial data line (SDx). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both lines must be connected to VDDIO through external pull-up resistor. When the bus is free, both lines are high.

Electrical Characteristics: I²C Interface

Parameter	Symbol	Standard-Mode		Fast-Mode		Fast-Mode Plus		Unit
		Min	Max	Min	Max	Min	Max	
SCL Clock Frequency	f _{SCLK}	10	100	10	400	10	1000	kHz
Hold Time After (Repeated) Start Condition. After This Period, the First Clock is Generated	t _{HDSTA}	4	1	0.6	1	0.26	ı	μS
LOW Period of The SCL Clock	t_{LOW}	4.7		1.3		0.5		μS
HIGH Period of The SCL Clock	t _{HIGH}	4.0		0.6		0.26		μS
Set-Up Time for a Repeated START Condition	t _{SUSTA}	4.7		0.6		0.26		μS
Data Hold Time	t _{HDDAT}	0	2490	0	610	0	200	ns
t _{SUDAT} Data Set-Up Time	t _{SUDAT}	250		100		50		ns
Set-Up Time for STOP Condition	t _{SUSTO}	4.0		0.6		0.26		μS
Bus Free Time between a STOP and START Condition	t _{BUF}	4.7		1.3		0.5		μS

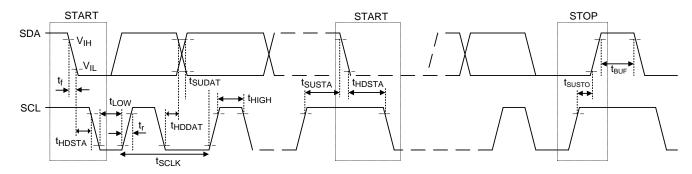


Figure 3. Timing Chart of the I²C

I²C Communication Protocol

The next byte of data transmitted after the start condition contains the address of the slave in the first seven bits and the eighth bit tells whether the master wants to do a write or a read command. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master.

Command	SDO Connection	WR bits	Slave Address
Read	VDDIO or floating	1	8'h33
Write	VDDIO or floating	0	8'h32

The I²C burst read or write is supported in the RT3020. The RT3020 continuously writes/reads the data to/from the following address till it receives STOP condition.

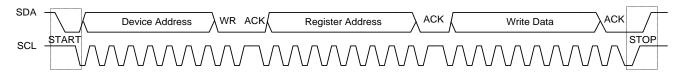


Figure 4. Write Command

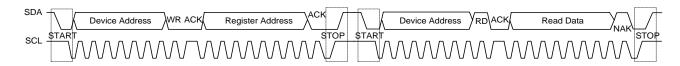
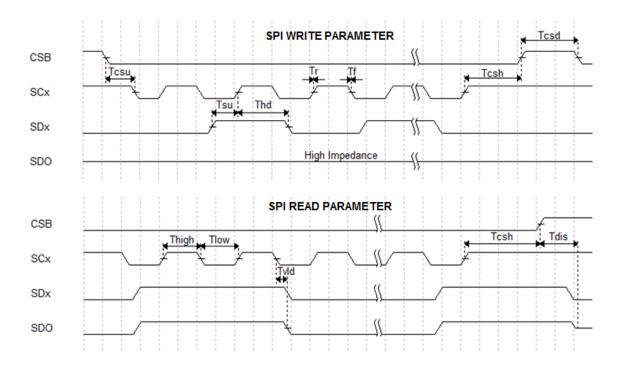
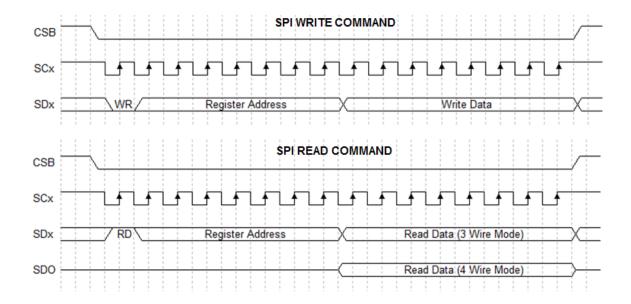


Figure 5. Read Data


SPI: Serial Peripheral Interface

There are three signals associated with the 3 wire mode SPI bus: the serial port enable (CSB), the serial clock line (SCx) and the serial data line (SDx) which is a bidirectional line used for sending and receiving the data to/from the interface. In 4 wire mode SPI bus, the serial data is separated by serial data input (SDI) and serial data output (SDO).

