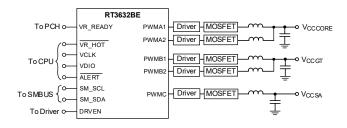
RICHTEK

Triple Channel PWM Controller with I²C Interface Control for IMVP9.2 CPU Core Power Supply

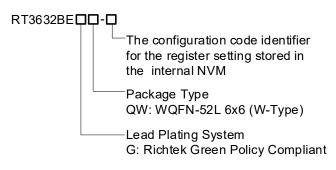
General Description

The RT3632BE is an IMVP9.2 compliant CPU power controller which includes three voltage rails: a 2-phase synchronous buck controller for VCCCORE VR, a 2phase synchronous buck controller for VCCGT VR, and a 1-phase synchronous buck controller for VCCSA VR. The output of each rail can be configured to support the desired phase assignments up to a maximum phase count of 5 phases for VCCCORE, 2 phases for VCCGT and 1 phase for VCCSA. For example, the RT3632BE supports output operations of 2+2+1, 2+1+1, 1+1+1, etc. The RT3632BE adopts the Smart Phase Management (SPM) feature, to achieve maximum efficiency in all load range. Thresholds for automatic phase add/drop are user-programmable using I²C protocol interface. The RT3632BE adopts G-NAVPTM (Green Native AVP), which is Richtek's proprietary topology derived from finite DC gain of EA amplifier with current mode control, making it easy to set the droop to meet all Intel CPU requirements of AVP (Adaptive Voltage Positioning). Based on the G-NAVPTM topology, the RT3632BE features a new generation of quick response mechanism (Adaptive Quick Response, AQR) to optimize AVP performance during load transient and reduce output capacitors. The RT3632BE supports mode transition function with various operating states. A serial VID (SVID) interface is built in to communicate with Intel IMVP9.2 compliant CPU. The RT3632BE offers built-in non-volatile memory (NVM) for platform setting functions, such as ICCMAX, switching frequency or AQR trigger level. The RT3632BE provides VR ready output signals. It also features complete fault protection functions including overvoltage (OV), overcurrent (OC), undervoltage (UV) and undervoltage lockout (UVLO). The RT3632BE is available in the WQFN-52L 6x6 footprint package.

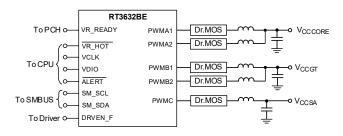
Features


- Intel IMVP9.2 Compliant
- 2/1/0 Phase (VCCCORE VR) + 2/1/0 Phase (VCCGT VR) + 1/0 Phase (VCCSA VR) PWM Controller
- Support Multi-Source Dr.MOS
- Support Phase Doubler RT9637 for CORE Rail Up to 4-Phase Operation
- Support Application of SPS with Current Sensing by Either Current Type or Voltage Type
- Easy-Set G-NAVP[™] (Green Native Adaptive Voltage Positioning) Control
- 0.5% DAC Accuracy
- Differential Remote Voltage Sensing
- Internal Non-Volatile Memory (NVM) to Store
 Custom Configuration
- Accurate Current Balance
- Diode Emulation Mode at Light Load Condition
- Fast Transient Response-Adaptive Quick Response (AQR)
- VR Ready Indicator
- Current Monitor Output
- Protection Flag for OVP, OCP, UVP
- Support Fast V-Mode (FVM)
- Switching Frequency Setting
- Slew Rate Setting
- DVID Enhancement
- Audio Noise Suppress Function
- Zero Load-Line
- Standard I²C Protocol Interface
 - ► Smart Phase Management (SPM) Adjustment
 - Thermal Balance Adjustment
- Junction Temperature Range: –40°C to 125°C

Applications


- IMVP9.2 Intel Core Supply
- Notebook/Desktop Computer
- AVP Step-Down Converter

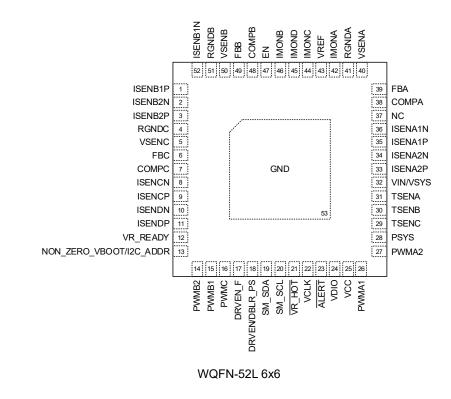
Simplified Application Circuit


Ordering Information

Note:

Richtek products are Richtek Green Policy compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.

Pin Configuration



Marking Information

RT3632BE GQW
YMDNN
•

RT3632BEGQW: Product Code YMDNN: Date Code

(TOP VIEW)

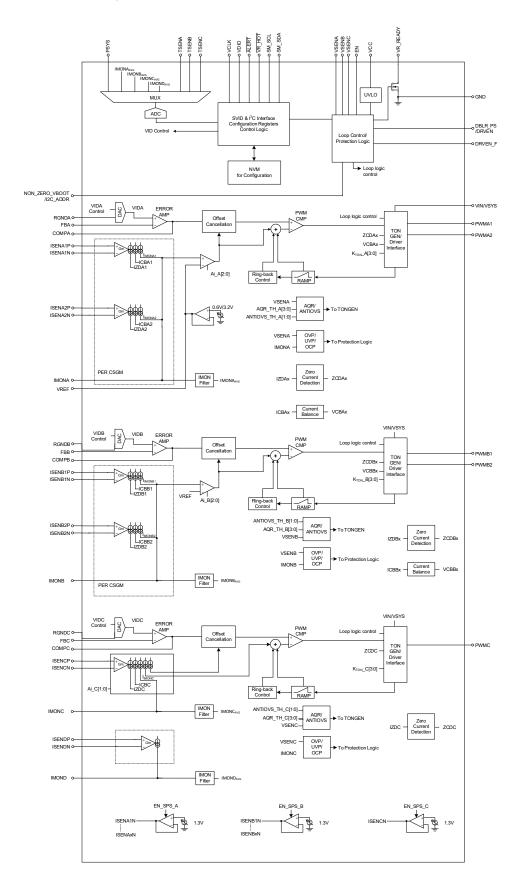
 Copyright © 2023 Richtek Technology Corporation. All rights reserved.
 RICHTEK
 is a registered trademark of Richtek Technology Corporation.

 www.richtek.com
 DS3632BE-00
 August 2023

Functional Pin Description

Pin No	Pin Name	Pin Function
1	ISENB1P	Positive input of current-sense amplifier of phase 1 for Rail B. Connecting this pin to 5V disables Rail B.
2	ISENB2N	Negative input of current-sense amplifier of phase 2 for Rail B.
3	ISENB2P	Positive input of current-sense amplifier of phase 2 for Rail B. Connecting this pin to 5V disables phase 2 of Rail B.
4	RGNDC	Return ground for Rail C VR. This pin is the negative node of the differential remote voltage sensing.
5	VSENC	Rail C VR voltage sense input. This pin is connected to the terminal of Rail C VR output voltage.
6	FBC	Negative input of the error amplifier. This pin is for Rail C VR output voltage feedback to controller.
7	COMPC	Rail C VR compensation. This pin is an error amplifier output pin.
8	ISENCN	Negative input of current-sense amplifier for Rail C.
9	ISENCP	Positive input of current-sense amplifier for Rail C. Connecting this pin to 5V disables Rail C.
10	ISENDN	Negative input of current-sense amplifier for Rail D.
11	ISENDP	Positive input of current-sense amplifier for Rail D.
12	VR_READY	VR ready indicator.
13	NON_ZERO_VBOOT /I2C_ADDR	The NON_ZERO_VBOOT/I2C_ADDR pin can enable non-zero VBOOT function, in which the default voltage is set by the SD_GD_VID register. Select the I ² C slave address from 0x20 to 0x23 by connecting the resistor between this pin and GND. To enable the non-zero VBOOT for soldering check, connect the NON_ZERO_VBOOT/I2C_ADDR pin to 5V and pull the EN high. If the soldering is good, rail outputs are non-zero VBOOT. To select the I ² C slave address, connect the resistor in range of 1k Ω to 5.76k Ω , 15.8k Ω to 26.7k Ω , 46.4k Ω to 68.1k Ω and 107k Ω to 130k Ω between this pin and GND for I ² C slave address of 0x20, 0x21, 0x22 and
14	PWMB2	PWM output of phase 2 for Rail B. The PWM tri-state level can be set from 1.16V to 2.2V by the register of 0x24.
15	PWMB1	PWM output of phase 1 for Rail B. The PWM tri-state level can be set from 1.16V to 2.2V by the register of 0x24.
16	PWMC	PWM output of Rail C. The PWM tri-state level can be set from 1.16V to 2.2V by the register of 0x24.
17	DRVEN_F	External driver mode control and the output high state is VCC. This pin will be high state when PS0~PS3 command is received and be floating state when PS4 command is received. For discrete power MOSFET driver application, connecting $100k\Omega$ resister to GND is required.

RICHTEK is a registered trademark of Richtek Technology Corporation.


Pin No	Pin Name	Pin Function
18	DRVEN/DBLR_PS	The DRVEN/DBLR_PS pin can be configured as driver enable pin (DRVEN) or phase doubler power state pin (DBLR_PS) by the configuration register. As DRVEN pin for the external driver mode control, this pin will be high state when PS0~PS3 command is received and be low state when PS4 command is received. The output high state is VCC. As DBLR_PS, which is an external driver mode control when receiving PS4 command, this pin will be in high state. This pin can work with RT9637 on 1 PWM drive 2 power stage. As PS0 command is received, this pin will be in low state. As PS1 command is received, this pin will be in floating state. As PS2/3 command is received, this pin will be in high state.
19	SM_SDA	Data line for the I^2C interface. If the I^2C communication is not used, connect the SM_SDA and SM_SCL pins to higher than 3.3V to achieve power saving.
20	SM_SCL	Clock input for the I^2C interface. If the I^2C communication is not used, connect the SM_SDA and SM_SCL pins to higher than 3.3V to achieve power saving.
21	VR_HOT	Thermal monitor output. (Active low).
22	VCLK	Synchronous clock from the CPU.
23	ALERT	SVID alert. (Active low)
24	VDIO	VR and CPU data transmission interface.
25	VCC	Controller power supply. Connect this pin to 5V and place a RC filter, R= 1Ω and C = 4.7μ F. The decoupling capacitor should be placed as close to PWM controller as possible. The recommended size of Rvcc is 0603.
26	PWMA1	PWM output of phase 1 for Rail A. The PWM tri-state level can be set from 1.16V to 2.2V by the register of 0x24.
27	PWMA2	PWM output of phase 2 for Rail A. The PWM tri-state level can be set from 1.16V to 2.2V by the register of 0x24.
28	PSYS	System input power monitor. Place the PSYS resistor as close to the IC as possible. The PSYS function can be disabled by pulling the voltage at the PSYS pin > (VCC $- 0.5$ V).
29	TSENC	Thermal sense input for Rail C.
30	TSENB	Thermal sense input for Rail B.
31	TSENA	Thermal sense input for Rail A.
32	VIN/VSYS	Input voltage pin. Connect a low pass filter of which time constant is at the switching frequency to this pin for setting on-time.
33	ISENA2P	Positive input of current-sense amplifier of phase 2 for Rail A. Connecting this pin to 5V can disable phase 2 of Rail A.
34	ISENA2N	Negative input of current-sense amplifier of phase 2 for Rail A.
35	ISENA1P	Positive input of current-sense amplifier of phase 1 for Rail A. Connecting this pin to 5V disables Rail A.
36	ISENA1N	Negative input of current-sense amplifier of phase 1 for Rail A.
37	NC	No internal connection.
38	COMPA	Rail A VR compensation. This pin is an error amplifier output pin.

RT3632BE

Pin No	Pin Name	Pin Function					
39	FBA	Negative input of the error amplifier. This pin is for Rail A VR output voltage feedback to controller.					
40	VSENA	Rail A VR voltage sense input. This pin is connected to the terminal of Rail A VR output voltage.					
41	RGNDA	Return ground for Rail A VR. This pin is the negative node of th differential remote voltage sensing.					
42	IMONA	Rail A VR current monitor output for controller. This pin outputs a voltage proportional to the output current.					
43	VREF	Fixed 0.6V output reference voltage. This voltage is used to offset the output voltage of all IMON pins. When the controller shuts down or sets all rails in PS4, voltage source shuts down. An exact 0.47μ F decoupling capacitor and a 3.9Ω resistor must be placed between this pin and GND.					
44	IMONC	Rail C VR current monitor output for controller. This pin outputs a voltage proportional to the output current.					
45	IMOND	Rail D VR current monitor output for controller. This pin outputs a voltage proportional to the output current.					
46	IMONB	Rail B VR current monitor output for controller. This pin outputs a voltage proportional to the output current.					
47	EN	VR enable control input.					
48	СОМРВ	Rail B VR compensation. This pin is an error amplifier output pin.					
49	FBB	Negative input of the error amplifier. This pin is for Rail B VR output voltage feedback to controller.					
50	VSENB	Rail B VR voltage sense input. This pin is connected to the terminal of Rail B VR output voltage.					
51	RGNDB	Return ground for Rail B VR. This pin is the negative node of the differential remote voltage sensing.					
52	ISENB1N	Negative input of current-sense amplifier of phase 1 for Rail B.					
53 (Exposed Pad)	GND	Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.					

Functional Block Diagram

RT3632BE

Absolute Maximum Ratings (Note 1)

VIN/VSYS to GND	
VCC to GND	
VDIO, VCLK, ALERT to GND	
DC	
< 10ns	
• RGNDA/B/C to GND	
Other Pins	
Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	−65°C to 150°C

ESD Rating (Note 2)

• +	BM ((Human Body	/ Model)		2k'	V
-----	------	-------------	----------	--	-----	---

Recommended Operating Conditions (Note 3)

VIN/VSYS to GND	4.5V to 24V
Supply Input Voltage, VCC	4.5V to 5.5V
Junction Temperature Range	40°C to 125°C

Thermal Information (Note 4)

• WQFN-52L 6х6, θја	26.5°C /W
• WQFN-52L 6x6, θJC(Top)	6.5°C /W

Electrical Characteristics

(VCC = 5V, typical values are referenced to $T_J = 25^{\circ}C$, Min and Max values are referenced to T_J from $-10^{\circ}C$ to $105^{\circ}C$, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit			
Supply Input	Supply Input								
Supply Voltage	Vcc		4.5	5	5.5	V			
Supply Current	lvcc	EN = H, not switching		10.7		mA			
Supply Current at PS2 DACOFF	Ivcc	EN = H, not switching		4.3		mA			
Supply Current at PS3 DACOFF	Ivcc	EN = H, not switching		1.8		mA			
Supply Current at PS4	IVCC_PS4	EN = H, not switching		69		μA			
Shutdown Current	ISHDN	EN = L		50		μA			
EA Amplifier	EA Amplifier								
DC Gain	ADC	RL = 47kΩ	70			dB			
Gain-Bandwidth Product	Gвw	CLOAD = 5pF		10		MHz			

Para	meter	Symbol	Test Conditions	Min	Тур	Max	Unit
Slew Rate		SREA	$C_{LOAD} = 10 \text{pF}$ (Gain = -4, Rf = 47k Ω , V _{OUT} = 0.5V to 3V)		5		V/μs
Output Voltage	e Range	VCOMP	$R_L = 47k\Omega$	0.3		3.6	V
Maximum Sou Current		IOUTEA	V _{COMP} = 2V		5		mA
Current Sens	ing Amplifier (Rail A/B/C/D)					
Impedance at	Positive Input	RISENXP		1			MΩ
CS Input Volta	ige	Vcsin	Differential voltage range of DCR sense. (V _{CSIN} = Inductor current x DCR x DCR divider)	-10		80	mV
Current Sense	Gain Error	Amirror	Internal current mirror gain of per phase current sense IIMON/ICS,PERx	1.2125	1.25	1.2875	A/A
TON Setting (Rail A/B/C)	1				· · · · · ·	
On-Time Settin	ng	ton	VIN = 19V, VID = 0.9V, KTON = 2		93		ns
Minimum Off-7	ſime	tOFF	VID = 1V under PS1 condition		130	300	ns
Minimum On-T	Time	ton(MIN)			50		ns
Protections							
		VUVLO,rise	Rising edge	4.1		4.45	V
Undervoltage Lockout Threshold		VUVLO	Falling edge	3.9		4.2	V
		ΔV uvlo	Rising edge hysteresis	100	170	250	mV
Overvoltage P	rotection	VROVP	Respect to VID voltage, VID >1V	VID + 320	VID + 350	VID + 380	mV
Threshold		VAOVP	$VID \le 1V$	1.3	1.35	1.4	V
Undervoltage Threshold	Protection	Vuv	Respect to VID voltage	-680	-650	-620	mV
VR Enable an	d VR_READY						
VR EN	Logic-High	VIH_EN		0.7			V
Threshold	Logic-Low	VIL_EN				0.3	v
Leakage Curre	ent of EN	ILEAK_EN		-1		1	μA
VR_READY P Voltage	ull Low	VVR_READY	IVR_READY = 10mA			0.13	V
Serial VID and	d VR_HOT						
VCLK, VDIO	Logic-High	VIH_SVID		0.65			V
Input Voltage	Logic-Low	VIL_SVID				0.45	V
Leakage Curre VDIO, ALER VR_HOT		ILEAK_SVID		-1		1	μA

RT3632BE

Par	ameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
		Vol_vdio	Ivdio = 10mA			0.13	
Output Voltage Low of VDIO / ALERT / VR HOT		Vol_alert	I _{ALERT} = 10mA			0.13	V
		Vol_vrhot	IVRHOT = 10mA			0.13	
I ² C Interface)	1		1	1		
	Logic-High	VIH_I2C		1			
SCL, SDA	Logic-Low	VIL_I2C				0.6	V
Standard/Fa	st Mode	1					
			Standard mode			100	
SCL Clock R	ate	fscl	Fast mode			400	kHz
	epeated) Start ter this period, pulse is	thd_sta		0.6			μs
Low Period C	Of the SCL Clock	tLOW		1.3			μs
High Period (Clock	Of the SCL	tніgн		0.6			μs
	for a Repeated lition	ts∪_sta		0.6			μs
		thd_dat	Standard mode	0			μs
Data Hold Tir	ne		Fast mode	0		0.9	
Data Sat Un	Time	1011 5 17	Standard mode	250			2
Data Set-Up	Time	tsu_dat	Fast mode	100			ns
Set-Up Time Condition	for STOP	ts∪_sтo		0.6			μs
	ne Between a TART Condition	tBUF		1.3			μs
	of Both SDA and		Standard mode			300	
SCL Signals		tR	Fast mode	20		300	ns
Falling Time	of Both SDA	1_	Standard mode			300	ns
and SCL sigr		t⊨	Fast mode	20		300	
SDA Output I Current	Low Sink	Iol	SDA voltage = 0.4V	2			mA
VREF					1		
VREF Voltag	е	VREF	Normal operation	0.59	0.6	0.61	V
VREF SPS V	/oltage	VREF_SPS	Normal operation (ISEN1N)	1.2	1.3	1.4	V

Copyright © 2023 Richtek Technology Corporation. All rights reserved. www.richtek.com

9

RICHTEK

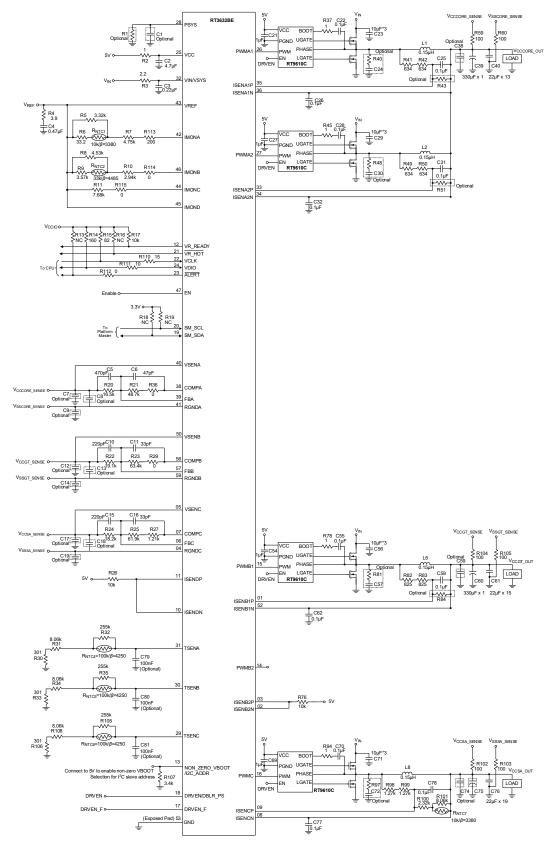
Paran	neter	Symbol	Test Conditions	Min	Тур	Max	Unit		
ADC									
					$V_{IMON} - V_{REF} = 0.8V @$ $ICCMAX \ge 80A$				
Digital IMON	Rail A/B/C	d∨IMON _ICCMAX	$V_{IMON} - V_{REF} = 0.4V$ @ 40A \leq ICCMAX < 80A		255		Decimal		
Set			V _{IMON} – V _{REF} = 0.2V @ ICCMAX < 40A						
	Rail D	d∨IMON _ICCMAX	VIMON-VREF = 1.6V		255		Decimal		
PSYS Maximur Voltage	m Input	PSYS	Vpsys = 1.6V		255		Decimal		
VSYS Maximur Voltage	n Input	VSYS	VIN/VSYS = 24V		255		Decimal		
Average Period	l of IMON	timon			150		μs		
Average Period	l of TSEN	TSEN			600		μs		
Thermal Monit	or								
TSEN Voltage Pull Low VR_I (Asserts VR_I	НОТ		Falling	1.105	1.112	1.124	V		
TSEN Voltage Threshold to Pull High VR_HOT (De- Asserts VR HOT)		VTSEN for negative temperature coefficient	Rising	1.147	1.154	1.166	V		
TSEN Rises (Voltage Down) to pull Low ALERT			ALERT = Low	1.147	1.154	1.166	V		
TSEN Down (Voltage Up) to pull Low ALERT			ALERT = Low	1.196	1.201	1.213	V		
TSEN Voltage Pull Low VR_I (Asserts VR_H	НОТ		Falling	1.366	1.376	1.39	V		
TSEN Voltage Threshold to Pull High VR_HOT (De-Asserts VR_HOT) TSEN Rises (Voltage Up) to Pull Low ALERT		VTSEN for positive temperature	Rising	1.39	1.4	1.414	V		
		coefficient	ALERT = Low	1.366	1.376	1.39	V		
TSEN Down (V to Pull Low AL			ALERT = Low	1.342	1.352	1.366	V		
ITSEN									
TSEN Source C	Current	ITSEN	VTSEN = 1.6V	79.2	80	80.8	μA		
Input Power Do	main Disable	Vpsys		VCC			V		
Voltage		vroto		- 0.5			v		

RT3632BE

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
PWM Driving Capability						
PWM Source Resistance	RPWM_SRC			25		Ω
PWM Sink Resistance	Rpwm_snk			10		Ω
PWM Output						
PWMx Output High Level		IOUT = 4mA	VCC - 0.16			V
PWMx Output Low Level		Iout = 4mA			0.08	V

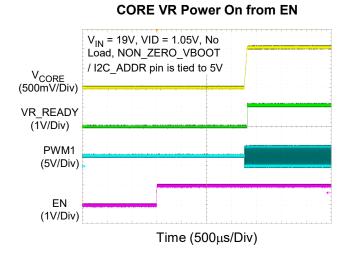
Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

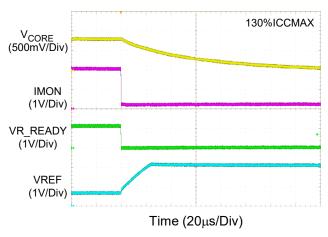
Note 2. Devices are ESD sensitive. Handling precautions are recommended.

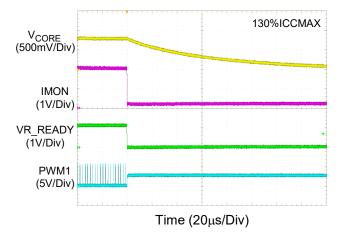

Note 3. The device is not guaranteed to function outside its operating conditions.

Note 4. For more information about thermal parameter, see the Application and Definition of Thermal Resistances report, AN061.

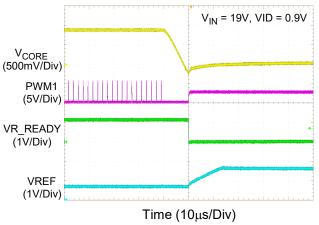
Typical Application Circuit

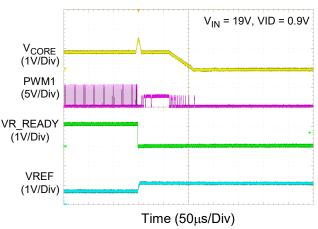

Platform: MTL-H 28W Baseline




Typical Operating Characteristics

CORE VR Power Off from EN V_{IN} = 19V, VID = 1.05V, No Load, NON_ZERO_VBOOT / VR_READY (1V/Div) PWM1 (5V/Div) EN (1V/Div) Time (50µs/Div)


CORE VR OCP



CORE VR OCP

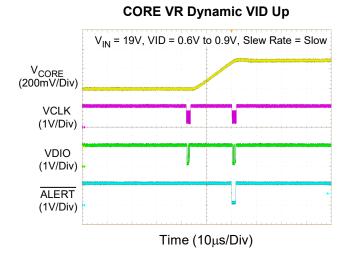
Copyright © 2023 Richtek Technology Corporation. All rights reserved.

V_{CORE} (200mV/Div)

VCLK

(1V/Div)

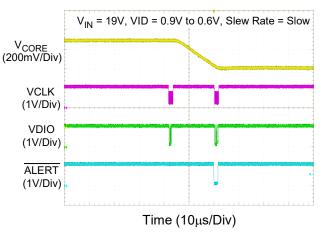
VDIO (1V/Div)


ALERT

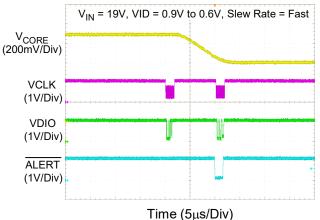
(1V/Div)

PWM2

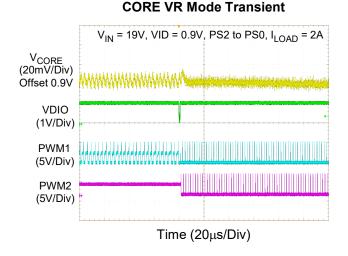
(5V/Div)



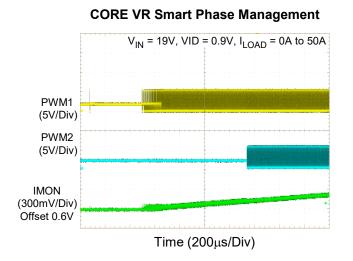
CORE VR Dynamic VID Up


V_{IN} = 19V, VID = 0.6V to 0.9V, Slew Rate = Fast

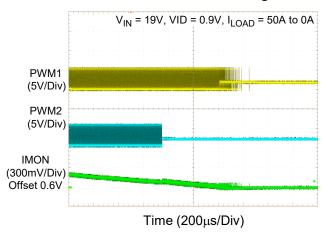
Time (5µs/Div)

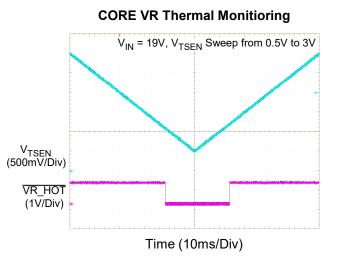


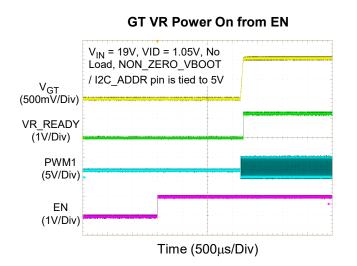
CORE VR Dynamic VID Down

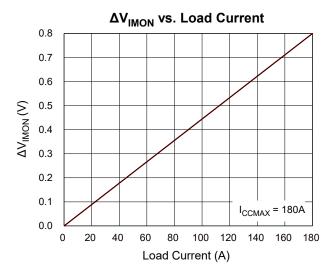


14

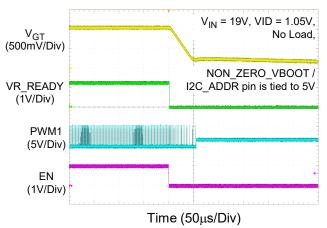

CORE VR Mode Transient V_{IN} = 19V, VID = 0.9V, PS0 to PS2, I_{LOAD} = 2A V_{CORE} (20mV/Div) Offset 0.9V VDIO (1V/Div) PWM1 (5V/Div)

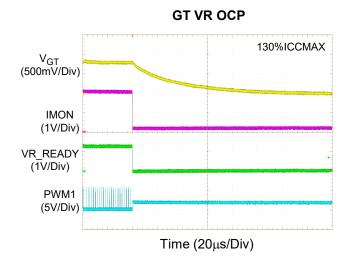

Time (20µs/Div)

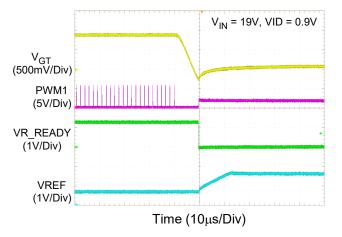


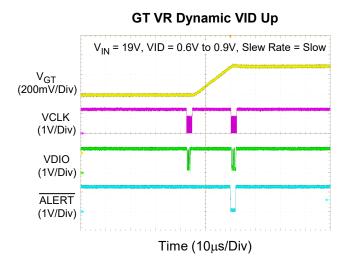


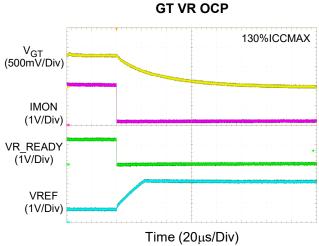
CORE VR Smart Phase Management

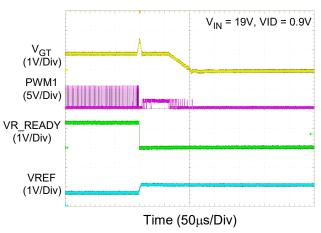


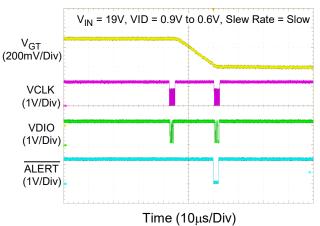

GT VR Power Off from EN

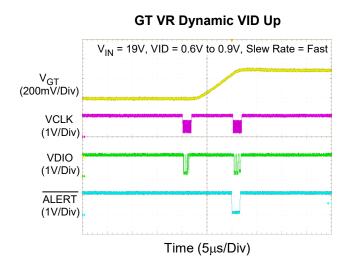

RICHTEK Copyright © 2023 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.

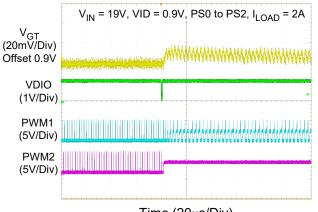




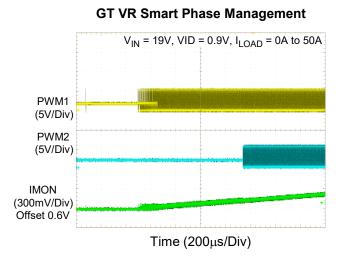


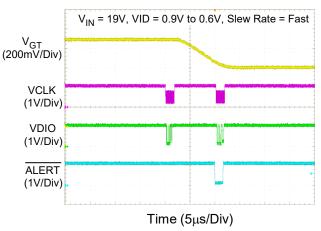


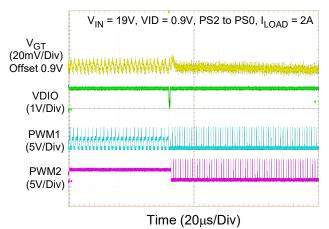


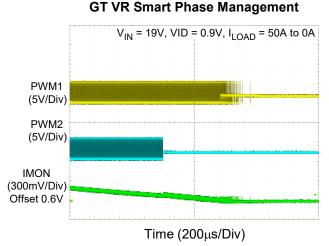

 Copyright © 2023 Richtek Technology Corporation. All rights reserved.
 RICHTEK
 is a registered trademark of Richtek Technology Corporation.

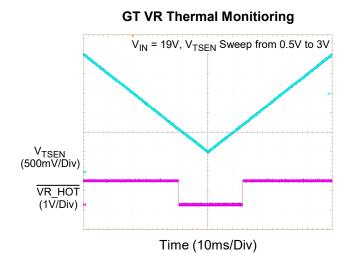
 www.richtek.com
 DS3632BE-00
 August
 2023

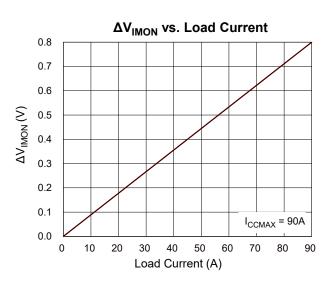


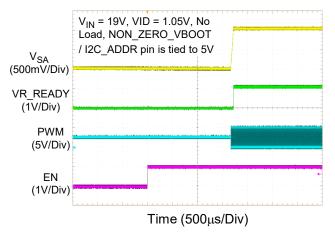

GT VR Mode Transient

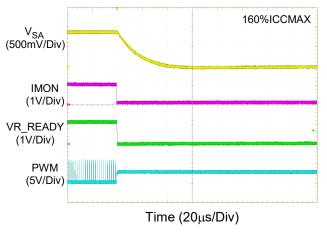

Time (20µs/Div)

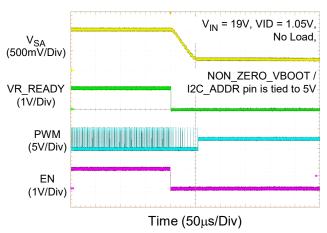


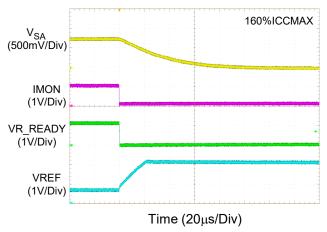

GT VR Mode Transient



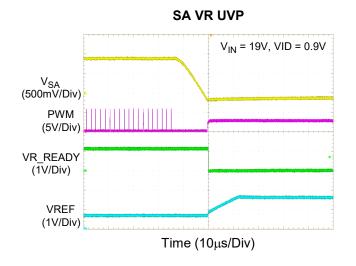


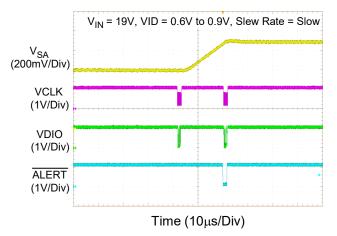


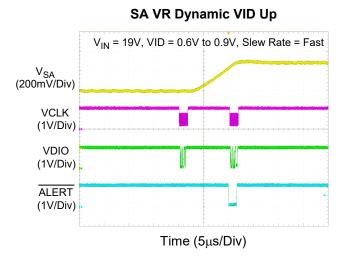

SA VR Power On from EN

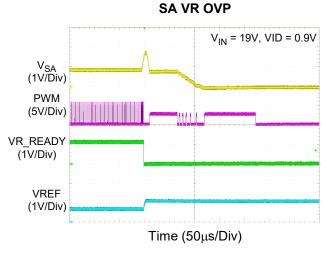


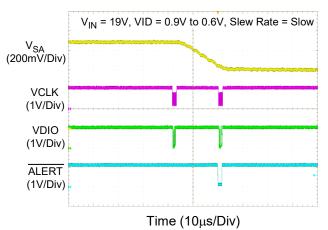
SA VR Power Off from EN

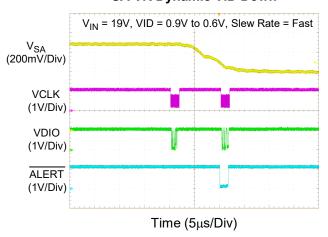





RICHTEK Copyright © 2023 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation. www.richtek.com DS3632BE-00


RT3632BE


SA VR Dynamic VID Up

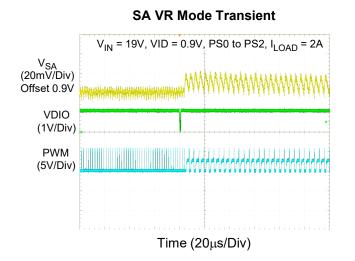


SA VR Dynamic VID Down

SA VR Dynamic VID Down

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

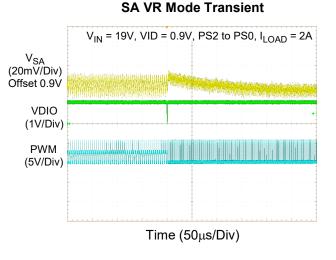
PWM

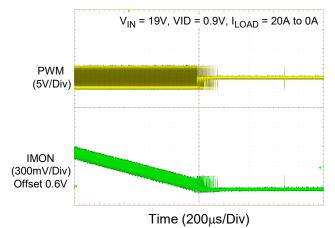

(5V/Div)

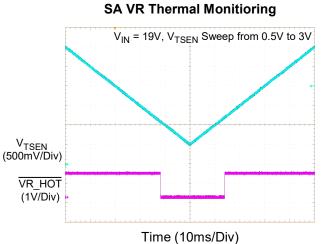
IMON

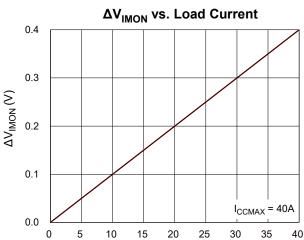
(100mV/Div)

Offset 0.6V




SA VR Smart Phase Management


Time (200µs/Div)


 V_{IN} = 19V, VID = 0.9V, I_{LOAD} = 0A to 20A

SA VR Smart Phase Management

Load Current (A)

Copyright © 2023 Richtek Technology Corporation. All rights reserved.	RICHTEK	is a registered trademark of Richtek Technology Co	rporation.	
www.richtek.com		DS3632BE-00	August	2023
<u></u>				

Operation

G-NAVPTM Control Mode

The RT3632BE adopts G-NAVPTM (Green Native AVP), which is Richtek's proprietary topology. It is derived from current mode constant on-time control with finite DC gain of error amplifier and DC offset cancellation. The topology can achieve easy loadline design and provide high DC accuracy and fast transient response. When sensed current signal reaches sensed voltage signal, the RT3632BE generates a PWM pulse to achieve loop modulation. Figure 1 shows the basic G-NAVPTM behavior waveforms. The COMP signal is the sensed voltage that is inverted and amplified signal of

output voltage. While current loading is increasing, referring to Figure 1, COMP rises due to output voltage droop. Then rising COMP forces PWM to turn on earlier and closely. While inductor current reaches loading current, COMP enters another steady state of higher voltage, and the corresponding output voltage is in the steady state of lower voltage. The loadline, output voltage drooping by an amount proportional to loading current, is achieved.