Cumbal	Parameter	Va	Value			
Symbol	Parameter	Min	Max	Unit		
Fclk	Clock Frequency		8	MHz		
Thigh	Clock High Time	50		ns		
Tlow	Clock Low Time	50		ns		
Tsu	Data Setup Time	5		ns		
Thd	Data Hold Time	30		ns		
Tcsu	CSB Setup Time	5		ns		
Tcsh	CSB Hold Time	50		ns		
Tcsd	CSB Disable Time	50		ns		
Tr	Clock Rise Time		50	ns		
Tf	Clock Fall Time		50	ns		
Tvld	Output Valid from Clock Low		20	ns		
Tdis	Output Disable Time		20	ns		


ed. RICHTEK is a registered trademark of Richtek Technology Corporation.

SPI Communication Protocol

The READ/WRITE operation timing diagram is shown below. The RT3020 supports data transfer when clock idles at "1" state and its rising edge is used to clock in the data and the clock falling edge is aligned with the data output. CSB is port enable pin controlled by the SPI master and it is negative assertion logic with internal pull-up to VDDIO. The RT3020 also supports burst read/write to allow access to contiguous register locations until CSB is pulled to HIGH.

Register Mapping

Addr	Тур	Name	Def	Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
0x00	R	WHOAMI	0x33				WHO	O AM I		•	
0x01	R	IRQ_STS	0x00	STS_ACT		STS_TAP	STS_AOI	STS_OVN	STS_WTM	STS_DRDY	STS_SLP
0x02	R	MODE_STS	0x00	-			PO_DRDY		STS_MES	STS_WAK	STS_STBY
0x07	RW	CTRL_CFG0	0x02		SELF_TEST						
0x08	RW	MODE_CFG	0x00	EXT_SMP	EXT_SLP	SPI_MODE	SW_RST			MEASU	RE[1:0]
0x09	RW	CTRL_CFG1	0x07			ODR[2:0]		HR	ZEN	YEN	XEN
0x0A	RW	CTRL_CFG2	0x00	I2_ACT	I2_SLP	I1_ACT	I1_SLP	IRQ2_POL	IRQ1_POL	FULL_SC	CALE[1:0]
0x0B	RW	CTRL_CFG3	0x00		ILATCH	H2_SEL[3:0]			ILATCH1	_SEL[3:0]	
0x0D	RW	INACT_TIME_L	0x00				INACT_TIME[7:0] (40ms/LS	B)		
0x0E	RW	INACT_TIME_H	0x00				INACT_1	ΓΙΜΕ[15:8]			
0x10	R	XDATA_L	0x00		XDA	ATA[3:0]					
0x11	R	XDATA_H	0x00				XDAT	A[11:4]			
0x12	R	YDATA_L	0x00		YD	ATA[3:0]					
0x13	R	YDATA_H	0x00				YDAT	A[11:4]			
0x14	R	ZDATA_L	0x00		ZD/	ATA[3:0]					
0x15	R	ZDATA_H	0x00		ZDATA[11:4]						
0x16	R	FIFO_UNRD	0x00	UNREAD[7:0]							
0x17	R	FIFO_STS	0x00	1	1	-			OVN	WTM	EMPTY
0x18	R	AOI_STS1	0x00	PO_AOI		ZH1	ZL1	YH1	YL1	XH1	XL1
0x19	R	AOI_STS2	0x00						SIGN_Z	SIGN_Y	SIGN_X
0x1A	R	TAP_STS	0x00	PO_TAP		DTAP	STAP	SIGN	ZTAP	YTAP	XTAP
0x20	RW	IRQ1_MAP	0x00			I1_TIA	I1_AOI	I1_OVN	I1_WTM	I1_DRDY	
0x21	RW	IRQ2_MAP	0x00			I2_TIA	I2_AOI	I2_OVN	I2_WTM	I2_DRDY	
0x22	RW	FIFO_CFG	0x00	FIFO_EN	FIFO_HR	FIFO_N	IODE[1:0]	FIFO_S	KIP[1:0]	TRIG_S	RC[1:0]
0x23	RW	FIFO_THS	0x00				FIFO_TI	HRES[7:0]		•	
0x24	RW	FILTER	0x00			UNSIGN				HP_AOI	HP_DATA
0x30	RW	AOI_CFG	0x00		AOI	COMF	P_Z[1:0]	COMP	_Y[1:0]	COMP	_X[1:0]
0x31	RW	AOI_TIME	0x00			AC	DI_ACTIVE_TIM	1E[7:0] (2.5ms	/LSB)		
0x32	RW	AOI_THSX	0x00		F	AOI_ACTIVE_	THRESH_X[7:0] (2's compler	nent w/ signed	l bit)	
0x33	RW	AOI_THSY	0x00		F	AOI_ACTIVE_	THRESH_Y[7:0] (2's compler	nent w/ signed	l bit)	
0x34	RW	AOI_THSZ	0x00		F	AOI_ACTIVE_	THRESH_Z[7:0] (2's compler	nent w/ signed	l bit)	
0x35	RW	AOI_HYSX	0x00	HYS_X[3:0] - ZCMP YCMP XCMP						XCMP	
0x36	RW	AOI_HYSZY	0x00	HYS_Z[3:0] HYS_Y[3:0]							
0x37	RW	TAP_CFG	0x00			ZDEN	ZSEN	YDEN	YSEN	XDEN	XSEN
0x38	RW	TAP_THS	0x00	-			TA	.P_THRESH[6	6:0]		
0x39	RW	TAP_LIMIT	0x00	TAP_LIMIT[7:0] (10ms/LSB)							
0x3A	RW	TAP_LAT	0x00				TAP_LATENCY	[7:0] (10ms/L	SB)		
0x3B	RW	TAP_WIN	0x00				TAP_WINDOW	[7:0] (10ms/L	SB)		

Copyright © 2019 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

DS3020-01 August 2019 www.richtek.com

Register Table

Register 0x00 (WHOAMI)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
			WHO	AM I			

Bit	Туре	Name	Default	Description
[7:0]	R	WHOAMI	0x33	Chip ID

Register 0x01 (IRQ_STS)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
STS_ACT		STS_TAP	STS_AOI	STS_OVN	STS_WTM	STS_DRDY	STS_SLP

Bit	Туре	Name	Default	Description
7	R	STS_ACT	0	Activity 1: Activity detected. Switch to measurement mode from wakeup mode.
5	R	STS_TAP	0	Tap Sensing 1 : Single or double tapping is detected.
4	R	STS_AOI	0	AND/OR interrupt (Shock/Freefall/Profile/Gesture) 1 : Configured AOI motion is detected.
3	R	STS_OVN	0	FIFO overrun 1 : FIFO is full.
2	R	STS_WTM	0	FIFO water mark 1 : FIFO is filled up to watermark threshold.
1	R	STS_DRDY	0	Data ready 1 : Axis sample is ready.
0	R	STS_SLP	0	Inactivity 1 : Inactivity detected and enter wakeup mode.

Register 0x02 (MODE_STS)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
			PO_DRDY		STS_MEAS	STS_WAK	STS_STBY

Bit	Туре	Name	Default	Description	
4	R	PO_DRDY	0	Data ready 1: Axis sample ready. The difference between STS_DRDY and DRDY is that reading IRQ_STATUS will clear all interrupt source but reading MODE_STATUS only clear data ready flag. If user captures data by interrupt, it is suggested to read IRQ_STATUS. If user captures data by polling, it is suggested to poll MODE_STATUS.	
2	R	STS_MEAS	0	Measurement mode status 1: Operation mode is in the measurement mode.	
1	R	STS_WAKE	0	Wakeup mode status 1 : Operation mode is in the wakeup mode that ODR is selected by customer. (1.56 to 50Hz)	
0	R	STS_STBY	0	Power down mode status 1 : Operation mode is in the power down mode.	