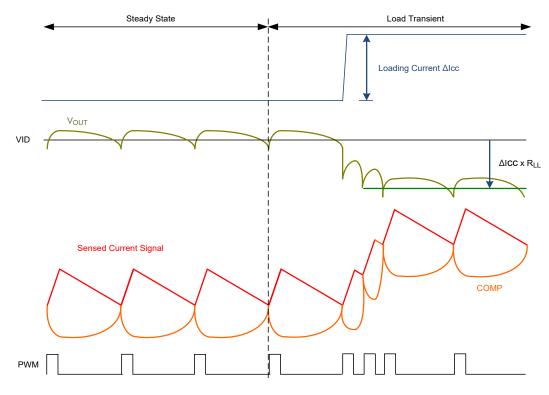


Figure 1. G-NAVP[™] Behavior Waveform

SVID Interface, Control Logic and Configuration Registers

SVID Interface receives or transmits SVID signal from/to CPU. Control Logic executes command (Read/Write registers, SetVID, SetPS) and sends related signals to control VR. Configuration Registers include function setting registers and CPU required registers.

IMON Filter

IMON Filter is used to average current signal by analog low-pass filter. It outputs IMONAVG to the MUX of ADC for current reporting.

MUX and ADC

The MUX supports the inputs of, TSENA, TSENB, TSENC, PSYS, IMONAAVG, IMONBAVG, IMONCAVG and IMONDAVG. The ADC converts these analog signals to digital codes for reporting or function settings.

UVLO

The UVLO detects the VCC voltage. As VCC exceeds threshold, controller issues POR = high and waits EN. After both POR and EN are ready, then controller is enabled.

Loop Control and Protection Logic

It controls power-on/off sequence, protections, power state transition, and PWM sequence.

DAC

The DAC generates a reference VID voltage according to the VID code sent by Control Logic. According to SetVID command, Control Logic dynamically changes VID voltage to target with required slew rate.

ERROR AMP

The ERROR AMP inverts and amplifies the difference between output voltage and VID with externally setting finite DC gain. The output signal is COMP for PWM trigger.

PER CSGM

The PER CSGM senses per-phase inductor current. The outputs are used for loop response, Current Balance, Zero Current Detection, current reporting and overcurrent protection.

SUM CSGM

The SUM CSGM senses total inductor current with RIMON gain adjustment. SUM CSGM output current ratio can also be selected by the configuration registers. It helps wider application range of DCR and load line. SUM CSGM output is used for PWM trigger.

RAMP

The RAMP helps loop stability and transient response.

PWM CMP

The PWM comparator compares COMP signal and sum current signal based on RAMP to trigger PWM.

Offset Cancellation

The offset cancellation is based on VID, COMP voltage and current signal from SUM CSGM to control output voltage accuracy.

Current Balance

Per-phase current sense signal is compared with sensed average current. The comparison result will adjust each phase PWM width to optimize current and thermal balance.

Zero Current Detection

Detect whether each phase current crosses zero current. The result is used for DEM power saving and overshoot reduction (Anti-overshoot Function).

AQR and ANTIOVS

The AQR is a new generation of quick response mechanism (Adaptive Quick Response, AQR) which detects loading rising edge and allows all PWM to turn on. The PWM pulse width triggered by AQR is adaptive to loading level. The AQR trigger level can be set by the configuration registers. ANTIOVS can help overshoot reduction which detects loading falling edge and forces all PWM in tri-state until the zero current is detected.

TONGEN and Driver Interface

The PWM comparator output signal will trigger TONGEN to generate PWM pulse. The PWM sequence is controlled by Loop Control. The PWM pulse width is determined by frequency setting, current balance output and Adaptive Quick Response (AQR) settings. Once AQR is triggered, VR will allow all PWMs to turn on at the same time. Driver Interface provides high/low/tristate to drive external driver. In power saving mode, Driver Interface forces PWM in tri-state to turn off highside and low-side power MOSFETs according to Zero Current Detection output. In addition, PWM state is controlled by Protection Logic. Different protections force required PWM state.

OVP, UVP and OCP

Overvoltage protection/undervoltage protection/ overcurrent protection.

is a registered trademark of Richtek Technology Corporation.

Richtek's component specification does not include the following information in the Application Information section. Thereby no warranty is given regarding its validity and accuracy. Customers should take responsibility to verify their own designs and reserve suitable design margin to ensure the functional suitability of their components and systems.

The RT3632BE includes three voltage rails: a 2-phase synchronous buck controller for VCCCORE VR, a 2phase synchronous buck controller for VCCGT VR, and a 1-phase synchronous buck controller for VCCSA VR. The output of each rail can be configured to support the desired phase assignments up to a maximum phase count of 2 phases for VCCCORE, 2 phases for VCCGT and 1 phase for VCCSA. For example, output operation as a 2+2+1, 2+1+1, 1+1+1 etc, are supported. The RT3632BE is designed to meet Intel IMVP9.2 compatible CPUs specification with a serial SVID control interface. The controller offers Multi-Time Programmable (MTP) built-in non-volatile memory (NVM) and I²C interface to store customized configuration. The RT3632BE is used in notebook computers or desktop computers.

Power-ON Sequence

In order to confirm sufficient power supply for proper operation, the VR triggers UVLO if VCC voltage drops below 4.2V (max). UVLO protection shuts down controller and forces high-side MOSFET and low-side MOSFET off. When VCC > 4.45V (max), RT3632BE issues POR = high and waits for EN signal. After POR = high and EN > 0.7V, controller powers on (Chip Enable = H) and starts VR internal settings, which include internal circuit offset correction and loading the data from the NVM to the configuration registers. It is suggested that the EN signal must be pulled high after the VCC is ready. Users can set multi-functions through the configuration registers by I²C interface. Figure 2 shows the typical timing of controller power-on. Driver power (PVCC) is strongly suggested to be ready after VCC. This can prevent current from flowing back to VCC from PVCC through the PWMx pin or DRVEN/DRVEN F pin.

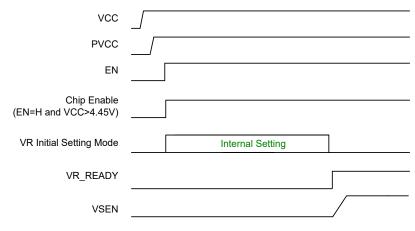


Figure 2. Typical Timing of Controller Power-ON

RT3632BE

Maximum Active Phases Number Setting

The number of active phases is determined by ISENxP voltages. The detection is only active and latched at Chip Enable rising edge (EN = H and VCC > 4.45V). While voltage at ISENxP > (VCC - 0.5V), maximum active phase number is (x-1). For example, pulling ISEN2P to VCC programs a 1-phase operation.

The unused ISENxN pins are recommended to be connect to VCC or be floating for the application with DCR current sensing. The unused PWMx pins are recommended to be floating. Figure 3 shows the example of the 1-phase operation in DCR current sense application. For the smart power stage (SPS) application, the unused ISENxN pins must be floating.

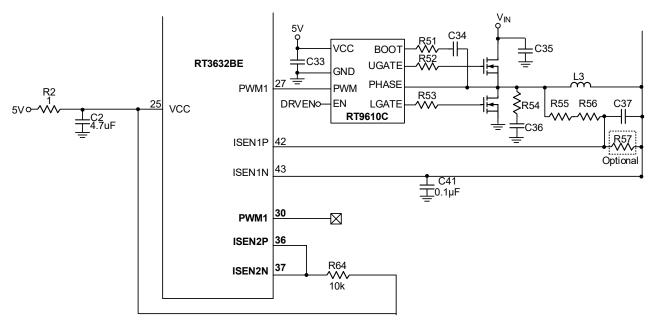


Figure 3. 1-Phase Operation Setting

RICHTEK

Rail Disable

Pulling ISENA1P to VCC disables Rail A. It is recommended to connect the unused ISENAxN pins to VCC, and the unused PWMAx pins can be floating. Pulling ISENB1P to VCC disables Rail B. It is recommended to connect the unused ISENBxN pins to VCC, and the unused PWMBx pins can be floating. Pulling ISENCP to VCC disables Rail C. It is recommended to connect the unused ISENCN pin to VCC, and the unused PWMC pins can be floating. Pulling the unused PWMC pins can be floating. Pulling the PSYS pin to (VCC – 0.5V) disables input power domain rail D. RT3632BE rejects any commands to the input power domain rail. It is recommended to connect the unused ISENDP pin and ISENDN pin to VCC.

Acoustic Noise Suppression

The RT3632BE supports acoustic noise suppression function for reducing acoustic noise induced by piezoelectric effect from MLCC. As output voltage transition occurs, especially in dynamic VID, the vibrating MLCC produces acoustic noise if the vibrating frequency falls into audible band and the noise level is related to the output voltage transition amplitude ΔV .

Therefore, the RT3632BE adopts acoustic noise suppression function which can be enabled through the configuration register by I²C protocol interface to reduce ΔV when SetVID down and SetVID Decay down in DEM mode.

NVM Configuration Mechanism

The RT3632BE provides multiple parameters for platform setting and BOM optimization. These parameters can be set through the configuration registers via I^2C . While POR = high and enable loading NVM command is received, the VR starts loading data from the NVM to the configuration registers and function settings. Once the loading process is done, user configuration and NVM programing are available. Keep EN = L when NVM is programing. When EN > 0.7V, the VR loads the data from NVM again. After loading, VR proceeds internal setting. Figure 4 shows the simplified VR initialization and programing timing diagram. Richtek provides a Microsoft Excel-based design tool for user configuration, including unlocking, page setting and programming, etc. All setting functions are summarized in the section of Functional Register Description.

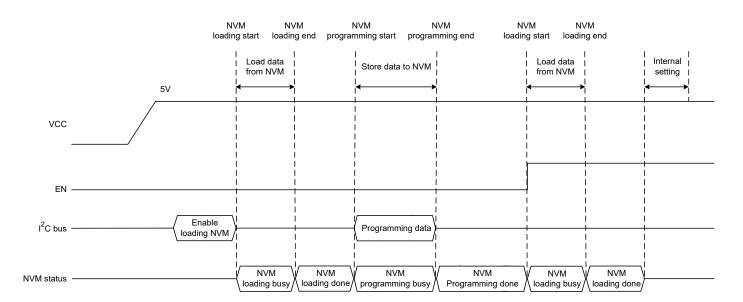


Figure 4. Simplified VR Initialization and Programing Timing Diagram

Copyright © 2023 Richtek Technology Corporation. All rights reserved. www.richtek.com

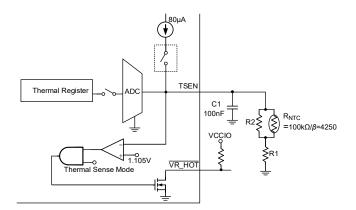
I²C Address Setting

The RT3632BE provides multiple I^2C address to support multiple devices used in I^2C interface. Set the I^2C address (7-bit and 8-bit format) by the 1% tolerance

resistor connected from the pin of NON_ZERO_VBOOT /I2C_ADDR to ground. Resistor value is described in Table 1.

I ² C Address	I ² C Address	dress Resistance (kΩ)		
(7-bit)	(8-bit)	Min.	Тур.	Max.
20	40	1	3.4	5.76
21	42	15.8	21	26.7
22	44	46.4	57.6	68.1
23	46	107	118	130

Thermal Monitoring and Indicator


TSEN pin is available to process thermal monitoring by either NTC thermistor or temperature monitor (TMON) of the smart power stage (SPS).

When NTC thermistor is used as thermal monitoring, TSEN pin voltage = $80\mu A \times (R1+R2)$ which is defined as Thermal Voltage where R2 is the NTC thermistor network to sense temperature as shown in Figure 5. The NTC thermistor is recommended to be placed at the hottest point of the VR, and route the feedback path to the controller in the differential pair. Higher temperature causes smaller R2 and lower Thermal Voltage. According to NTC thermistor temperature curve, design Thermal Voltage v.s Temperature with proper R2 network to meet Intel temperature zone. 100°C. Thermal Voltage = 80µA x (R1 + R2 (100°C) = 1.105V and 97°C. Thermal Voltage = $80\mu A \times (R1 + R2 (97°C))$ = 1.147V must be required. Controller processes the TSEN pin voltage to report to temperature zone register. While the TSEN pin voltage is less than 1.105V, the VR_HOT is pulled low to indicate thermal alert. The signal is an open-drain signal. Thermal Register data is updated every 75µs and average interval is 600µs. The NTC thermistor of the TSEN network is recommend to be $100k\Omega/\beta$ = 4250 with accuracy less than 1% error. The NTC thermistor of the NCP15WF104F03RC from Murata is suggested. Please refer to the design tool for the more detailed calculation.

When thermal monitoring is implemented by TMON of SPS with positive temperature coefficient, the registers of TSEN_SEL_A, TSEN_SEL_B and TSEN_SEL_C need to be selected as positive temperature coefficient

for Rail A, Rail B and Rail C respectively and the TSEN pin operates as an input terminal to receive the TMON output from SPS. The RT3632BE offers the thermal register of 0.6V at 0°C and 1.4 V at 100°C with 8 mV/°C typical slope.

Temp.(°C) =
$$\frac{V_{TMON} - 0.6V}{8mV/°C}$$

System Input Power Monitoring (PSYS)

The RT3632BE provides PSYS function to monitor total platform system power and report to the CPU via SVID interface. The PSYS function is illustrated in Figure 6. PSYS meter measures system input current and outputs a proportional current signal IPSYS. RPSYS is designed for the PSYS voltage = 1.6V with maximum IPSYS for 100% system input power. The PSYS threshold can be set through SVID interface with 1.6V full-scale analog signal for FFh digitized code. If input power is higher than critical threshold, controller asserts \overline{VR} HOT.



Figure 6. PSYS Function Block Diagram

System Input Voltage Monitoring (VSYS)

The RT3632BE provides optional VSYS function to monitor system input voltage. The VSYS threshold can be set through SVID interface and FFh digitized code indicates for 24V input voltage (24V/255 per code). If input voltage is lower than critical threshold, controller asserts \overline{VR} -HOT.

Zero Load-line

The RT3632BE can also support enable zero load-line function. When zero load-line function is enabled, the output voltage is determined only by VID and does not vary with the loading current like load-line system behavior. The RT3632BE adopts AC-droop to effectively suppress load transient ring back and control overshoot for zero load-line application. Figure 7 shows the condition without AC-droop control. The output voltage without AC-droop control has extra ring back Δ V2 due to C area charge. Figure 8 shows the condition with AC-droop control. While loading occurs, controller changes VID target to short-term voltage target temporarily. Short-term voltage target is related to transient loading current Δ Icc and can be represented as the following:

Short_Term_Voltage_Target = VID - Δ ICC x RLL

The setting method of R_{LL} is the same as load-line system. The short-term voltage target reverts to VID target slowly after a period of time. The short-term voltage target can help inductor current not to exceed loading current too much and then the ring back Δ V2 can be suppressed. The overshoot amplitude is reduced to only Δ V3.

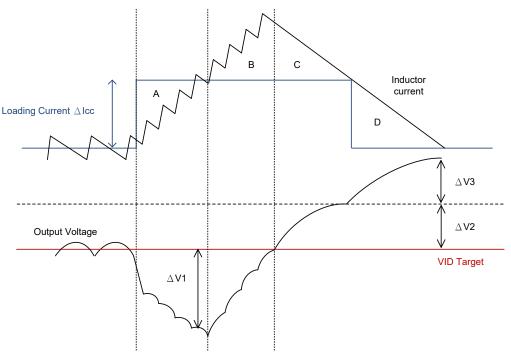


Figure 7. Zero Load-line without AC-droop Control

Copyright © 2023 Richtek Technology Corporation. All rights reserved.	RICHTEK	is a registered trademark of Richtek Technology Co	rporation.	
www.richtek.com		DS3632BE-00	August	2023
00				

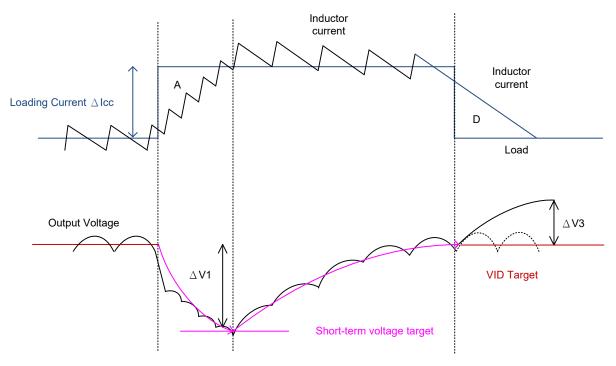


Figure 8. Zero Load-line with AC-droop Control

RICHTEK

Current Sense

RT3632BE supports DCR current sensing report and Smart Power Stage (SPS) current sensing report.

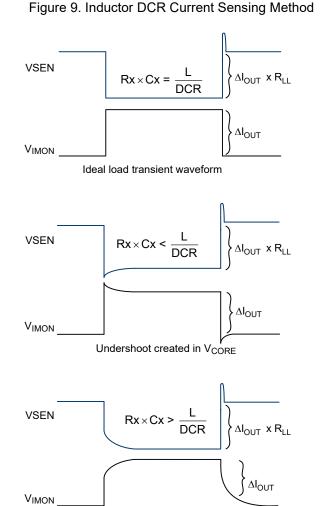
DCR Current Sense

To achieve higher efficiency, the RT3632BE adopts inductor DCR current sensing to get each phase current signal, as illustrated in Figure 9. An external low-pass filter Rx1, Rx2 and Cx reconstruct the current signal. The low-pass filter time constant (Rx1//Rx2) x Cx should match time constant $\frac{L}{DCR}$ of inductance and DCR. It is necessary to fine tune Rx1, Rx2 and Cx for transient performance and current reporting. If RC network time constant matches inductor time constant, an ideal load transient waveform can be designed. If RC network time constant is larger than inductor time constant, VSEN waveform has a sluggish droop during load transient. If RC network is smaller than inductor time constant, VSEN waveform sags to create an undershooting to fail the specification and mis-trigger overcurrent protections (sum OCP). Figure 10 shows the output waveforms according to the RC network time constant. The Rx1 is highly recommended as two 0603 size resistors in series to enhance the IOUT reporting accuracy. The Cx is suggested to be 0.1µF X7R/0603 for low de-rating value at high frequency.

$$I_{CS,PERx} = \frac{V_{CSIN}}{R_{CS}} = \frac{I_{Lx} \times DCR}{R_{CS}}$$

The Rx₂ is optional for prevent VCSIN exceeding current sense amplifier input range. The time constant of

 $(R_{X1}//R_{X2}) \times C_X$ should match $\frac{L}{DCR}$


$$I_{CS,PERx} = \frac{V_{CSIN}}{R_{CS}} = \frac{I_{LX} \times DCR}{R_{CS}} \times \frac{R_{X2}}{R_{X1} + R_{X2}}$$

The current signal ICS,PERx is mirrored for load-line control/current reporting, current balance and zero current. The mirrored current to IMON pin is 1.25 time of ICS,PER,

IIMONX = AMIRROR x ICS, PERx, AMIRROR = 1.25

The current sense lines must be routed as differential pair from the inductor to the controller on the same layer. Proper differential routing of current sense lines will provide accurate current telemetry for current balance, load-line regulation and OCP.