Register 0x07 (CTRL_CFG0)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
			SELF_TEST				

Bit	Туре	Name	Default	Description
4	RW	SELF_TEST	0	Self-Test 1 : Enable

Copyright © 2019 Richtek Technology Corporation. All rights reserved. DS3020-01 August 2019

19

Register 0x08 (MODE_CFG)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
EXT_SMP	EXT_SLP	SPI_MODE	SW_RST			MEASU	JRE[1:0]

Bit	Туре	Name	Default	Description	
7	RW	EXT_SMP	0	External synchronized data sampling mode 1 : Sampling trigger is controlled by external. (from INT2)	
6	RW	EXT_SLP	0	External clock mode 1 : Replace the internal clock by external. (from INT1)	
5	RW	SPI_MODE	0	SPI mode selection 1 : SPI 3-wire mode 0 : SPI 4-wire mode	
4	RW	SW_RST	0	Soft reset 1 : Enable	
[1:0]	RW	MEASURE	00	Operation mode selection 2 : Enter normal measurement mode. 1 : Enter wakeup mode. 0 : Enter power down mode.	

Register 0x09 (CTRL_CFG1)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
		ODR[2:0]		HR	ZEN	YEN	XEN

Bit	Туре	Name	Default	Description	
[6:4]	RW	ODR	000	Output data rate (Operation mode is in the measure mode) 6:400Hz 5:200Hz 4:100Hz 3:50Hz 2:25Hz 1:12.5Hz 0:6.25Hz	
3	RW	HR	0	Low pass filter enable 1 : Enable low pass filter.	
2	RW	ZEN	1	Z Axis enable 1 : Enable Z Axis capturing.	
1	RW	YEN	1	Y Axis enable 1 : Enable Y Axis capturing.	
0	RW	XEN	1	X Axis enable 1 : Enable X Axis capturing.	

Register 0x0A (CTRL_CFG2)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
I2_ACT	I2_SLP	I1_ACT	I1_SLP	IRQ2_POL	IRQ1_POL	FULL_SC	CALE[1:0]

Bit	Туре	Name	Default	Description	
7	RW	I2_ACT	0	Active status map to INT2 1: Enable the active status map to INT2. Active is defined as the operation mode in wakeup mode switches to measurement mode.	
6	RW	I2_SLP	0	Inactive status map to INT2 1 : Enable the inactive status map to INT2. Inactive is defined as the operation mode in measurement mode switches to wakeup mode.	
5	RW	I1_ACT	0	Active status map to INT1 1 : Enable the active status map to INT1.	
4	RW	I1_SLP	0	Inactive status map to INT1 1: Enable the inactive status map to INT1.	
3	RW	IRQ2_POL	0	INT2 polarity 1 : Interrupt flag is low active. 0 : Interrupt flag is high active.	
2	RW	IRQ1_POL	0	INT1 polarity 1 : Interrupt flag is low active. 0 : Interrupt flag is high active.	
[1:0]	RW	FSCALE	00	Measurement full scale range 3: ±16g 2: ±8g 1: ±4g 0: ±2g	

Copyright © 2019 Richtek Technology Corporation. All rights reserved.

21

Register 0x0B (CTRL_CFG3)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
	LATCH2_	_SEL[3:0]			LATCH1_	_SEL[3:0]	

Bit	Туре	Name	Default	Description
[7:4]	RW	LAT2_SEL	0000	INT2 latch duration selection 15: 20.5sec 14: 10.25sec 13: 5.1sec 12: 2.5sec 11: 1.3sec 10: 640msec 9: 320msec 8: 160msec 7: 80msec 6: 40msec 5: 20msec 4: 10msec 3: 5msec 2: 2.5msec 1: Latched (Interrupt is cleared after IRQ_STATUS is read.) 0: Non-Latched (Interrupt pulse width is about 25µsec.)
[3:0]	RW	LAT1_SEL	0000	INT1 latch duration selection 15 to 0 : Same as INT2 latch duration selection

Register 0x0D (INACT_TIME_L)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
			INACT_1	ΓΙΜΕ[7:0]			

E	Bit	Туре	Name	Default	Description	
[7	7:0]	RW	INACT_TIME_L	0000 0000	Inactive timer (40ms per LSB)	

Register 0x0E (INACT_TIME_H)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
			INACT_T	IME[15:8]			

Bit	Туре	Name	Default	Description
[7:0]	RW	INACT_TIME_H	0000 0000	MSB 8bits of Inactive Timer

Register 0x10 (XDATA_L)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
	XDAT	A[3:0]			-	-	