Sluggish droop

 Copyright © 2023 Richtek Technology Corporation. All rights reserved.
 RICHTEK
 is a registered trademark of Richtek Technology Corporation.

 www.richtek.com
 DS3632BE-00
 August
 2023

 30
 30
 2023

RT3632BE

All phase current signals are gathered to the IMON pin and converted to a voltage signal VIMON by RIMON,EQ based on the VREF pin. The VREF pin provides 0.6V voltage source (as presented as VVREF) during normal operation. The relationship between VIMON and inductor current ILx is:

 $V_{IMON} - V_{VREF} = \left(I_{L1} + I_{L2} + ...\right) \times \frac{DCR}{1k\Omega} \times A_{MIRROR} \times R_{IMON,EQ}$

VIMON - VVREF is proportional to output current. VIMON -VVREF is used for output current reporting and load-line loop-control and sum overcurrent protection. For the reporting, VIMON - VVREF is averaged by analog lowpass filter and then coded by 8-bit ADC. The digitized reporting value is scaled as FFh = ICCMAX. The RIMON EQ should be designed so that VIMON - VVREF = VICCMAX while (IL1+IL2+...) = ICCMAX(A) = ICCMAX register value, where VICCMAX setting for each rail is shown below:

For Rail A/B/C,

VICCMAX _ 1.6V for all ICCMAX setting

For load-line loop control, VIMON – VVREF is scaled by Ai, that can be selected by the registers of Ai_A, Ai_B and Ai_C for Rail A, Rail B and Rail C respectively. The detailed application is described in the load-line setting section.

Smart Power Stage (SPS) Current Sensing Report

As SPS current sensing report is used, the registers of CS_SEL_A, CS_SEL_B and CS_SEL_C need to be selected for Rail A, Rail B and Rail C respectively. When the register of CS_SEL_A/B/C is selected as SPS, the ISENxN of each phase will be connected internally and the ISEN1N operates as the output terminal which provides the reference voltage of 1.3V for the reference inputs of the SPS. A capacitor of 0.22 μ F to 1 μ F is suggested to be connected between ISEN1N and GND. Figure 12 shows the implementation of SPS current sensing report. The VIMON and current reporting from SPS can be calculated as:

$V_{\text{IMON}} - V_{\text{VREF}}$

$$= (I_{OUT_SPS1} + I_{OUT_SPS2} + ...) \times \frac{R_{SENSE}}{1k\Omega} \times A_{MIRROR} \times R_{IMON}$$

Figure 11. Total Current Sense Method

Copyright © 2023 Richtek Technology Corporation. All rights reserved.		RICHTEK	is a registered trademark of Richtek Technology Corporation.
DS3632BE-00	August 2023		www.richtek.com

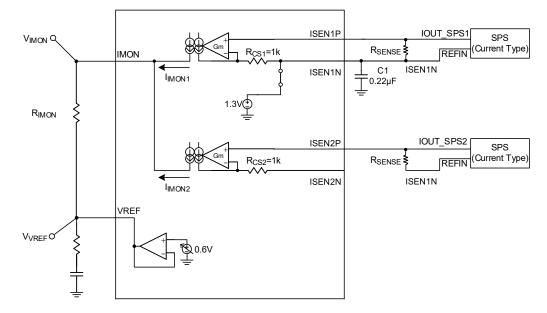


Figure 12. SPS Current Sensing Report

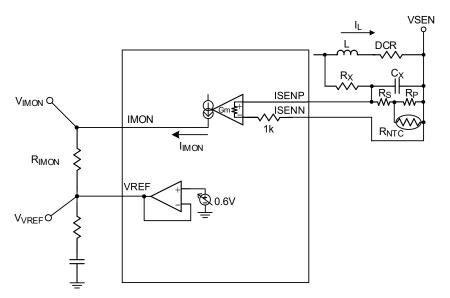


Figure 13. Thermal Compensation method for Single Phase

Thermal Compensation for Current Sense

Since the copper wire of inductor has a positive temperature coefficient, temperature compensation is necessary for the lossless inductor current sense. For single phase thermal compensation, Figure 13 shows a simple and effective way to compensate temperature variation for single-phase operation. An NTC thermistor is added in the current sensing network and is suggested to be placed near the inductor of power stage for compensating DCR variation due to temperature change.

The current sense network equation can be derived below:

 $V_{IMON} - V_{VREF} = I_L \times \frac{DCR}{1k\Omega} \times \frac{R_S + R_P / / R_{NTC}}{R_X + (R_S + R_P / / R_{NTC})} \times A_{MIRROR} \times R_{IMON}$

Please refer to the design tool for the more detailed calculation.

Above thermal compensation method needs an NTC thermistor for each phase. In order to reduce the number of NTC for multi-phase application, the RT3632BE adopts a patented total current sense method that requires only one NTC thermistor for thermal compensation. The NTC resistor is designed within I_{MON} resistor network on IMON pin. It is suggested to be placed near the inductor of the first phase. Figure 11 shows the configuration.

$$\begin{split} &V_{IMON} - V_{VREF} \\ &= (I_{L1} + I_{L2} + ...) \times \frac{DCR}{1k\Omega} \times A_{MIRROR} \\ &\times (R_{IMON1} + R_{IMON2} / / (R_{NTC} + R_{IMON3})) \end{split}$$

Please refer to the design tool for the more detailed calculation.

Load-line Setting (RLL)

An output voltage load-line (Adaptive Voltage Positioning) is specified in CPU VR for power saving and output capacitance reduction. The characteristic of load-line is that the output voltage decreases by an amount proportional to the increasing loading current.

The slope between output voltage and loading current (RLL) is shown in Figure 14. Figure 15 shows the voltage and current loop circuits of the RT3632BE for the load-line control. The detailed equation is described as below

$$R_{LL} = \frac{\text{Current Loop Gain}}{\text{Voltage Loop Gain}}$$
$$= \frac{\text{DCR}}{1 \text{k}\Omega} \times \text{A}_{\text{MIRROR}} \times \text{R}_{\text{IMON,EQ}} \times \frac{\text{A}_{i}}{\frac{\text{R}_{\text{EA2}}}{\text{R}_{\text{EA1}}}} \times \frac{3}{2}$$

, where Ai is current gain and $\frac{R_{EA2}}{R_{EA1}}$ is ERROR AMP gain and suggested to be 1.5~4 for better transient response. R_{LL} can be programmed by Ai which can be selected by the registers of Ai_A, Ai_B and Ai_C for Rail A, Rail B and Rail C respectively, which are all listed in the section of Functional Register Description.

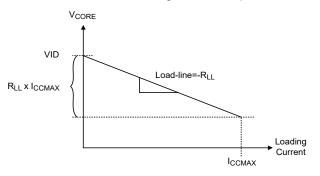


Figure 14. Load-line (Droop)

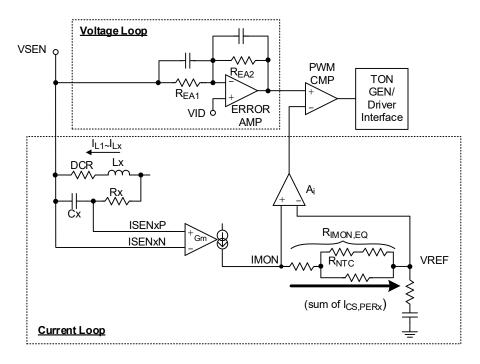


Figure 15. Voltage Loop and Current Loop for Load-line

Dynamic VID (DVID) Compensation

During DVID up transition, an extra current is required to charge output capacitors for the increasing voltage. The charging current approximates to the product of the DVID slew rate and output capacitance. For droop system, the extra charging current induces extra voltage droop so that the output voltage cannot reach the target within the specified time. The extra voltage drop approximates to DVID Up Slew Rate x Output Capacitance x RLL (RLL is the load-line slope, $m\Omega$). This phenomenon is called droop effect. How charging current affects loop is illustrated in Figure 16. The RT3632BE provides the DVID up compensation function as shown in Figure 17. An internal current IDVID LIFT sinks internally from FB pin to generate DVID up compensation, IDVID LIFT x REA1. IDVID LIFT for fast DVID up SR can be set from registers of DVID_LIFT_A, DVID_LIFT_B and DVID_LIFT_C for Rail A, Rail B and Rail C respectively. Compensating magnitude can also be adjusted by REA1. When DAC output reaches the target (ALERT issue timing), inductor current is still high and needs a time to settle down to the DC loading current. In the settling time, the falling down current keeps charging output capacitor (The magnitude is

related with inductor, capacitance and VID). Thus, DVID compensation can be less than DVID Slew Rate x Output Capacitance (capacitance deration should be considered). While output capacitance is so large that DVID compensation cannot cover, adding a resistor and capacitor from FB to GND can also provide similar function. The ERROR AMP compensation (resistance and capacitance network among VSEN, FB and COMP) also affects DVID behavior. The final setting should be based on actual measurement.

As description above, an extra current required to discharge output capacitors for the decreasing voltage during the DVID down transition also affects the output voltage reaching the target within the specified time. How discharging current affects loop is illustrated in Figure 18. The RT3632BE provides the DVID down compensation function as shown in Figure 19. An internal current IDVID_PULL sources internally to generate DVID down compensation, IDVID_PULL x REA1. IDVID_PULL for fast DVID down SR can be set from registers of DVIDDN_PULL_SEL_A, DVIDDN_PULL_SEL_B and DVIDDN_PULL_SEL_C for Rail A, Rail B and Rail C respectively.

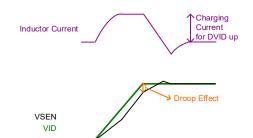


Figure 16. Droop Effect in DVID up Transition

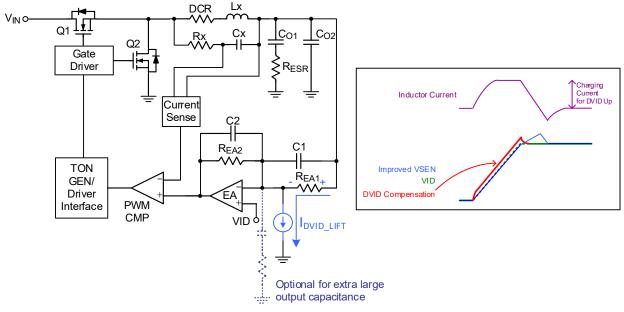


Figure 17. DVID Up Compensation

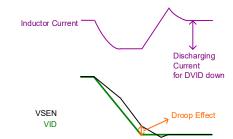
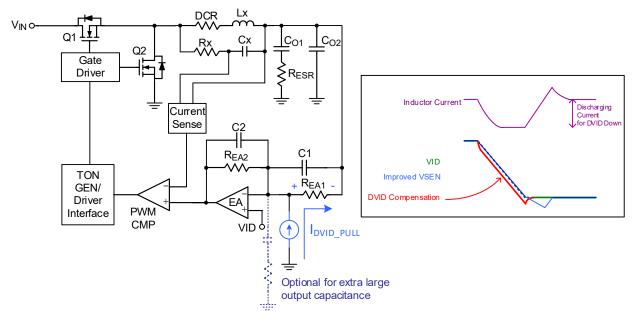
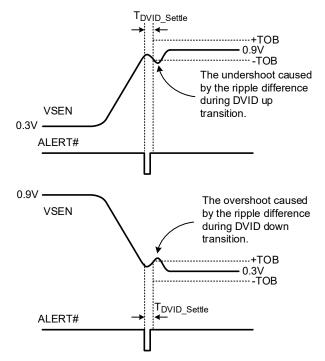
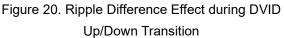



Figure 18. Droop Effect in DVID Down Transition

rved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.


RT3632BE


Ripple Compensation during DVID Transition

For better efficiency, the magnitude of output voltage ripple will be different in low VID and high VID condition due to the frequency control. The ripple difference may affect the output voltage reaching the tolerance band in time during DVID slew up and down caused by the DC offset cancellation mechanism, as shown in Figure 20. The RT3632BE provides the ripple compensation during DVID transition to eliminate the influence of the ripple difference by adding auxiliary compensation current when VID = 0.3V to 0.9V, which is shown in Figure 21. The ripple compensation can be selected from the registers of

SET_RIPPLE_COMP_A, RIPPLE_COMP_DOUBLE_A, SET_RIPPLE_COMP_B, RIPPLE_COMP_DOUBLE_B, SET_RIPPLE_COMP_C,

RIPPLE_COMP_DOUBLE_C for Rail A, Rail B and Rail C respectively.

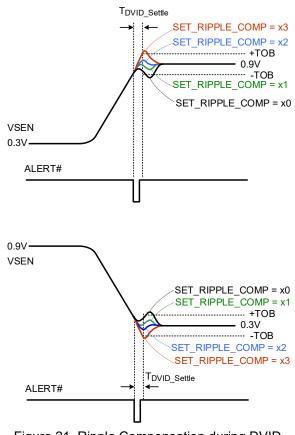


Figure 21. Ripple Compensation during DVID Up/Down Transition

Compensator Design

The compensator of the RT3632BE does not need a complex type II or type III compensator to optimize control loop performance. It can adopt a simple type I compensator (one pole, one zero) in the G-NAVP[™] topology to fine tune ACLL performance. The one pole and one zero compensator is shown in Figure 22. For IMVP9.2 ACLL specification, it is recommended to adjust compensator according to load transient ring back level. Refer to the design tool for default compensator values.

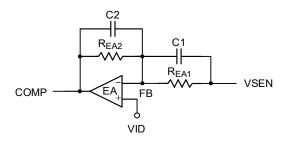


Figure 22. Type I Compensator

Copyright © 2023 Rid	chtek Techno	logy Corporation. All rights reserved.	RICHTEK	is a registered trademark of Richtek Technology Corporation.
DS3632BE-00	August	2023		www.richtek.com

Differential Remote Sense Setting

The VR provides differential remote-sense inputs to eliminate the effects of voltage drops along the PC board traces, CPU internal power routes and socket contacts. The CPU contains on-die sense pins, VCC_SENSE and VSS_SENSE. The related connection is shown in Figure 23. The VID voltage (DAC) is referenced to RGND to provide accurate voltage at remote CPU side. While CPU is not mounted on the system, two resistors of typical 100Ω are required to provide output voltage feedback.

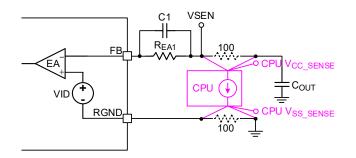


Figure 23. Remote Sensing Circuit

Switching Frequency Setting

The RT3632BE G-NAVPTM (Green Native AVP) topology is a current-mode constant on-time control. It generates an adaptive toN (PWM) with input voltage (VIN) for better line regulation. The toN is also adaptive to VID voltage to achieve constant frequency concept. The constant switching frequency operation makes the thermal estimation easy. The RT3632BE provides a parameter setting of KTON to design TON width. KTON is set by registers of KTON_A, KTON_B and KTON_C for Rail A, Rail B and Rail C respectively. The related setting table is listed in Table 2.

The equations of ton are listed as below:

$$VID \ge 0.9V$$

$$t_{ON} = \frac{VID}{V_{IN} \times 300000 \times K_{TON}} + 14ns$$

$$VID < 0.9V$$

 $t_{ON} = \frac{0.9V}{V_{IN} \times 300000 \times K_{TON}} + 14$ ns

Table 2. Function Setting of KTON						
Address Value	0x15 [7:4]	0x15 [3:0]	0x16 [7:4]			
0000	KTON_A = 1	KTON_B = 1	KTON_C = 1			
0001	KTON_A = 1.25	KTON_B = 1.25	KTON_C = 1.25			
0010	KTON_A = 1.5	KTON_B = 1.5	KTON_C = 1.5			
0011	KTON_A = 1.75	KTON_B = 1.75	KTON_C = 1.75			
0100	KTON_A = 2	KTON_B = 2	KTON_C = 2			
0101	KTON_A = 2.25	KTON_B = 2.25	KTON_C = 2.25			
0110	KTON_A = 2.5	KTON_B = 2.5	KTON_C = 2.5			
0111	KTON_A = 2.875	KTON_B = 2.875	KTON_C = 2.875			
1000	Reserved	Reserved	Reserved			
1001	Reserved	Reserved	Reserved			
1010	KTON_A = 3	KTON_B = 3	KTON_C = 3			
1011	KTON_A = 3.5	KTON_B = 3.5	KTON_C = 3.5			
1100	KTON_A = 4.25	KTON_B = 4.25	KTON_C = 4.25			
1101	KTON_A = 5	KTON_B = 5	KTON_C = 5			
1110	KTON_A = 5.75	KTON_B = 5.75	KTON_C = 5.75			
1111	KTON_A = 6.75	KTON_B = 6.75	KTON_C = 6.75			

Table 2. Function Setting of KTON

RT3632BE

The switching frequency can be derived from ton as shown below. The losses in the power stage and driver characteristics are considered.

VID: VID voltage

VIN: input voltage

Icc: loading current

N: total phase number

RONHS,max: maximum equivalent of the high-side RDS(ON)

nHS. number of high-side MOSFETs

RONLS,max: maximum equivalent of the low-side RDS(ON)

 $\ensuremath{n_{\text{LS}}}\xspace$ number of low-side MOSFETs.

 $\ensuremath{\text{tD:}}$ summation of the high-side MOSFET delay time and rising time

tonvar: on-time variation value

DCR: the inductor DCR

RLL: loadline setting (Ω).

Adaptive Quick Response (AQR)

The RT3632BE adopts Adaptive Quick Response (AQR) to optimize transient response. The mechanism is illustrated in Figure 24. Controller detects output voltage drop slew rate. While the slew rate exceeds the AQR threshold, all PWMs turn on for 53.3% of ton. In multiphase operation, the AQR threshold can be selected through registers of MULTI-PH QR A and MULTI-PH QR B for Rail A and Rail B. In single-phase operation, the AQR threshold can be selected through registers of 1-PH QR A and 1-PH QR B for Rail A and Rail B. The AQR threshold are listed in Table 3 and Table 4. The following equation can initially decide the AQR starting trigger threshold. Note that the threshold should be larger than steady-state output voltage ripple falling slew rate and also the overshoot falling slew rate to avoid the accidental trigger of AQR.

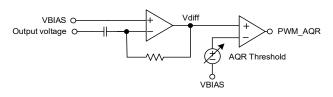


Figure 24. Adaptive Quick Response Mechanism

Anti-overshoot (ANTI-OVS)

The RT3632BE provides anti-overshoot function to suppress output voltage overshoot. Controller detects overshoot by signals related to output voltage. The overshoot trigger level can be adjusted by registers of ANTI-OVS_TH_A, ANTI-OVS_TH_B and ANTI-OVS_TH_C for Rail A, Rail B and Rail C rail respectively. The main detecting signal comes from COMP. However, COMP characteristic varies with compensation. Initial trigger level setting is based on the following equation:

$$\triangle COMP \times \frac{4}{3} = \triangle VSEN \times \frac{R_{EA2}}{R_{EA1}} \times \frac{4}{3} > Anti-OVS \text{ threshold}$$

The final setting should be determined according to actual Error AMP compensator design and measurement.

While overshoot exceeds the set trigger level, all PWMs keep in tri-state until the zero current is detected or VSEN returns to normal level. Turning off LGs forces positive current flow through body diode to cause diode forward voltage drop. The extra forward voltage can speed up inductor current discharge and decrease overshoot.

	RICHTEK
TI-PH_QR	
	0.40 (7.4)

Table 3. Function Setting of MULTI-PH_QR						
Address Value	0x1B [7:4]	0x1C [7:4]				
0000	MULTI-PH_QR_A = 320	MULTI-PH_QR_B = 320				
0001	MULTI-PH_QR_A = 480	MULTI-PH_QR_B = 480				
0010	MULTI-PH_QR_A = 640	MULTI-PH_QR_B = 640				
0011	MULTI-PH_QR_A = 800	MULTI-PH_QR_B = 800				
0100	MULTI-PH_QR_A = 960	MULTI-PH_QR_B = 960				
0101	MULTI-PH_QR_A = 1120	MULTI-PH_QR_B = 1120				
0110	MULTI-PH_QR_A = 1280	MULTI-PH_QR_B = 1280				
0111	Reserved	Reserved				
1000	Reserved	Reserved				
1001	Reserved	Reserved				
1010	Reserved	Reserved				
1011	Reserved	Reserved				
1100	MULTI-PH_QR_A = 1440	MULTI-PH_QR_B = 1440				
1101	MULTI-PH_QR_A = 1600	MULTI-PH_QR_B = 1600				
1110	MULTI-PH_QR_A = 1760	MULTI-PH_QR_B = 1760				
1111	MULTI-PH_QR_A = Disable	MULTI-PH_QR_B = Disable				

Table 4. Function Setting of 1-PH_QR

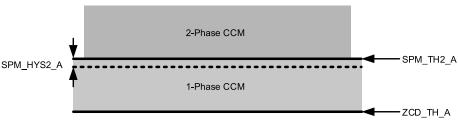
Address Value	0x1B [3:0]	0x1C [3:0]
0000	1-PH_QR_A = 320	1-PH_QR_B = 320
0001	1-PH_QR_A = 480	1-PH_QR_B = 480
0010	1-PH_QR_A = 640	1-PH_QR_B = 640
0011	1-PH_QR_A = 800	1-PH_QR_B = 800
0100	1-PH_QR_A = 960	1-PH_QR_B = 960
0101	1-PH_QR_A = 1120	1-PH_QR_B = 1120
0110	1-PH_QR_A = 1280	1-PH_QR_B = 1280
0111	Reserved	Reserved
1000	Reserved	Reserved
1001	Reserved	Reserved
1010	Reserved	Reserved
1011	Reserved	Reserved
1100	1-PH_QR_A = 1440	1-PH_QR_B = 1440
1101	1-PH_QR_A = 1600	1-PH_QR_B = 1600
1110	1-PH_QR_A = 1760	1-PH_QR_B = 1760
1111	1-PH_QR_A = Disable	1-PH_QR_B = Disable

RT3632BE

ACLL Performance Enhancement

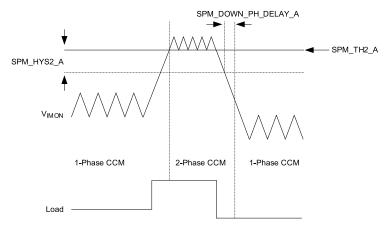
The RT3632BE provides another optional function to improve undershoot by applying a positive offset at loading edge. Controller detects the COMP signal and compares it with steady state. While VCOMP variation exceeds a threshold, an additional positive offset is added to the output voltage. The undershoot suppression (the adaptive ramp) threshold for multiphase operation (PS0) can be set through registers of MULTI-PH AR TH A and MULTI-PH AR TH B for Rail A and B respectively. The undershoot suppression (the adaptive ramp) threshold for single-phase operation (PS1) can be set through registers of 1-PH AR TH A, 1-PH AR TH B and 1-PH AR TH C for Rail A, B and C respectively. The smaller index indicates that the detection is triggered easily. The positive offset is related to the compensation.

The ACLL performance enhancement threshold can approximate to $60 \text{mV} / \frac{\text{VEA2}}{\text{VEA1}}$. In PS0, the slew rate of VRAMP increases when the VCOMP intersects the positive offset in order to send out another on-time earlier to improve undershoot. In PS1, except for the positive offset, an additional 10mV is applied to the DAC and one pulse of PWM is also forced to turn on while the function is triggered. The positive offset is released gradually in about hundred micro-second. Figure 25 and Figure 26 show undershoot suppression behavior in PS0 and PS1. For different platform, the optimized setting is different. The final setting must be based on actual measurement.


Copyright © 2023 Richtek Technology Corporation. All rights reserved.		RICHTEK	is a registered trademark of Richtek Technology Corporation.		
. Г	DS3632BE-00	August	2023		www.richtek.com

RICHTEK

Smart Phase Management (SPM)


The RT3632BE adopts the Smart Phase Management (SPM) to improve light load efficiency and provide the fast phase adding and phase shedding. The SPM function can be enabled and disabled through the NVM registers of EN SPM A, EN SPM B and EN SPM C for Rail A, Rail B and Rail C respectively. The controller compares IMON reporting with threshold and hysteresis of SPM to decide the number of phase adding and phase shedding. The threshold of SPM can be adjusted through the registers of SPM THx A (0x93) and SPM THx B (0x99) for Rail A and Rail B respectively. For example, set the SPM_TH2_A = 20% of ICCMAX_A to drive the 2-phase operation when the IMON reporting is higher than the 25% of ICCMAX of Rail A. The hysteresis of SPM can be adjusted through the registers of SPM HYSx A (0x95) and SPM HYSx B (0x9A) for Rail A and Rail B respectively. For example, set the

SPM HYS2 A = 5% of ICCMAX A with SPM TH2 A = 25% of ICCMAX A to drive the 2-phase operation when the IMON reporting is less than the 20% (SPM TH2 A - SPM HYS2_A) of ICCMAX of Rail A. The controller enters the diode emulation mode (DEM) automatically when the inductor current is lower than the zero current detection threshold (ZCD) when the SPM function is enabled. There is no delay time during phase adding from lower to higher phase number operation. The delay time during the phase shedding from higher to lower phase number operation can be set through the 0x96 [7:6] and 0x9B [7:6] for Rail A and Rail B respectively. In addition to the output current comparison, the RT3632BE provides three events to operate in full phase immediately. One is DVID up, another is DVID down, the other is the AQR function be triggered during transient response. Figure 27 shows smart phase management mechanism.

1-Phase DEM

(b) Phase Adding and Phase Shedding of Smart Phase Management Figure 27. Smart Phase Management Mechanism

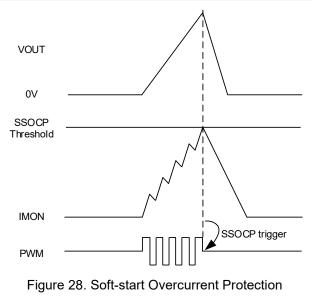
RT3632BE

Soft-start Overcurrent Protection (SSOCP)

The RT3632BE provides soft-start overcurrent protection (SSOCP) during the period of the first-time output ramps up from 0V and 80μ s after it is settled. Figure 28 illustrates the mechanism for SSOCP. When the inductor current exceeds the threshold of SSOCP, the controller will turn off both the high-side and low-side MOSFETs immediately, and de-assert VR_READY. The SSOCP threshold is defined as:

When ICCMAX < 40A

 $\Delta V_{SSOCP} = 200 \text{mV} \cdot \frac{70}{\text{ICCMAX}} \cdot \text{phase number;}$


When $40A \le ICCMAX < 80A$

 $\Delta V_{SSOCP} = 400 \text{mV} \cdot \frac{70}{\text{ICCMAX}} \cdot \text{phase number};$

When ICCMAX ≥ 80A

 $\Delta V_{SSOCP} = 800 \text{mV} \cdot \frac{70}{\text{ICCMAX}} \cdot \text{phase number.}$

After SSOCP event is removed, the controller can be restarted by toggling VCC power or EN pin.

Mechanism

Overcurrent Protection (OCP)

The RT3632BE has sum OCP mechanisms and the threshold of sum OCP for PS0 is defined as:

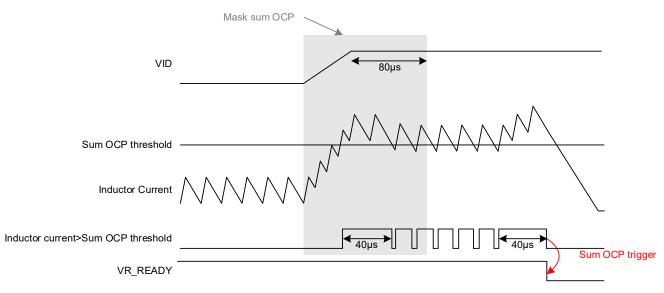
ISUM_OC,PS0

 $= K_{SOCP} \times VIMON_{ICCMAX} \times \frac{1 k\Omega}{DCR} \times \frac{1}{A_{MIRROR}} \times \frac{1}{R_{IMON,EQ}}$ Isum_oc,ps1,2,3 $= K_{SOCP1} \times VIMON_{ICCMAX} \times \frac{1 k\Omega}{DCR} \times \frac{1}{A_{MIRROR}} \times \frac{1}{R_{IMON,EQ}}$

ICCMAX >= 40, K_{SOCP} = 1.3, K_{SOCP1} = $\frac{1.3}{\text{phase number}}$

ICCMAX < 40, $K_{SOCP} = K_{SOCP1} = 1.6$

While RIMON, EQ is designed exactly to meet


VIMONICCMAX

 $= ICCMAX \ registe \ value \times A_{MIRROR} \times \frac{DCR}{1k\Omega} \times R_{IMON,EQ}$

ICCMAX register value = ICCMAX and VIMONICCMAX $_{=}$ 0.2V, 0.4V or 0.8V according to ICCMAX.

Sum OCP threshold can be simplified as ISUM_OC,PS0 _ KSOCP x ICCMAX and ISUM_OC,PS1,2,3 _ KSOCP1 x ICCMAX. Note that the modification of ICCMAX register value cannot change sum OCP threshold.

While inductor current above sum OCP threshold lasts 40μ s, controller de-asserts VR_READY and latches PWM in tri-state to turn off high-side and low-side power MOSFETs. Sum OCP is masked during DVID period plus 80μ s after VID settles. It is also masked when VID = 0V condition.

RT3632BE

Overvoltage Protection (OVP)

The OVP threshold is linked with VID. The classification table is illustrated in Table 5. While VID = 0V, OVP is masked. When VID ramps up from VID = 0V till the first PWM after VID settles, OVP threshold is 2.45V to allow not-fully-discharged VSEN. Otherwise, the OVP threshold is relative to VID and equals to VID+350mV with minimum limit = 1.35V. While VID \leq 1V, the OVP threshold is limited at 1.35V.

The OV protection mechanism is illustrated in Figure 30

and Figure 31. When OVP is triggered with 0.5μ s filter time, controller de-asserts VR_READY and forces all PWMs low to turn on low-side power MOSFETs. PWM remains low until the output voltage is pulled down to below 2.1V for DVID up from 0V and below VID for other conditions. After 60 μ s from OVP trigger, VID starts to ramp down to 0V with slow slew rate. During the period, PWM is not allowed to turn on. Controller controls PWM to be low or tri-state to pull down the output voltage along with VID.

VID Condition	OVP Threshold	Example	Protection Flag	Protection Action	Protection Reset	
VID = 0	OVP is masked.					
DVID up period from 0V to 1st PWM pulse after VID settles	2.45V			VR_READY latched low. The output voltage is pulled down to below 2.1V and then ramps down to 0V.		
DVID period from non-zero VID	VID+350mV if VID >1.0V, 1.35V if VID ≤ 1.0V	VID = 1.2V, OVP threshold = 1.55V VID = 0.9V, OVP threshold = 1.35V	VREF = 1V	VR_READY latched low. The output voltage	VCC/EN Toggle	
VID≠0	VID+350mV if VID >1.0V, 1.35V if VID ≤ 1.0V	VID = 1.2V, OVP threshold = 1.55V VID = 0.9V, OVP threshold = 1.35V		is pulled down to below VID and then ramps down to 0V.		

Table 5. Summary of Overvoltage Protection

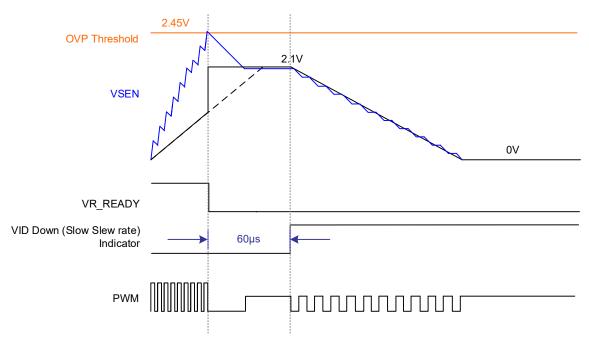
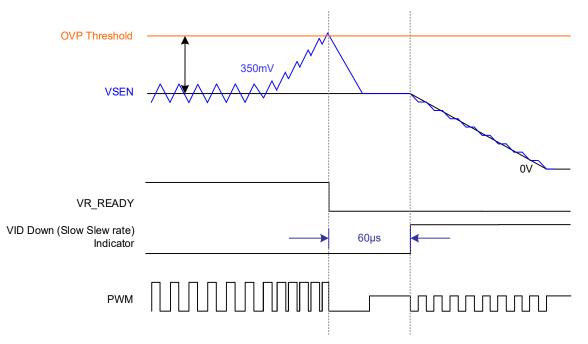



Figure 30. Overvoltage Protection Mechanism for DVID up from 0V

Undervoltage Protection

When the output voltage is lower than VID-650mV with 3μ s filter time, UVP is triggered and VR_READY is deasserted and all PWMs are in tri-state to turn off high-

side and low-side power MOSFETs. UVP is masked during DVID period and 80μ s after VID settles. The mechanism is illustrated in Figure 32.

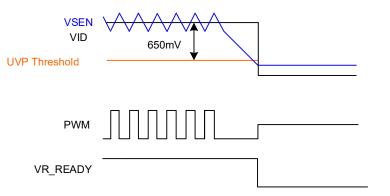


Figure 32. Undervoltage Protection Mechanism

All protections are reset only by VCC/EN toggle. UVP and OCP protections are listed in Table 6. Note that the real filter time also depends on the magnitude of detected signal. The signal magnitude affects analog comparator's overdrive voltage and output slew rate. The RT3632BE provides protection flag to promptly determine which kind of protections is triggered. As protection happens, VREF is forced to be 1V/1.5V/2V for OVP/UVP/SUM_OCP, respectively.

Protection Type	Protection Threshold	Protection Flag	Protection Action	DVID Mask Time	Protection Reset
SSOCP	When ICCMAX< 40A $\Delta V_{SSOCP} = 200 \text{mV} \cdot \frac{70}{\text{ICCMAX}} \cdot \text{phase number};$ When 40A ≤ ICCMAX < 80A $\Delta V_{SSOCP} = 400 \text{mV} \cdot \frac{70}{\text{ICCMAX}} \cdot \text{phase number};$ When ICCMAX ≥ 80A $\Delta V_{SSOCP} = 800 \text{mV} \cdot \frac{70}{\text{ICCMAX}} \cdot \text{phase number}.$	VREF = 2V	PWM tri- state, VR_READY	After the period of the first-time DVID up from 0V and 80μs after it is settled	VCC/EN Toggle
Sum OCP for PS0	$I_{SUM_OC,PS0} = K_{SOCP} \times VIMON_{ICCMAX} \times \frac{R_{CSx}}{DCR} \times \frac{1}{R_{IMON,EQ}}$	VREF = 2V	latched low		loggie
Sum OCP for non PS0	$I_{SUM_OC,PS1,2,3} = K_{SOCP1} \times VIMON_{ICCMAX} \times \frac{R_{CSx}}{DCR} \times \frac{1}{R_{IMON,EQ}}$	VREF = 2V		DVID+80µs	
UVP	VID-650mV	VREF = 1.5V			

Table 6. Summary of UVP and OCP Protection

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature $T_{J(MAX)}$, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

$$PD(MAX) = (TJ(MAX) - TA) / \theta JA$$

where $T_{J(MAX)}$ is the maximum junction temperature, TA is the ambient temperature, and θ_{JA} is the junction-toambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-

ambient thermal resistance, θ_{JA} , is highly package dependent. For a WQFN-52L 6x6 package, the thermal resistance, θ_{JA} , is 26.5°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at TA = 25°C can be calculated as below:

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (26.5^{\circ}C/W) = 3.77W$ for a WQFN-52L 6x6 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curves in Figure 33 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

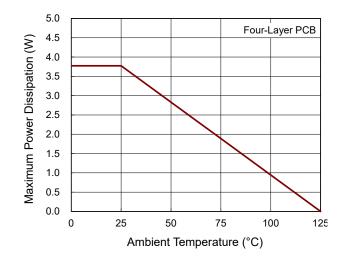
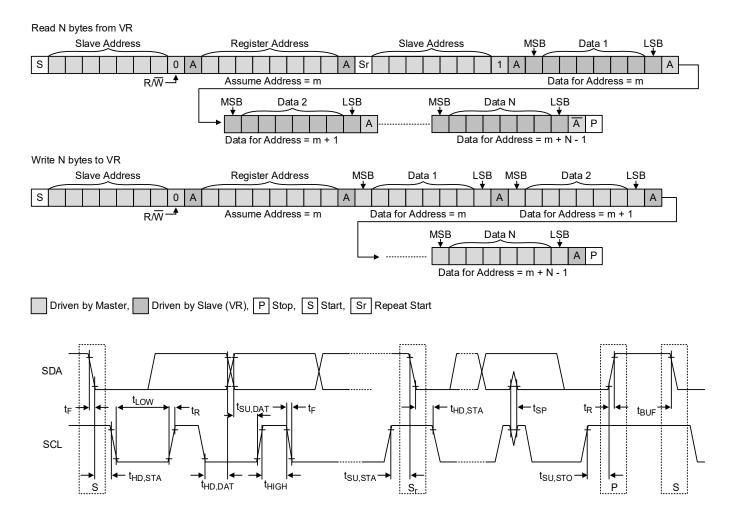


Figure 33. Derating Curve of Maximum Power Dissipation


Copyright © 2023 Richtek Technology Corporation. All rights reserved.

Functional Register Description

The I^2C slave address = $0x20 \sim 0x23$.

This I²C does not have a stretch function.

The I²C interface supports standard slave mode (100kbps), and fast mode (400kbps). The write or read bit stream (N>1) is shown below:

All reserved bit(s) must be kept at their default values.