Bit	Туре	Name	Default	Description
[7:4]	R	XDATA_L	0000	LSB 4bits data of X axis

Register 0x11 (XDATA_H)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
			XDATA	٩[11:4]			

Bit	Туре	Name	Default	Description	
[7:0]	R	XDATA_H	0000 0000	MSB 8bits data of X axis	

Register 0x12 (YDATA_L)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
	YDAT	A[3:0]			-	-	

Bit	Туре	Name	Default	Description	
[7:4]	R	YDATA_L	0000	LSB 4bits data of Y axis	

Register 0x13 (YDATA_H)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
			YDAT	A[11:4]			

Bit	Туре	Name	Default	Description
[7:0]	R	YDATA_H	0000 0000	MSB 8bits data of Y axis

Register 0x14 (ZDATA_L)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
	ZDAT	A[3:0]			_	-	

Bit	Туре	Name	Default	Description
[7:4]	R	ZDATA_L	0000	LSB 4bits data of Z axis

Copyright © 2019 Richtek Technology Corporation. All rights reserved.

DS3020-01 August 2019

Register 0x15 (ZDATA_H)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
			ZDATA	A[11:4]			

Bit	Туре	Name	Default	Description	
[7:0]	R	ZDATA_H	0000 0000	MSB 8bits data of Z axis	

Register 0x16 (FIFO_UNRD)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
			FIFO_UNI	READ[7:0]			

Bit	Туре	Name	Default	Description
[7:0]	R	FIFO_UNRD		FIFO unread number Number of frames are still in the FIFO and haven't been read out.

Register 0x17 (FIFO_STS)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
					OVN	WTM	EMPTY

Bit	Type	Name	Default	Description
2	R	OVN	0	FIFO overrun 1 : FIFO is full. The difference between STS_OVN and OVN is that reading IRQ_STATUS will clear all interrupt source but reading FIFO_STATUS only check the status of FIFO.
1	R	WTM	0	FIFO water mark 1 : FIFO is filled up to water mark threshold. The difference between STS_WTM and WTM is that reading IRQ_STATUS will clear all interrupt source but reading FIFO_STATUS only check the status of FIFO.
0	R	EMPTY	0	FIFO empty 1 : FIFO is empty.

Register 0x18 (AOI_STS1)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
PO_AOI		ZH	ZL	ΥH	YL	XH	XL

Bit	Туре	Name	Default	Description
7	R	PO_AOI	0	Polling AOI status 1 : AOI is valid. 0 : AOI is invalid.
5	R	ZH	0	Z high 1 : Z axis is higher than THSZ if COMP_Z[1] = 0 1 : Z axis is located in positive THSZ ± HYSZ range if COMP_Z[1] = 1.
4	R	ZL	0	Z low 1 : Z axis is lower than THSZ if COMP_Z[1] = 0 1 : Z axis is located in negative THSZ ± HYSZ range if COMP_Z[1] = 1.
3	R	YH	0	Y high 1 : Y axis is higher than THSY if COMP_Y[1] = 0 1 : Y axis is located in positive THSY ± HYSY range if COMP_Y[1] = 1.
2	R	YL	0	Y low 1: Y axis is lower than THSY if COMP_Y[1] = 0 1: Y axis is located in negative THSY ± HYSY range if COMP_Y[1] = 1.
1	R	ХН	0	X high 1: X axis is higher than THSX if COMP_X[1] = 0 1: X axis is located in positive THSX ± HYSX range if COMP_X[1] = 1.
0	R	XL	0	X low 1: X axis is lower than THSX if COMP_X[1] = 0. 1: X axis is located in negative THSX ± HYSX range if COMP_X[1] = 1.

Register 0x19 (AOI_STS2)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
					SIGN_Z	SIGN_Y	SIGN_X

Bit	Туре	Name	Default	Description
2	R	SIGN_Z	0	Signed bit of Z axis 1 : Z axis is higher than THSZ and is a positive value. 0 : Z axis is higher than THSZ and is a negative value. This bit is valid when COMP_Z is set to 00.
1	R	SIGN_Y	0	Signed bit of Y axis 1: Y axis is higher than THSY and is a positive value. 0: Y axis is higher than THSY and is a negative value. This bit is valid when COMP_Y is set to 00.
0	R	SIGN_X	0	Signed bit of X axis 1: X axis is higher than THSX and is a positive value. 0: X axis is higher than THSX and is a negative value. This bit is valid when COMP_X is set to 00.