Table 7. Register List									
Page	Address	Register Name	Default	Туре	Paged	NVM			
0x82	0x00	DVID_COMP_MT_A							
0x82	0x01	DVID_COMP_MT_B	0x94	RW	Yes	Yes			
0x82	0x02	DVID_COMP_MT_C	0x80	RW	Yes	Yes			
0x82	0x03	LGON_RIP_COMP_A	0x81	RW	Yes	Yes			
0x82	0x04	LGON_RIP_COMP_B	0x82	RW	Yes	Yes			
0x82	0x05	LGON_RIP_COMP_C	0xAA	RW	Yes	Yes			
0x82	0x06	MT_FVM_UVP	0x61	RW	Yes	Yes			
0x82	0x07	TSEN_SEL	0x10	RW	Yes	Yes			
0x82	0x08	FVM_NON_OVERLAP	0x00	RW	Yes	Yes			
0x82	0x09	SPM_1PH_AR_AB_SLL_C	0xC7	RW	Yes	Yes			
0x82	0x0A	MT_RIP_COMP_AB	0x20	RW	Yes	Yes			
0x82	0x10	ICCMAX_A	0x50	RW	Yes	Yes			
0x82	0x11	ICCMAX_ADD_VBOOT_SR	0x22	RW	Yes	Yes			
0x82	0x12	ICCMAX_B	0x3B	RW	Yes	Yes			
0x82	0x13	ICCMAX_C	0x23	RW	Yes	Yes			
0x82	0x14	VIDT_0LL	0x00	RW	Yes	Yes			
0x82	0x15	KTON_AB	0x33	RW	Yes	Yes			
0x82	0x16	KTON_C_Ai_AB	0x43	RW	Yes	Yes			
0x82	0x17	Ai_BC_EN_SPM	0xBF	RW	Yes	Yes			
0x82	0x18	DBLR_PH_CS_SEL	0x00	RW	Yes	Yes			
0x82	0x19	ICCMAX_D	0x20	RW	Yes	Yes			
0x82	0x1A	ANTI_OVS_SLL_A	0xD2	RW	Yes	Yes			
0x82	0x1B	QR_TH_A	0x51	RW	Yes	Yes			
0x82	0x1C	QR_TH_B	0xCC	RW	Yes	Yes			
0x82	0x1D	AR_TH_AB	0x19	RW	Yes	Yes			
0x82	0x1E	AR_TH_C_ZCD_AB	0x41	RW	Yes	Yes			
0x82	0x1F	ZCD_C_ICCMAX_ADD_D_SLL_B	0x02	RW	Yes	Yes			
0x82	0x20	LPF_INITIAL_AB	0x16	RW	Yes	Yes			
0x82	0x21	RT_SPS_DBLR_SPM_FVM_HLPF_LPF_INT_C	0x3E	RW	Yes	Yes			
0x82	0x22	DVID_LIFT_AB	0x55	RW	Yes	Yes			
0x82	0x23	 DVID_LIFT_C	0x32	RW	Yes	Yes			
0x82	0x24	PSYS_PWM_TRI_0V_DVID	0x05	RW	Yes	Yes			
0x82	0x25	ACLL LPF_TSEN_POS_OFST_A	0xE0	RW	Yes	Yes			
0x82	0x26	ACLL_LPF_TSEN_POS_OFST_B	0x20	RW	Yes	Yes			
0x82	0x27	ACLL_LPF_TSEN_POS_OFST_C	0x20	RW	Yes	Yes			

RT3632BE

Page	Address	Register Name	Default	Туре	Paged	NVM
0x82	0x28	FVM_CTRL_AB	0x44	RW	Yes	Yes
0x82	0x29	RESERVED	0xF8	RW	Yes	Yes
0x82	0x2A	ZCD_HYS_OFST_C	0xE0	RW	Yes	Yes
0x82	0x2B	EN_RAIL_MAX_PH	0x63	RW	Yes	Yes
0x82	0x2C	SVID_ADDR	0x06	RW	Yes	Yes
0x82	0x2D	LPF_LIMIT_AB	0x8E	RW	Yes	Yes
0x82	0x2E	ZCD_HYS_OFST_A	0x80	RW	Yes	Yes
0x82	0x2F	ZCD_HYS_OFST_B	0x82	RW	Yes	Yes
0x82	0x30	VBOOT_VID_A	0xA1	RW	Yes	Yes
0x82	0x31	SD_GD_VID_A	0xA1	RW	Yes	Yes
0x82	0x32	VBOOT_VID_B	0xA1	RW	Yes	Yes
0x82	0x33	SD_GD_VID_B	0xA1	RW	Yes	Yes
0x82	0x34	VBOOT_VID_C	0xA1	RW	Yes	Yes
0x82	0x35	SD_GD_VID_C	0xA1	RW	Yes	Yes
0x82	0x36	RESERVED	0x00	RW	Yes	Yes
0x82	0x37	RESERVED	0x00	RW	Yes	Yes
0x82	0x38	RESERVED	RESERVED 0x00 RW		Yes	Yes
0x82	0x39	RESERVED 0x00		RW	Yes	Yes
0x82	0x3A	RESERVED	0x00	RW	Yes	Yes
0x82	0x3B	RESERVED	0x00	RW	Yes	Yes
0x82	0x3C	RESERVED	0x00	RW	Yes	Yes
0x82	0x3D	RESERVED	0x00	RW	Yes	Yes
0x82	0x3E	RESERVED	0x00	RW	Yes	Yes
0x82	0x3F	RESERVED	0x00	RW	Yes	Yes
0x82	0x70	SET_FW_VER_LSB	0x01	RW	Yes	Yes
0x82	0x71	SET_FW_VER_MSB	0x00	RW	Yes	Yes
0x82	0x72	RESERVED	0x01	RW	Yes	Yes
0x82	0x73	RESERVED	0x32	RW	Yes	Yes
0x82	0x74	MODEL_ID	0x00	RW	Yes	Yes
0x82	0x7A	RESERVED	0x03	RW	Yes	Yes
0x82	0x7B	RESERVED	0x40	RW	Yes	Yes
0x82	0x7C	RESERVED	0x00	RW	Yes	Yes
0x82	0x7D	RESERVED	0x01	RW	Yes	Yes
0x82	0x7E	CRC _PAGE_GROUP_1	N/A	R	Yes	No
Global	0x90	CBG_A_1	0x92	RW	No	No
Global	0x91	CBG_A_2	0x48	RW	No	No
Global	0x92	SPM_TH_A_1	0x24	RW	No	No
Global	0x93	SPM_TH_A_2	0x7B	RW	No	No

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

Page	Address	Register Name	Default	Туре	Paged	NVM
Global	0x94	SPM_HYS_A_1	0x12	RW	No	No
Global	0x95	SPM_HYS_A_REV_ID	0x48	RW	No	No
Global	0x96	SPM_PH_CTRL_A_GROUP_0_FW_VER	0xC0	RW	No	No
Global	0x97	CBG_B_1	0x92	RW	No	No
Global	0x98	CBG_B_2_PRODUCT_ID	0x32	RW	No	No
Global	0x99	SPM_TH_B	0x7B	RW	No	No
Global	0x9A	SPM_HYS_B	0x12	RW	No	No
Global	0x9B	SPM_PH_CTRL_B	0xC7	RW	No	No
Global	0x9C	ANS_EN_SPM_PSK_CTRL	0x00	RW	No	No
Global	0x9D	RESERVED	0x38	RW	No	No
Global	0x9E	RESERVED	0x00	RW	No	No
Global	0xEC	NVM_PROGRAM_STATUS	N/A	R	No	No
Global	0xED	STORE_RESTORE_CFG	N/A	W	No	No
Global	0xEF	PAGE	0x80	RW	No	No
Global	0xF1	ENTER_CONF_MODE	N/A	W	No	No
Global	0xFC	UNLOCK_NVM	N/A	W	No	No

RT3632BE

Table 8. DVID_COMP_MT_A

Address	Address: 0x00									
Bit	7	6	5	4	3	2	1	0		
Field	EN_DVIDDN_L IFT_15mV_A	DVIDDN_PULL_SEL_A		EXIT_PS1_L IFT_VID_A	EXIT_PS1_R ESET_LPF_A	EN_AI_DO UBLE_A	RIPPLE_COM P_DOUBLE_A			
Default	0	0	0	0	1	1	0	0		
Туре	RW		RW		RW	RW	RW	RW		

Bit	Name	Description
7	EN_DVIDDN_LIFT_15mV_A	Enable/Disable DVID down with fixed lift 15mV to prevent the DVID down undershoot of Rail A. 0: Enable 1: Disable
6:4	DVIDDN_PULL_SEL_A	DVID compensation during DVID ramp down of Rail A corresponding to the register of DVID_LIFT_A (0x22 [7:4]) 000: Disable 001: IDVID_LIFT_A x 0.25 010: IDVID_LIFT_A x 0.5 011: IDVID_LIFT_A x 0.75 100: IDVID_LIFT_A x 1 101: IDVID_LIFT_A x 1.25 110: IDVID_LIFT_A x 1.5 111: IDVID_LIFT_A x 1.75
3	EXIT_PS1_LIFT_VID_A	Enable/Disable the VID lift when VR exits PS1 to avoid undershoot at mode transition for Rail A. 0: Disable 1: Enable
2	EXIT_PS1_RESET_LPF_A	Enable/Disable the LPF resetting when VR exits PS1 to avoid the undershoot at mode transition for Rail A. 0: Disable 1: Enable
1	EN_AI_DOUBLE_A	Enable/Disable current gain Ai_A x2 of Rail A corresponding to the register of Ai_A (0x16 [3:1]) 0: Disable 1: Enable
0	RIPPLE_COMP_DOUBLE_A	Enable/Disable ripple compensation x2 of Rail A corresponding to the register of SET_RIPPLE_COMP_A (0x03 [2:0]) 0: Disable 1: Enable

RICHTEK

Table 9. DVID_COMP_MT_B

Address	: 0x01							
Bit	7	6	5	4	3	2	1	0
Field	EN_DVIDDN_ LIFT_15mV_B	DVIDDN_PULL_SEL _B		EXIT_PS1_ LIFT_VID_B	EXIT_PS1_ RESET_LPF_B	EN_AI_ DOUBLE_B	RIPPLE_COMP _DOUBLE_B	
Default	1	0	0	1	0	1	0	0
Туре	RW		RW		RW	RW	RW	RW

Bit	Name	Description
7	EN_DVIDDN_LIFT_15mV_B	Enable/Disable DVID down with fixed lift 15mV to prevent the DVID down undershoot of Rail B. 0: Enable 1: Disable
6:4	DVIDDN_PULL_SEL_B	DVID compensation during DVID ramp down of Rail B corresponding to the register of DVID_LIFT_B (0x22 [3:0]) 000: Disable 001: IDVID_LIFT_B x 0.25 010: IDVID_LIFT_B x 0.5 011: IDVID_LIFT_B x 0.75 100: IDVID_LIFT_B x 1.75 110: IDVID_LIFT_B x 1.5 111: IDVID_LIFT_B x 1.75
3	EXIT_PS1_LIFT_VID_B	Enable/Disable the VID lift when VR exits PS1 to avoid undershoot at mode transition for Rail B. 0: Disable 1: Enable
2	EXIT_PS1_RESET_LPF_B	Enable/Disable the LPF resetting when VR exits PS1 to avoid the undershoot at mode transition for Rail B. 0: Disable 1: Enable
1	EN_AI_DOUBLE_B	Enable/Disable current gain of Ai_B x2 of Rail B corresponding to the register of Ai_B (0x16 [0]: 0x17 [7:6]) 0: Disable 1: Enable
0	RIPPLE_COMP_DOUBLE_B	Enable/Disable ripple compensation x2 of Rail B corresponding to the register of SET_RIPPLE_COMP_B (0x04 [2:0]) 0: Disable 1: Enable

RT3632BE

Table 10. DVID_COMP_MT_C

Address	: 0x02							
Bit	7	6 5 4			3	2	1	0
Field	EN_DVIDDN_LI FT_15mV_C	DVIDD	VIDDN_PULL_SEL_C			erved	EN_AI_DOUBLE_C	RIPPLE_COMP_D OUBLE_C
Default	1	0	0	0	0	0 0		0
Туре	RW		RW		R	W	RW	RW

Bit	Name	Description
7	EN_DVIDDN_LIFT_15mV_C	Enable/Disable DVID down with fixed lift 15mV to prevent the DVID down undershoot of Rail C. 0: Enable 1: Disable
6:4	DVIDDN_PULL_SEL_C	DVID compensation during DVID ramp down of Rail C corresponding to the register of DVID_LIFT_C (0x23 [7:4]) 000: Disable 001: IDVID_LIFT_C x 0.25 010: IDVID_LIFT_C x 0.5 011: IDVID_LIFT_C x 0.75 100: IDVID_LIFT_C x 1 101: IDVID_LIFT_C x 1.25 110: IDVID_LIFT_C x 1.5 111: IDVID_LIFT_C x 1.75
3:2	Reserved	Reserved bits
1	EN_AI_DOUBLE_C	Enable/Disable current gain of Ai_C x2 of Rail C corresponding to the register of Ai_C (0x17 [5:4]) 0: Disable 1: Enable
0	RIPPLE_COMP_DOUBLE_C	Enable/Disable ripple compensation x2 of Rail C corresponding to the register of SET_RIPPLE_COMP_C (0x05 [2:0]) 0: Disable 1: Enable

RICHTEK

Table 11. LGON_RIP_COMP_A

Address	: 0x03							
Bit	7	6	5	4	3	2	1	0
Field	DECAY_END _LGON_A	Reserved SET_RIPPLE_COMP_A					1P_A	
Default	1	0	0	0	0	0	0	1
Туре	RW		F	۲W			RW	

Bit	Name	Description
7	DECAY_END_LGON_A	Enable/Disable turning low-gate ON when reaching target VID at the end of decay down for Rail A. 0: Disable 1: Enable
6:3	Reserved	[6:3] = 0000. All other combination are not defined.
2:0	SET_RIPPLE_COMP_A	Adding auxiliary compensation current to VEA for compensating frequency difference when VID = $0.3V \sim 0.9V$ of Rail A, which helps the output voltage to reach the target within the specified time during DVID transition. lcomp = VID/1.13M Ω x SET_RIPPLE_COMP_A. As 0x00 [0] = 0, 0x03 [2:0] = 000: x0 001: x1 010: x2 011: x3 100: x4 101: x5 110: x6 111: x7 As 0x00 [0] = 1, 0x03 [2:0] = 000: x0 001: x2 010: x4 011: x6 100: x8 101: x10 110: x12 111: x14

RT3632BE

0

			Table 12	2. LGON_RIP	_COMP_B		
Address	s: 0x04						
Bit	7	6	5	4	3	2	1
	DECAY END		- -				

Type RW RW RW		Default 1 0 0 0 0 0 1 0	Туре	RW	RW	RW RW					
	Type RW RW RW		Bit	Name	Name	Description					
	Type RW RW RW			Name	Name	Description					

7	DECAY_END_LGON_B	decay down for Rail B. 0: Disable 1: Enable
6:3	Reserved	[6:3] = 0000. All other combination are not defined.
2:0	SET_RIPPLE_COMP_B	Adding auxiliary compensation current to VEA for compensating frequency difference when VID = $0.3V \sim 0.9V$ of Rail B, which helps the output voltage to reach the target within the specified time during DVID transition. lcomp = VID/1.13M Ω x SET_RIPPLE_COMP_B. As 0x01 [0] = 0, 0x04 [2:0] = 000: x0 001: x1 010: x2 011: x3 100: x4 101: x5 110: x6 111: x7 As 0x01 [0] = 1, 0x04 [2:0] = 000: x0 001: x2 010: x4 011: x6 100: x8 101: x10 110: x12 111: x14

RICHTEK

Table 13. LGON_RIP_COMP_C

Address	: 0x05							
Bit	7	6	5	4	3	2	1	0
Field	DECAY_END _LGON_C		Reserved SET_RIPPLE_COMP_C					1P_C
Default	1	0	1	0	1	0	1	0
Туре	RW			٦W			RW	

Bit	Name	Description
7	DECAY_END_LGON_C	Enable/Disable turning low-gate ON when reaching target VID at the end of decay down for Rail C. 0: Disable 1: Enable
6:3	Reserved	[6:3] = 0000. All other combination are not defined.
2:0	SET_RIPPLE_COMP_C	Adding auxiliary compensation current to VEA for compensating frequency difference when VID = $0.3V \sim 0.9V$ of Rail C, which helps the output voltage to reach the target within the specified time during DVID transition. Icomp = VID/1.13M Ω x SET_RIPPLE_COMP_C. As 0x02 [0] = 0, 0x05 [2:0] = 000: x0 001: x1 010: x2 011: x3 100: x4 101: x5 110: x6 111: x7 As 0x02 [0] = 1, 0x05 [2:0] = 000: x0 001: x2 010: x4 011: x6 100: x8 101: x10 110: x12 111: x14

RT3632BE

Table 14. MT_FVM_UVP

Address	Address: 0x06									
Bit	7	6	5	4	3	2	1	0		
Field	Reserved	EXIT_PS2_ PS3_TRIG _PWM_A	EXIT_PS2_ PS3_TRIG _PWM_B	EXIT_PS2_ PS3_TRIG _PWM_C	FVM_UVP _A	FVM_UVP _B	FVM_UVP _C	Reserved		
Default	0	1	1	0	0	0	0	1		
Туре	RW	RW	RW	RW	RW	RW	RW	RW		

Bit	Name	Description				
7	Reserved	ed [7] = 0. All other combination are not defined.				
6	EXIT_PS2_PS3_TRIG _PWM_A	The forced PWM Ton will be triggered upon exiting PS2/PS3 to avoid the undershoot during the mode transition of Rail A. 0: Disable. 1: Enable.				
5	EXIT_PS2_PS3_TRIG The forced PWM Ton will be triggered upon exiting PS2/PS3 to avoid undershoot during the mode transition of Rail B. _PWM_B 0: Disable. 1: Enable.					
4	EXIT_PS2_PS3_TRIG The forced PWM Ton will be triggered upon exiting PS2/PS3 to avoid undershoot during the mode transition of Rail C. _PWM_C 0: Disable. 1: Enable.					
3	FVM_UVP_A	Enable/Disable blocking the UVP function when Fast V-Mode is triggered of Rail A. 0: Enable, the UVP is not blocked when Fast V-Mode is triggered. 1: Disable, the UVP is blocked when Fast V-Mode is triggered.				
2	FVM_UVP_B	Enable/Disable blocking the UVP function when Fast V-Mode is triggered of Rail B. 0: Enable, the UVP is not blocked when Fast V-Mode is triggered. 1: Disable, the UVP is blocked when Fast V-Mode is triggered.				
1	FVM_UVP_C	Enable/Disable blocking the UVP function when Fast V-Mode is triggered of Rail C. 0: Enable, the UVP is not blocked when Fast V-Mode is triggered. 1: Disable, the UVP is blocked when Fast V-Mode is triggered.				
0	Reserved	Reserved bit.				

RICHTEK

Table 15. TSEN_SEL

Address:	Address: 0x07								
Bit	7	6	5	4	3	2	1	0	
Field	TSEN_SEL_A	TSEN_SEL_B	TSEN_SEL_C			Reserved			
Default	0	0	0	1	0	0	0	0	
Туре	RW	RW	RW			RW			

Bit	Name	Description
7	TSEN SEL A	Selection of TSEN table with positive or negative temperature coefficient of Rail A. 0: Negative temperature coefficient.
I ISEN_SEL_A	1: Positive temperature coefficient.	
		Selection of TSEN table with positive or negative temperature coefficient of Rail B.
6	TSEN_SEL_B	0: Negative temperature coefficient.
		1: Positive temperature coefficient.
		Selection of TSEN table with positive or negative temperature coefficient of Rail C.
5	TSEN_SEL_C	0: Negative temperature coefficient.
		1: Positive temperature coefficient.
4:0	Reserved	[3:0] = 0000. All other combination are not defined.

Table 16. FVM_NON_OVERLAP

Address	Address: 0x08								
Bit	7	6	5	4	3	2	1	0	
Field		Reserved						EN_FVM _NON_O VERLAP	
Default	0	0	0	0	0	0	0	0	
Туре				RW				RW	

Bit	Name	Description
7:1	Reserved	[7:1] = 0000000. All other combination are not defined.
0	EN_FVM_NON_OVERLAP	 When Fast V-Mode is triggered, the PWMs overlapping is forbidden to enhance the accuracy of the current limit. 0: Disable, PWMs overlapping is allowed when Fast V-Mode is triggered. 1: Enable, PWMs overlapping is forbidden within 5µs when Fast V-Mode is triggered.

RT3632BE

Table 17. SPM_1PH_AR_AB_SLL_C

Address	Address: 0x09									
Bit	7	6	5	4	3	2	1	0		
Field	SPM_1PH_AR_A	SPM_1PH_AR_B	Reserved	SMALL_LL_C		Reserved				
Default	1	1	0	0	0	1	1	1		
Туре	RW	RW	RW	R	W		RW			

Bit	Name	Description
7	SPM_1PH_AR_A	Enable/Disable the adaptive ramp at 1-ph operation when SPM enables for Rail A. 0: Disable. 1: Enable.
6	SPM_1PH_AR_B	Enable/Disable the adaptive ramp at 1-ph operation when SPM enables for Rail B. 0: Disable. 1: Enable.
5	Reserved	Reserved bit.
4:3	SMALL_LL_C	Small LL of Rail C, which sets R _{LL} to, 00: 100%. 01: 84%. 10: 76%. 11: 48%.
2:0	Reserved	[2:0] = 111. All other combination are not defined.