25

Register 0x1A (TAP_STS)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
PO_TAP		DTAP	STAP	SIGN	ZTAP	YTAP	XTAP

Bit	Туре	Name	Default	Description	
7	R	PO_TAP	0	Polling TAP status 1 : TAP is valid. 0 : TAP is invalid.	
5	R	DTAP	0	Double tap status 1 : Double tapping is detected.	
4	R	STAP	0	Single tap status 1 : Single tapping is detected.	
3	R	SIGN	0	Signed bit of the tap 1 : Positive tapping 0 : Negative tapping	
2	R	ZTAP	0	Z tap status 1 : Z axis tapping is detected.	
1	R	YTAP	0	Y tap status 1 : Y axis tapping is detected.	
0	R	XTAP	0	X tap status 1: X axis tapping is detected.	

Register 0x20 (IRQ1_MAP)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
		I1_TIA	I1_AOI	I1_OVN	I1_WTM	I1_DRDY	

Bit	Туре	Name	Default	Description	
5	RW	I1_TIA	0	Tap sensing 1: Maps tapping status to INT1 pin.	
4	RW	I1_AOI	0	AND/OR interrupt (Shock/Freefall/Display Profile/Gesture) 1 : Maps AOI status to INT1 pin.	
3	RW	I1_OVN	0	FIFO overrun 1 : Maps FIFO full flag to INT1 pin.	
2	RW	I1_WTM	0	FIFO water mark 1 : Maps FIFO WTM flag to INT1 pin.	
1	RW	I1_DRDY	0	Data ready 1: Maps data ready flag to INT1 pin.	

27

Register 0x21 (IRQ2_MAP)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
		I2_TIA	I2_AOI	I2_OVN	I2_WTM	I2_DRDY	

Bit	Туре	Name	Default	Description
5	RW	I2_TIA	0	Tap sensing 1 : Maps tapping status to INT2 pin.
4	RW	I2_AOI	0	AND/OR interrupt (Shock/Freefall/Display Profile/Gesture) 1: Maps AOI status to INT2 pin.
3	RW	I2_OVN	0	FIFO overrun 1 : Maps FIFO full flag to INT2 pin.
2	RW	I2_WTM	0	FIFO water mark 1: Maps FIFO WTM flag to INT2 pin.
1	RW	I2_DRDY	0	Data ready 1 : Maps data ready flag to INT2 pin.

Register 0x22 (FIFO_CFG)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
FIFO_EN	FIFO_HR	FIFO_M	FIFO_MODE[1:0]		KIP[1:0]	TRIG_S	SRC[1:0]

Bit	Туре	Name	Default	Description	
7	RW	FIFO_EN	0	FIFO function enable 1 : Start record data frames into FIFO.	
6	RW	FIFO_HR	0	FIFO resolution mode 1 : 12bits data content is recorded in FIFO. 0 : MSB 8bits data content is recorded in FIFO.	
[5:4]	RW	FIFO_MODE	00	FIFO mode selection 3: Trigger mode (Stream-to-FIFO mode) 2: Stream mode 1: FIFO mode 0: Bypass mode	
[3:2]	RW	FIFO_SKIP	00	FIFO skip frames selection 3: Only record one sample per 8 samples, the others are dropped.	
[1:0]	RW	TRIG_SRC	00	Trigger mode source selection 2: Trigger source is significant motion. 1: Trigger source is tapping sensing. 0: Trigger source is AOI detection.	

August 2019 www.richtek.com

Register 0x23 (FIFO_THS)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
			FIFO_TH	IRES[7:0]			

Bit	Туре	Name	Default	Description
[7:0]	RW	FIFO_THS	0000 0000	FIFO water mark threshold

Register 0x24 (FILTER)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
		UNSIGN				HP_AOI	HP_DATA

Bit	Туре	Name	Default	Description
5	RW	UNSIGN	0	Unsigned format 1 : Change data format from 2's complement to unsigned.
1	RW	HP_AOI	0	AOI HPF enable 1 : AOI source is pass through high pass filter.
0	RW	HP_DATA	0	Data register HPF enable 1 : Axis data is pass through high pass filter.

Register 0x30 (AOI_CFG)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
	AOI	COMP	_Z[1:0]	COMP	_Y[1:0]	COMP	_X[1:0]

Bit	Туре	Name	Default	Description
6	RW	V AOI 0 Interrupt AND/OR selection 1 : AND all three axis conditions. 0 : OR all three axis conditions.		1 : AND all three axis conditions.
[5:4]	RW	COMP_Z	00	Z axis comparator selection 3: Absolute match. Axis is located in any positive or negative range (THSZ ± HYSZ). Ignore signed bit. 2: Relative match. Axis is located in specific range (THSZ ± HYSZ). Should compare the signed bit. 1: Lower than. Axis is lower than THSZ. Ignore signed bit. 0: Higher than. Axis is higher than THSZ. Ignore signed bit.
[3:2]	RW	COMP_Y	00	Y axis comparator selection
[1:0]	RW	COMP_X	00	Z axis comparator selection

Register 0x31 (AOI_TIME)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
			AOI_ACTIV	E_TIME[7:0]			

Bit	Туре	Name	Default	Description
[7:0]	RW	AOI_TIME	0000 0000	AOI active duration (2.5msec per LSB)

Register 0x32 (AOI_THSX)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
		A	OI_ACTIVE_1	THRESH_X[7:0)]		

Bit	Туре	Name	Default	Description
[7:0]	RW	AOI_THSX	0000 0000	X axis AOI threshold (2's complement w/ signed bit)

Register 0x33 (AOI_THSY)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
		P	AOI_ACTIVE_1	THRESH_Y[7:0)]		

Bit	Туре	pe Name Default		Description
[7:0]	RW	AOI_THSY	0000 0000	Y axis AOI threshold (2's complement w/ signed bit)

Register 0x34 (AOI_THSZ)

	· – ,						
Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
		A	AOI_ACTIVE_1	THRESH_Z[7:0)]		

Bit	Туре	Name	Default	Description
[7:0]	RW	AOI_THSZ	0000 0000	Z axis AOI threshold (2's complement w/ signed bit)

Copyright © 2019 Richtek Technology Corporation. All rights reserved.

DS3020-01 August 2019

Register 0x35 (AOI_HYSX)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
	AOI_HY	S_X[3:0]			ZCMP	YCMP	XCMP

Bit	Туре	Name	Default	Description
[7:4]	RW	AOI_HYSX	0000	X axis hysteresis selection 15 to 8 : 128 to 1008mg, 128mg per step for tolerance range. 7 to 0 : 0 to 112mg, 16mg per step for hysteresis.
2	RW ZCMP 0 1 : Enable 0 : Disable		1 : Enable	
1	RW	YCMP	0	Y axis AOI comparison enable 1 : Enable 0 : Disable
0	RW	XCMP	0	X axis AOI comparison enable 1 : Enable 0 : Disable

Register 0x36 (AOI_HYSZY)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
	AOI_HY	S_Z[3:0]			AOI_HY	S_Y[3:0]	

Bit	Туре	Name	Default	Description
[7:4]	RW	AOI_HYSZ	0000	Z axis hysteresis selection 15 to 8 : 128 to 1008mg, 128mg per step for tolerance range. 7 to 0 : 0 to 112mg, 16mg per step for hysteresis.
[3:0]	RW	AOI_HYSY	0000	Y axis hysteresis selection 15 to 8: 128 to 1008mg, 128mg per step for tolerance range. 7 to 0: 0 to 112mg, 16mg per step for hysteresis.

Register 0x37 (TAP_CFG)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
		ZDEN	ZSEN	YDEN	YSEN	XDEN	XSEN

Bit	Туре	Name	Default	Description
5	RW	ZDEN	0	Z axis double tapping enable 1 : Enable 0 : Disable
4	RW	ZSEN	0	Z axis single tapping enable 1 : Enable 0 : Disable
3	RW	YDEN	0	Y axis double tapping enable 1 : Enable 0 : Disable
2	RW	YSEN	0	Y axis single tapping enable 1 : Enable 0 : Disable
1	RW	XDEN	0	X axis double tapping enable 1 : Enable 0 : Disable
0	RW	XSEN	0	X axis single tapping enable 1 : Enable 0 : Disable