RICHTEK

Table 18. MT_RIP_COMP_AB

Address	Address: 0x0A								
Bit	7	6	5	4	3	2	1	0	
Field	Reserved	SET_MT_RIPPLE_COMP_A			Reserved	SET_MT	_RIPPLE_CO	OMP_B	
Default	0	0	1	0	0	0	0	0	
Туре	RW		RW				RW		

Bit	Name	Description
7	Reserved	Reserved bit.
6:4	SET_MT_RIPPLE_COMP_A	Selection of the ripple compensation to avoid the voltage undershoot at mode transition for Rail A. As increasing the compensation voltage, the more voltage lift at mode transition. 000: Disable 001: x1 010: x2 011: x3 100: x4 101: x5 110: x6 111: x7
3	Reserved	[3] = 0. All other combination are not defined.
2:0	SET_MT_RIPPLE_COMP_B	Selection of the ripple compensation to avoid the voltage undershoot at mode transition for Rail B. As increasing the compensation voltage, the more voltage lift at mode transition. 000: Disable 001: x1 010: x2 011: x3 100: x4 101: x5 110: x6 111: x7

Table 19. ICCMAX_A

Address	Address: 0x10								
Bit	7	6	5	4	3	2	1	0	
Field		ICCMAX_A							
Default	0	1	0	1	0	0	0	0	
Туре				RV	V				

Bit	Name	Description
7:0	ICCMAX_A	ICCMAX of Rail A, which can be set from 00h to FFh representing 0A to 255A. [e.g.] 01100100: ICCMAX_A = 100A. 11111111: ICCMAX_A = 255A.

Copyright © 2023 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation. www.richtek.com DS3632BE-00 August 2023

RT3632BE

1

Table 20. ICCMAX_ADD_VBOOT_SR

Address	Address: 0x11									
Bit	7	6	5	4	3	2	1	0		
Field	ICCMAX_A _ADD	ICCMAX_B _ADD	Reserved	EN_NON_0 _VBOOT_A	EN_NON_0 _VBOOT_B	EN_NON_0 _VBOOT_C	DVID_F	AST_SR		
Default	0	0	1	0	0	0	1	0		
Туре	RW	RW	RW	RW	RW	RW	R	W		

Bit	Name	Description
7	ICCMAX_A_ADD	Additional ICCMAX of Rail A. The effective ICCMAX can be encoded at 2 Amps per bit by setting 0x11 [7]. 0x11 [7] = 0: ICCMAX_A = ICCMAX_A [7:0]. 0x11 [7] = 1: ICCMAX_A = ICCMAX_A [7:0] x 2. [e.g.] As 0x11 [7] = 1, 0x10 [7:0] = 01100100: ICCMAX_A = 200A. 0x10 [7:0] = 11111111: ICCMAX_A = 510A.
6	ICCMAX_B_ADD	Additional ICCMAX of Rail B. The effective ICCMAX can be encoded at 2 Amps per bit by setting 0x11 [6]. 0x11 [6] = 0: ICCMAX_B = ICCMAX_B [7:0]. 0x11 [6] = 1: ICCMAX_B = ICCMAX_B [7:0] x 2. [e.g.] As 0x11 [6] = 1, 0x12 [7:0] = 01100100: ICCMAX_B = 200A. 0x12 [7:0] = 11111111: ICCMAX_B = 510A.
5	Reserved	[5] = 1. All other combination are not defined.
4	EN_NON_0_VBOOT_A	Enable/Disable non-zero VBOOT of Rail A. 0: Disable, EN_NON_0_VBOOT_A = 0V. 1: Enable, EN_NON_0_VBOOT_A = Non-zero VBOOT which is set by the register of 0x30 [7:0]
3	EN_NON_0_VBOOT_B	Enable/Disable non-zero VBOOT of Rail B. 0: Disable, EN_NON_0_VBOOT_B = 0V. 1: Enable, EN_NON_0_VBOOT_B = Non-zero VBOOT which is set by the register of 0x32 [7:0]
2	EN_NON_0_VBOOT_C	Enable/Disable non-zero VBOOT of Rail C. 0: Disable, EN_NON_0_VBOOT_C = 0V. 1: Enable, EN_NON_0_VBOOT_C = Non-zero VBOOT which is set by the register of 0x34 [7:0]
1:0	DVID_FAST_SR	DVID Fast slew rate. 00: 10mV/μs. 01: 24mV/μs. 10: 36mV/μs. 11: 48mV/μs.

RICHTEK

Table 21. ICCMAX_B

Address: 0x12								
Bit	7	7 6 5 4 3 2 1 0						
Field		ICCMAX_B						
Default	0	0	1	1	1	0	1	1
Туре		RW						

Bit	Name	Description
7:0	ICCMAX_B	ICCMAX of Rail B, which can be set from 00h to FFh representing 0A to 255A. [e.g.] 01100100: ICCMAX_B = 100A. 11111111: ICCMAX_B = 255A.

Table 22. ICCMAX_C

Address	Address: 0x13							
Bit	7	7 6 5 4 3 2 1 0						
Field		ICCMAX_C						
Default	0	0	1	0	0	0	1	1
Туре		RW						

Bit	Name	Description
7:0	ICCMAX_C	ICCMAX of Rail C, which can be set from 00h to FFh representing 0A to 255A. [e.g.] 01100100: ICCMAX_C = 100A. 11111111: ICCMAX_C = 255A.

RT3632BE

Table 23. VIDT_0LL

Address	Address: 0x14								
Bit	7	6	5	4	3	2	1	0	
Field	VIDT_A	VIDT_B	VIDT_C	EN_0LL_A	EN_0LL_B	EN_0LL_C	Rese	rved	
Default	0	0	0	0	0	0	0	0	
Туре	RW	RW	RW	RW	RW	RW	RV	V	

Bit	Name	Description
7		VID step of Rail A.
7	VIDT_A	0: 5mV VID step.
		1: 10mV VID step.
		VID step of Rail B.
6	VIDT_B	0: 5mV VID step.
		1: 10mV VID step.
		VID step of Rail C.
5	VIDT_C	0: 5mV VID step.
		1: 10mV VID step.
		Enable zero load-line of Rail A.
4	EN_0LL_A	0: Disable 0LL.
		1: Enable 0LL.
		Enable zero load-line of Rail B.
3	EN_0LL_B	0: Disable 0LL.
		1: Enable 0LL.
		Enable zero load-line of Rail C.
2	EN_0LL_C	0: Disable 0LL.
		1: Enable 0LL.
1:0	Reserved	Reserved bits.

Table 24. KTON_AB

Address	Address: 0x15								
Bit	7	6	5	4	3	2	1	0	
Field		KTO	N_A		KTON_B				
Default	0	0	1	1	0	0	1	1	
Туре		R	W			RV	V		

Bit	Name	Description
7:4	KTON_A	According to required frequency of Rail A, select adaptive KTON_A parameter. Please refer to the section of Switching Frequency Setting for the detailed description.
3:0	KTON_B	According to required frequency of Rail B, select adaptive KTON_B parameter. Please refer to the section of Switching Frequency Setting for the detailed description.

RICHTEK

Table 25. KTON_C_Ai_AB

Address	Address: 0x16							
Bit	7	6	5	4	3	2	1	0
Field	KTON_C				Ai_A			Ai_B_MSB
Default	0	1	0	0	0	0	1	1
Туре		R	W			RW		RW

Bit	Name	Description
7:4	KTON_C	According to required frequency of Rail C, select adaptive KTON_C parameter. Please refer to the section of Switching Frequency Setting for the detailed description.
3:1	Ai_A	Current gain setting of Rail A. When EN_AI_DOUBLE_A = Disable($0x00[1] = 0$) 000: Ai_A = 0.25. 001: Ai_A = 0.25. 010: Ai_A = 0.75. 011: Ai_A = 1. 100: Ai_A = 0.125. 101: Ai_A = 0.375. 110: Ai_A = 0.625. 111: Ai_A = 0.875. When EN_AI_DOUBLE_A = Enable($0x00[1] = 1$) 000: Ai_A = 0.5. 001: Ai_A = 1. 010: Ai_A = 1.5. 011: Ai_A = 2. 100: Ai_A = 0.25. 101: Ai_A = 0.75. 110: Ai_A = 1.25
0	Ai_B_MSB	110: Ai_A = 1.25. 111: Ai_A = 1.75. Current gain setting of Rail B Ai_B = (Ai_B_MSB:Ai_B_LSB) When EN_AI_DOUBLE_B = Disable(0x01[1] = 0) (Ai_B_MSB: Ai_B_LSB) = 000: Ai_B = 0.25. (Ai_B_MSB: Ai_B_LSB) = 001: Ai_B = 0.25. (Ai_B_MSB: Ai_B_LSB) = 010: Ai_B = 0.75. (Ai_B_MSB: Ai_B_LSB) = 011: Ai_B = 1. (Ai_B_MSB: Ai_B_LSB) = 011: Ai_B = 1. (Ai_B_MSB: Ai_B_LSB) = 100: Ai_B = 0.125 (Ai_B_MSB: Ai_B_LSB) = 101: Ai_B = 0.375. (Ai_B_MSB: Ai_B_LSB) = 101: Ai_B = 0.625. (Ai_B_MSB: Ai_B_LSB) = 111: Ai_B = 0.875. When EN_AI_DOUBLE_B = Enable(0x01[1] = 1) (Ai_B_MSB: Ai_B_LSB) = 000: Ai_B = 0.5. (Ai_B_MSB: Ai_B_LSB) = 001: Ai_B = 1. (Ai_B_MSB: Ai_B_LSB) = 010: Ai_B = 1. (Ai_B_MSB: Ai_B_LSB) = 011: Ai_B = 2. (Ai_B_MSB: Ai_B_LSB) = 100: Ai_B = 0.25 (Ai_B_MSB: Ai_B_LSB) = 100: Ai_B = 0.25 (Ai_B_MSB: Ai_B_LSB) = 101: Ai_B = 0.75. (Ai_B_MSB: Ai_B_LSB) = 101: Ai_B = 0.75. (Ai_B_MSB: Ai_B_LSB) = 111: Ai_B = 1.25. (Ai_B_MSB: Ai_B_LSB) = 111: Ai_B = 1.25. (Ai_B_MSB: Ai_B_LSB) = 111: Ai_B = 1.25. (Ai_B_MSB: Ai_B_LSB) = 111: Ai_B = 1.75.

Table 26. Ai_BC_EN_SPM

Address	Address: 0x17									
Bit	7	6	5	4	3	2	1	0		
Field	Ai_B	_LSB	Ai_	Ai_C		EN_SPM_A	EN_SPM_B	EN_SPM_C		
Default	1	0	1	1	1	1	1	1		
Туре	R	W	R	RW		RW	RW	RW		

Bit	Name	Description
7:6	Ai_B_LSB	Current gain setting of Rail B Ai_B = (Ai_B_MSB: Ai_B_LSB) When EN_AI_DOUBLE_B = Disable(0x01[1] = 0) (Ai_B_MSB: Ai_B_LSB) = 000: Ai_B = 0.25. (Ai_B_MSB: Ai_B_LSB) = 001: Ai_B = 0.5. (Ai_B_MSB: Ai_B_LSB) = 010: Ai_B = 0.75. (Ai_B_MSB: Ai_B_LSB) = 011: Ai_B = 1. (Ai_B_MSB: Ai_B_LSB) = 100: Ai_B = 0.125 (Ai_B_MSB: Ai_B_LSB) = 101: Ai_B = 0.375. (Ai_B_MSB: Ai_B_LSB) = 101: Ai_B = 0.625. (Ai_B_MSB: Ai_B_LSB) = 111: Ai_B = 0.875. When EN_AI_DOUBLE_B = Enable(0x01[1] = 1) (Ai_B_MSB: Ai_B_LSB) = 000: Ai_B = 0.5. (Ai_B_MSB: Ai_B_LSB) = 010: Ai_B = 1. (Ai_B_MSB: Ai_B_LSB) = 010: Ai_B = 1.5. (Ai_B_MSB: Ai_B_LSB) = 011: Ai_B = 2. (Ai_B_MSB: Ai_B_LSB) = 100: Ai_B = 0.25 (Ai_B_MSB: Ai_B_LSB) = 101: Ai_B = 0.75. (Ai_B_MSB: Ai_B_LSB) = 111: Ai_B = 1.25. (Ai_B_MSB: Ai_B_LSB) = 111: Ai_B = 1.75.
5:4	Ai_C	Current gain setting of Rail C. When EN_Ai_DOUBLE_C = Disable $(0x02[1] = 0)$ 00: Ai_C = 0.25. 01: Ai_C = 0.5. 10: Ai_C = 0.75. 11: Ai_C = 1. When EN_Ai_DOUBLE_C = Enable $(0x02[1] = 1)$ 00: Ai_C = 0.5. 01: Ai_C = 1. 10: Ai_C = 1.5. 11: Ai_C = 2.
3	Reserved	[3] = 1. All other combination are not defined.
2	EN_SPM_A	Enable/Disable smart phase management of Rail A. 0: Disable. 1: Enable.
1	EN_SPM_B	Enable/Disable smart phase management of Rail B. 0: Disable. 1: Enable.
0	EN_SPM_C	Enable/Disable smart phase management of Rail C. 0: Disable. 1: Enable.

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

RICHTEK

Table 27. DBLR_PH_CS_SEL

Address	Address: 0x18									
Bit	7	6	5	4	3	2	1	0		
Field	EN_DBLR	SET_DE	3LR_PH	Reserved		CS_SEL_A	CS_SEL_B	CS_SEL_C		
Default	0	0	0	0	0	0	0	0		
Туре	RW	RW		RW		RW	RW	RW		

Bit	Name	Description
7	EN_DBLR	Enable phase double for Rail A. 0: Disable, maximum 5-phase operation, Pin 18 is set as DRVEN. 1: Enable, maximum 10-phase operation, Pin 18 is set as DBLR_PS.
6:5	SET_DBLR_PH	 Phase number selection of Rail A when EN_DBLR is enable. As 0x18 [7] = 1, 00: Maximum 10-phase operation. 01: 6-phase operation. 10: 7-phase operation. 11: 8-phase operation.
4:3	Reserved	Reserved bits.
2	CS_SEL_A	Selection of current sense type for Rail A. If the Smart Power Stage (SPS) modules are used for Rail A, set this bit as 1'b1, the ISENA1N provides a reference voltage of 1.3V for the reference input of the SPS modules. 0: DCR. 1: SPS.
1	CS_SEL_B	Selection of current sense type for Rail B. If the Smart Power Stage (SPS) modules are used for Rail B, set this bit as 1'b1, the ISENB1N provides a reference voltage of 1.3V for the reference input of the SPS modules. 0: DCR. 1: SPS.
0	CS_SEL_C	Selection of current sense type for Rail C. If the Smart Power Stage (SPS) modules are used for Rail C, set this bit as 1'b1, the ISENCN provides a reference voltage of 1.3V for the reference input of the SPS modules. 0: DCR. 1: SPS.

Table 28. ICCMAX_D

Address	Address: 0x19									
Bit	7	6	5	4	3	2	1	0		
Field		ICCMAX_D								
Default	0	0	1	0	0	0	0	0		
Туре				RV	RW					

Bit	Name	Description
7:0	ICCMAX_D	ICCMAX of Rail D which can be set from 00h to FFh representing 0A to 255A. [e.g.] 01100100: ICCMAX_D = 100A. 11111111: ICCMAX_D = 255A.

Copyright © 2023 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

ſ

RT3632BE

Table 29. ANTI_OVS_SLL_A

Address	: 0x1A								
Bit	7	6	5	4	3	2	1	0	
Field	ANTI_O\	/S_TH_A	ANTI_O\	ANTI_OVS_TH_B		ANTI_OVS_TH_C		SMALL_LL_A	
Default	1	1	0	1	0	0	1	0	
Туре	RW		RW		RW		RW		

Bit	Name	Description
		Selection of anti-overshoot threshold for Rail A. 00: 90mV.
7:6	ANTI_OVS_TH_A	01:150mV.
		10: 210mV.
		11: Disable.
		Selection of anti-overshoot threshold for Rail B.
		00: 90mV.
5:4	ANTI_OVS_TH_B	01:150mV.
		10: 210mV.
		11: Disable.
		Selection of anti-overshoot threshold for Rail C.
		00: 90mV.
3:2	ANTI_OVS_TH_C	01:150mV.
		10: 210mV.
		11: Disable.
		Small LL of Rail A, which set R _{LL} to,
		00: 100%.
1:0	SMALL_LL_A	01: 50%.
		10: 85%.
		11: 75%.

Table 30. QR_TH_A

Address	Address: 0x1B								
Bit	7	6	5	4	3	2	1	0	
Field	MULTI_PH_QR_A				1_PH_QR_A				
Default	0	1	0	1	0	0	0	1	
Туре		R	W			RV	V		

Bit	Name	Description
7:4	MULTI_PH_QR_A	Multiple-phase quick response for transient response speed-up of loading rising edge of Rail A. Please refer to the section of Adaptive Quick Response (AQR) for the detailed description.
3:0	1_PH_QR_ A	Single-phase quick response for transient response speed-up of loading rising edge of Rail A. Please refer to the section of Adaptive Quick Response (AQR) for the detailed description.

RICHTEK

Table 31. QR_TH_B

Address	Address: 0x1C								
Bit	7	6	5	4	3	2	1	0	
Field		MULTI_P	H_QR_B		1_PH_QR_B				
Default	1	1	0	0	1	1	0	0	
Туре		R	W			RV	V		

Bit	Name Description			
7:4	MULTI_PH_QR_B	Multiple-phase quick response for transient response speed-up of loading rising edge of Rail B. Please refer to the section of Adaptive Quick Response (AQR) for the detailed description.		
3:0	1_PH_QR_ B	Single-phase quick response for transient response speed-up of loading rising edge of Rail B. Please refer to the section of Adaptive Quick Response (AQR) for the detailed description.		

Table 32. AR_TH_AB

Address: 0x1D								
Bit	7	6	5	4	3	2	1	0
Field	MULTI_PH_AR_TH_A		1_PH_AR_TH_A		MULTI_PH_AR_TH_B		1_PH_AR_TH_B	
Default	0	0	0	1	1	0	0	1
Туре	RW		RW		RW		RW	

Bit	Name	Description
7:6	MULTI_PH_AR_TH_A	Multiple-phase adaptive ramp threshold of Rail A. 00: Disable. 01: 150mV. 10: 200mV. 11: 250mV.
5:4	1_PH_AR_TH_A	Single-phase adaptive ramp threshold of Rail A. 00: Disable. 01: 125mV. 10: 150mV. 11: 175mV.
3:2	MULTI_PH_AR_TH_B	Multiple-phase adaptive ramp threshold of Rail B. 00: Disable. 01: 150mV. 10: 200mV. 11: 250mV.
1:0	1_PH_AR_TH_B	Single-phase adaptive ramp threshold of Rail B. 00: Disable. 01: 125mV. 10: 150mV. 11: 175mV.