Register 0x38 (TAP_THS)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
			TA	P_THRESH[6	:0]		

Bit	Туре	Name	Default	Description
[6:0]	RW	TAP_THS	000 0000	Tapping detected threshold

Register 0x39 (TAP_LIMIT)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
			TAP_LII	MIT[7:0]			

Bit	Туре	Name	Default	Description
[7:0]	RW	TAP_LIMIT	0000 0000	Tapping pulse window (10msec per LSB)

Copyright © 2019 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

DS3020-01 August 2019

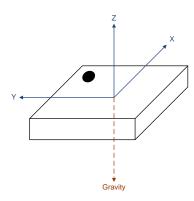
Register 0x3A (TAP_LAT)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
			TAP_LATE	ENCY[7:0]			

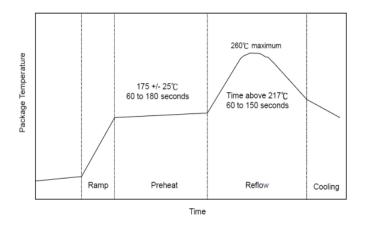
Bit	Туре	Name	Default	Description
[7:0]	RW	TAP_LAT	0000 0000	Tapping quiet window that wrap around the event. (10msec per LSB)

Register 0x3B (TAP_WIN)

Bit-7	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
			TAP_WIN	DOW[7:0]			


В	it	Туре	Name	Default	Description
[7:	:0]	RW	TAP_WIN	0000 0000	Tapping interval window between two successive events. (10msec per LSB)

Sensing Axes Orientation

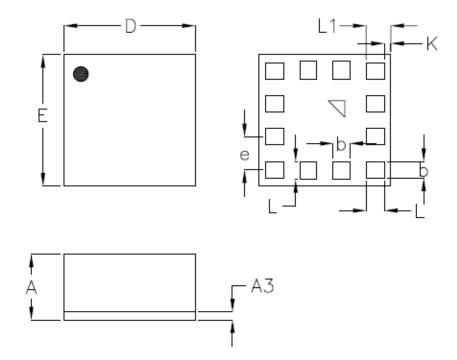

The sensor is at rest in gravity field according to the following figure, and the output signals are :

- 0g for the X-axis
- 0g for the Y-axis
- +1g for the Z-axis

Soldering Guidelines

Condition	Contents				
Preheat temperature 175 (±25)°C	60 to 180 seconds				
Temperature maintained above 217°C	60 to 150 seconds				
Time within 5°C of actual peak temperature	20 to 40 seconds				
Peak temperature	260°C				
Ramp-down rate	6°C/second max.				
Time 25°C to peak temperature	8 minutes max.				

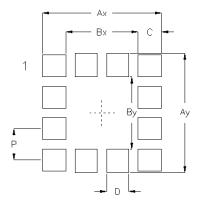
Layout Considerations


- ▶ No extra traces and components under the device.
- ▶ Do not place any components or vias at a distance less than 2mm from the device.
- ▶ The solder mask opening must be larger than the land pad.
- ▶ Use a pick and place machine and the solder paste thickness must be as uniform as possible to avoid uneven stress.

Copyright © 2019 Richtek Technology Corporation. All rights reserved.

DS3020-01 August 2019 www.richtek.com

Outline Dimensions



Symbol	Dimensions I	In Millimeters	Dimensions In Inches			
	Min	Max	Min	Max		
А	0.855	0.995	0.034	0.039		
А3	0.100	0.150	0.004	0.006		
b	0.200	0.300	0.008	0.012		
D	1.900	2.100	0.075	0.083		
E	1.900	2.100	0.075	0.083		
е	0.5	500	0.020			
L	0.225	0.325	0.009	0.013		
L1	0.325	0.425	0.013	0.017		
K	0.1	00	0.004			

12L LGA 2x2 Package

Footprint Information

Dookogo	Number of	ber of Footprint Dimension (mm)						Tolerance	
Package	Pin	Р	Ax	Ay	Вх	Ву	С	D	Tolerance
LGA2x2-12	12	0.50	1.90	1.90	1.15	1.15	0.375	0.35	±0.05

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2019 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

DS3020-01 August 2019 www.richtek.com