RT3632BE

Table 33. AR_TH_C_ZCD_AB

Address: 0x1E								
Bit	7	6	5	4	3	2	1	0
Field	1_PH_AR_TH_C		ZCD_TH_A			ZCD_TH_B		
Default	0	1	0	0	0	0	0	1
Туре	RW		RW			RW		

Bit	Name	Description
		Single-phase adaptive ramp threshold of Rail C.
		00: Disable.
7:6	1_PH_AR_TH_C	01: 125mV.
		10: 150mV.
		11: 175mV.
		Detect whether each phase current crosses zero current for Rail A. Set trigger
		level. Please refer to the section of Zero-Crossing Detection (ZCD) for detailed
		description.
		000: Disable
	ZCD_TH_A	001: 0.1552mV/V.
5:3		010: 0.31mV/V.
		011: 0.465mV/V.
		100: 0.62mV/V.
		101: 0.775mV/V.
		110: 0.93mV/V.
		111: 1.085mV/V.
		Detect whether each phase current crosses zero current for Rail B. Set trigger
		level. Please refer to the section of Zero-Crossing Detection (ZCD) for detailed
	ZCD_TH_B	description.
		000: Disable
		001: 0.1552mV/V.
2:0		010: 0.31mV/V.
		011: 0.465mV/V.
		100: 0.62mV/V.
		101: 0.775mV/V.
		110: 0.93mV/V.
		111: 1.085mV/V.

RICHTEK

Table 34. ZCD_C_ICCMAX_ADD_D_SLL_B

Address: 0x1F								
Bit	7	6	5	4	3	2	1	0
Field	ZCD_TH_C			Reserved		ICCMAX_D _ADD	SMALL	_LL_B
Default	0	0	0	0	0	0	1	0
Туре	RW			R	W	RW	RV	V

Bit	Name Description	
7:5	ZCD_TH_C	Detect whether each phase current crosses zero current for Rail C. Set trigger level. Please refer to the section of Zero-Crossing Detection (ZCD) for detailed description. 000: Disable 001: 0.1552mV/V. 010: 0.31mV/V. 011: 0.465mV/V. 100: 0.62mV/V. 101: 0.775mV/V. 110: 0.93mV/V. 111: 1.085mV/V.
4:3	Reserved Reserved bits.	
2	ICCMAX_D_ADD	Additional ICCMAX of Rail D. The effective ICCMAX can be encoded at 2 Amps per bit by setting 0x1F [2]. 0x1F [2] = 0: ICCMAX_D = ICCMAX_D [7:0]. 0x1F [2] = 1: ICCMAX_D = ICCMAX_D [7:0] x 2. [e.g.] As 0x1F [2] = 1, 0x19 [7:0] = 01100100: ICCMAX_D = 200A. 0x19 [7:0] = 11111111: ICCMAX_D = 510A.
1:0	SMALL_LL_B	Small LL of Rail B, which sets RLL to, 00: 100%. 01: 50%. 10: 85%. 11: 75%.

RT3632BE

Table 35. LPF_INITIAL_AB

Address	Address: 0x20							
Bit	7	6	5	4	3	2	1	0
Field	Reserved	L	LPF_INITIAL_A			LPF_INITIAL_B		
Default	0	0	0	1	0	1	1	0
Туре	RW		RW				RW	

Bit	Name	Description
7	Reserved	Reserved bit.
6:4	LPF_INITIAL_A	Reduce overshoot of DVID up from PS4 by selecting initial state of LPF of Rail A. 000: LPF_INITIAL_A = -0.5μ A. 001: LPF_INITIAL_A = 0μ A. 010: LPF_INITIAL_A = 0.5μ A. 011: LPF_INITIAL_A = 1μ A. 100: LPF_INITIAL_A = -2μ A. 101: LPF_INITIAL_A = -1.5μ A. 110: LPF_INITIAL_A = -1.5μ A. 110: LPF_INITIAL_A = -1μ A. All other combinations are not defined. VLPF_INITIAL_A (V) = LPF_INITIAL_A * $100k\Omega * 0.3 * REA1(A)/REA2(A)$
3	Reserved	Reserved bit.
2:0	LPF_INITIAL_B	Reduce overshoot of DVID up from PS4 by selecting initial state of LPF of Rail B. 000: LPF_INITIAL_B = -0.5μ A. 001: LPF_INITIAL_B = 0μ A. 010: LPF_INITIAL_B = 0.5μ A. 011: LPF_INITIAL_B = 1μ A. 100: LPF_INITIAL_B = -2μ A. 101: LPF_INITIAL_B = -1.5μ A. 110: LPF_INITIAL_B = -1.5μ A. 110: LPF_INITIAL_B = -1μ A. All other combinations are not defined. VLPF_INITIAL_B (V) = LPF_INITIAL_B * $100k\Omega * 0.3 * \text{REA1(B)/REA2(B)}$

73

Table 36. RT_SPS_DBLR_SPM_FVM_HLPF_LPF_INT_C

Address	: 0x21							
Bit	7	6	5	4	3	2	1	0
Field	EN_RT_SPS	EN_DBLR_S PM_PH1 _1PHCCM	EN_FVM_H OLD_LPF_A	EN_FVM_HO LD_LPF_B	EN_FVM_HO LD_LPF_C	LPF	_INITIA	IL_C
Default	0	0	1	1	1	1	1	0
Туре	RW	RW	RW	RW	RW		RW	

Bit	Name	Description		
7	EN_RT_SPS	Enable/Disable compatible DRVEN_F for the SPS from Richtek. 0: Disable, the DRVEN_F is compatible with Dr.MOS/SPS 1: Enable, the DRVEN_F is compatible to the SPS from Richtek.		
6	EN_DBLR_SPM_PH1 _1PHCCM Enable/Disable 1 phase CCM operation when DBLR and SPM are enabled. 0: Disable, 2 phase CCM operation (Phase 1A, Phase 1B). 1: Enable, 1 phase CCM operation (Phase 1A).			
5	EN_FVM_HOLD_LPF_A	Enable/disable the hold low pass filter function to reduce the voltage drop during FVM for Rail A. 0: Disable. 1: Enable.		
4	EN_FVM_HOLD_LPF_B	Enable/disable the hold low pass filter function to reduce the voltage drop during FVM for Rail B. 0: Disable. 1: Enable.		
3	EN_FVM_HOLD_LPF_C	Enable/disable the hold low pass filter function to reduce the voltage drop during FVM for Rail C. 0: Disable. 1: Enable.		
2:0	LPF_INITIAL_C	Reduce overshoot of DVID up from PS4 by selecting initial state of LPF of Rail C. 000, LPF_INITIAL_C = -0.5μ A. 001, LPF_INITIAL_C = 0μ A. 010, LPF_INITIAL_C = 0.5μ A. 011, LPF_INITIAL_C = 1μ A. 100, LPF_INITIAL_C = -2μ A. 101, LPF_INITIAL_C = -1.5μ A. 110, LPF_INITIAL_C = -1μ A. All other combinations are not defined. VLPF_INITIAL_C (V) = LPF_INITIAL_C * $100k\Omega * 0.3 * R_{EA1(C)}/R_{EA2(C)}$		

RT3632BE

Table 37. DVID_LIFT_AB

Address	ddress: 0x22								
Bit	7	6	5	4	3	2	1	0	
Field	DVID_LIFT_A				DVID_LIFT_B				
Default	0	1	0	1	0	1	0	1	
Туре		RW				RV	V		

Bit	Name	Description
7:4	DVID_LIFT_A	Dynamic VID compensation during DVID ramp up for Rail A. 0000: IDVID_LIFT_A = Disable. 0001: IDVID_LIFT_A = 1 μ A. 0010: IDVID_LIFT_A = 2 μ A. 0011: IDVID_LIFT_A = 3 μ A. 0100: IDVID_LIFT_A = 4 μ A. 0101: IDVID_LIFT_A = 5 μ A. 0110: IDVID_LIFT_A = 6 μ A. 0111: IDVID_LIFT_A = 7 μ A. 1000: IDVID_LIFT_A = 8 μ A. 1000: IDVID_LIFT_A = 8 μ A. 1011: IDVID_LIFT_A = 10 μ A. 1011: IDVID_LIFT_A = 12 μ A. 1100: IDVID_LIFT_A = 14 μ A. 1101: IDVID_LIFT_A = 16 μ A. 1111: IDVID_LIFT_A = 18 μ A. 1111: IDVID_LIFT_A = 20 μ A.
3:0	DVID_LIFT_B	Dynamic VID compensation during DVID ramp up for Rail B. 0000: IDVID_LIFT_B = Disable. 0001: IDVID_LIFT_B = 1 μ A. 0010: IDVID_LIFT_B = 2 μ A. 0011: IDVID_LIFT_B = 3 μ A. 0100: IDVID_LIFT_B = 4 μ A. 0101: IDVID_LIFT_B = 5 μ A. 0110: IDVID_LIFT_B = 5 μ A. 0111: IDVID_LIFT_B = 7 μ A. 1000: IDVID_LIFT_B = 7 μ A. 1000: IDVID_LIFT_B = 8 μ A. 1011: IDVID_LIFT_B = 9 μ A. 1010: IDVID_LIFT_B = 10 μ A. 1011: IDVID_LIFT_B = 12 μ A. 1100: IDVID_LIFT_B = 14 μ A. 1101: IDVID_LIFT_B = 16 μ A. 1110: IDVID_LIFT_B = 18 μ A. 1111: IDVID_LIFT_B = 20 μ A.

RICHTEK

Table 38. DVID_LIFT_C

Address	Address: 0x23								
Bit	7	6	5	4	3	2	1	0	
Field	DVID_LIFT_C				Reserved				
Default	0	0	1	1	0	0	1	0	
Туре		R	W			RV	V		

Bit	Name	Description
7:4	DVID_LIFT_C	Dynamic VID compensation during DVID ramp up for Rail C. 0000: IDVID_LIFT_C = Disable. 0001: IDVID_LIFT_C = 1 μ A. 0010: IDVID_LIFT_C = 2 μ A. 0011: IDVID_LIFT_C = 3 μ A. 0100: IDVID_LIFT_C = 4 μ A. 0101: IDVID_LIFT_C = 5 μ A. 0110: IDVID_LIFT_C = 6 μ A. 0111: IDVID_LIFT_C = 7 μ A. 1000: IDVID_LIFT_C = 8 μ A. 1001: IDVID_LIFT_C = 8 μ A. 1001: IDVID_LIFT_C = 10 μ A. 1010: IDVID_LIFT_C = 12 μ A. 1100: IDVID_LIFT_C = 14 μ A. 1100: IDVID_LIFT_C = 16 μ A. 1110: IDVID_LIFT_C = 18 μ A. 1111: IDVID_LIFT_C = 20 μ A.
3:0	Reserved	[3:0] = 0010. All other combination are not defined.

RT3632BE

Table 39. PSYS_PWM_TRI_0V_DVID

Address	Address: 0x24								
Bit	7	6	5	4	3	2	1	0	
Field	ADJ_PSYS _LEVEL	PWM_TR	PWM_TRI_LEVEL		Reserved		EN_0V_DVID_ UP_SMT	Reserved	
Default	0	0	0	0	0	1	0	1	
Туре	RW	RW		RW			RW	RW	

Bit	Name	Description
7	ADJ_PSYS_LEVEL	Adjust the full-scale voltage level of PSYS. 0: PSYS = 1.6V 1: PSYS = 3.2V
6:5	PWM_TRI_LEVEL	Selection of PWM tri-state level 00: PWM_TRI_LEVEL = 1.6V to 2.2V. 01: PWM_TRI_LEVEL = 1.34V to 1.88V. 10: PWM_TRI_LEVEL = 1.4V to 2V. 11; PWM_TRI_LEVEL = 1.16V to 1.65V.
4:2	Reserved	[4:2] = 001. All other combination are not defined.
1	EN_0V_DVID_UP_SMT	Enable/Disable the function to smooth the voltage ramp by adjusting the t _{ON} width of the PWM signals when slewing up from 0V. 0: Disable. 1: Enable.
0	Reserved	[0] = 1. All other combination are not defined.

Table 40. ACLL_LPF_TSEN_POS_OFST_A

Address	Address: 0x25								
Bit	7	6	5	4	3	2	1	0	
Field	ACLL_LPF_	LIFT_SEL_A	TSEN_POS_OFFSET_A						
Default	1	1	1	0	0	0	0	0	
Туре	RW		RW						

Bit	Name	Description
7:6	ACLL_LPF_LIFT_SEL_A	Selection of the voltage lifting when adaptive ramp is triggered in ACLL for Rail A. 00: 1x 01: 1.5x 10: 2x 11: 2.5x
5:0	TSEN_POS_OFFSET_A	Adjust the positive thermal coefficient offset for fine-tuning of Rail A. When the $0x25[5:0] = 6'd32$, the VTSEN_A = 1.4V represents 100°C. The equation of the positive thermal coefficient is described as below, VTEN_A = 1.5V - TSEN_POS_OFFSET_A x 3.125mV at 100°C

RICHTEK

Table 41. ACLL_LPF_TSEN_POS_OFST_B

Address	Address: 0x26										
Bit	7	6	5	4	3	2	1	0			
Field	ACLL_LPF_LIFT_SEL_B			TSEN_POS_OFFSET_B							
Default	0	0	1	0	0	0	0	0			
Туре	RW		RW								

Bit	Name	Description
7:6	ACLL_LPF_LIFT_SEL_B	Selection of the voltage lifting when adaptive ramp is triggered in ACLL for Rail B. 00: 1x 01: 1.5x 10: 2x 11: 2.5x
5:0	TSEN_POS_OFFSET_B	Adjust the positive thermal coefficient offset for fine-tuning of Rail B. When the $0x26[5:0] = 6'd32$, the VTSEN_B = 1.4V represents 100°C. The equation of the positive thermal coefficient is described as below, VTEN_B = 1.5V - TSEN_POS_OFFSET_B x 3.125mV at 100°C

Table 42. ACLL_LPF_TSEN_POS_OFST_C

Address	Address: 0x27										
Bit	7	6	5	4	3	2	1	0			
Field	ACLL_LPF_LIFT_SEL_C			TSEN_POS_OFFSET_C							
Default	0	0	1	0	0	0	0	0			
Туре	RW		RW								

Bit	Name	Description
7:6	ACLL_LPF_LIFT_SEL_C	Selection of the voltage lifting when adaptive ramp is triggered in ACLL for Rail C. 00: 1x 01: 1.5x 10: 2x 11: 2.5x
5:0	TSEN_POS_OFFSET_C	Adjust the positive thermal coefficient offset for fine-tuning of Rail C. When the $0x27[5:0] = 6'd32$, the VTSEN_C = 1.4V represents 100°C. The equation of the positive thermal coefficient is described as below, VTEN_C = 1.5V - TSEN_POS_OFFSET_C x 3.125mV at 100°C

RT3632BE

	Table 43. FVM_CTRL_AB								
Address: 0x28									
Bit	7	6	5	4	3	2	1	0	
Field	EN_FREQ _CTRL _FVM_A	EN_VEA_ CLAMP _FVM_A	FVM_EXTEND_T _SEL_A		EN_FREQ _CTRL _FVM_B	EN_VEA_ CLAMP _FVM_B	FVM_EX _SEI		
Default	0	1	0	0	0	1	0	0	
Туре	RW	RW	R	RW		RW	RV	V	

Bit	Name	Description
7	EN_FREQ_CTRL _FVM_A	Enable/Disable the frequency control of Rail A to avoid the multiple pulse when the FVM is triggered. 0: Disable. 1: Enable.
6	EN_VEA_CLAMP _FVM_A	Enable/Disable the error amplifier clamping of Rail A to enhance the accuracy of the current limit when the FVM is triggered. 0: Disable. 1: Enable.
5:4	FVM_EXTEND_T _SEL_A	Selection of the extended time for the non-overlap PWM Ton and VEA clamping for Rail A. 00: 0.625µs. 01: 1.25µs. 10: 1.875µs. 11: 2.5µs.
3	EN_FREQ_CTRL _FVM_B	Enable/Disable the frequency control of Rail B to avoid the multiple pulse when the FVM is triggered. 0: Disable. 1: Enable.
2	EN_VEA_CLAMP _FVM_B	Enable/Disable the error amplifier clamping of Rail B to enhance the accuracy of the current limit when the FVM is triggered. 0: Disable. 1: Enable.
1:0	FVM_EXTEND_T _SEL_B	Selection of the extended time for the non-overlap PWM Ton and VEA clamping for Rail B. 00: 0.625µs. 01: 1.25µs. 10: 1.875µs. 11: 2.5µs.

Table 44. RESERVED

Address	Address: 0x29							
Bit	7	6	5	4	3	2	1	0
Field		Reserved						
Default	1	1	1	1	1	0	0	0
Туре				RV	V			

Bit	Name	Description
7:0	Reserved	[7:0] = 00000000. All other combination are not defined.

RICHTEK

Table 45. ZCD_HYS_OFST_C

Address	Address: 0x2A								
Bit	7	6	5	4	3	2	1	0	
Field	ZCD_HYS_C		ZCD_OFFSET_C						
Default	1	1	1	0	0	0	0	0	
Туре	RW		RW						

Bit	Name	Description					
7:6	ZCD_HYS_C	Selection of ZCD hysteresis for Rail C. ZCD_HYS = 0.208mV/step [00]: 0mV [01]: 0.208mV [10]: 0.417mV [11]: 0.625mV					
5:0	ZCD_OFFSET_C	Selection of the additional ZCD offset for Rail C. The additional ZCD offset is set as multiple by ZCD_OFFSET_C in decimal. [5]: sign bit, 0 is positive ZCD_OFFSET = 0.104mV/step [0000001]: 0.104mV [0001100]: 1.25mV [1000001]: -0.104mV [1001100]: -1.25mV					

Table 46. EN_RAIL_MAX_PH

Address	Address: 0x2B							
Bit	7	6	5	4	3	2	1	0
Field	EN_RAIL_A		MAX_PH_A			EN_RAIL_B	MAX_	PH_B
Default	0	1	1	0	0	0	1	1
Туре								

Bit	Name	Description				
7	EN_RAIL_A	Enable/Disable Rail A. 0: Enable Rail A. 1: Disable Rail A.				
6:4	MAX_PH_A	Selection of maximum phases operation of Rail A. 110, 2-PH 111, 1-PH Any other value is not available for 0x2B [6:4].				
3	EN_RAIL_C	Enable/Disable Rail C. 0: Enable Rail C. 1: Disable Rail C.				
2	Enable/Disable Rail B. EN_RAIL_B 0: Enable Rail B. 1: Disable Rail B.					
1:0	MAX_PH_B	Selection of maximum phases operation of Rail B. 10, 2-PH 11, 1-PH Any other value is not available for 0x2B [1:0].				

RT3632BE

Table 47. SVID_ADDR

Address	: 0x2C								
Bit	7	6	5	4	3	2	1	0	
Field	Rese	erved	SVID_ADD	SVID_ADDR_RAIL_A		SVID_ADDR_RAIL_B		SVID_ADDR_RAIL_C	
Default	0	0	0	0	0	1	1	0	
Туре	RW		RW		RW		RW		

Bit	Name	Description
7:6	Reserved	Reserved bits.
5:4	SVID_ADDR_RAIL_A	 SVID domain address setting for Rail A, 00: SVID domain address of Rail A is 00h. 01: SVID domain address of Rail A is 01h. 10: SVID domain address of Rail A is 02h. 11: SVID domain address of Rail A is 03h. Duplicated SVID domain address of Rail A, Rail B and Rail C must be avoided.
3:2	SVID_ADDR_RAIL_B	 SVID domain address setting for Rail B, 00: SVID domain address of Rail B is 00h. 01: SVID domain address of Rail B is 01h. 10: SVID domain address of Rail B is 02h. 11: SVID domain address of Rail B is 03h. Duplicated SVID domain address of Rail A, Rail B and Rail C must be avoided.
1:0	SVID_ADDR_RAIL_C	SVID domain address setting for Rail C, 00: SVID domain address of Rail C is 00h. 01: SVID domain address of Rail C is 01h. 10: SVID domain address of Rail C is 02h. 11: SVID domain address of Rail C is 03h. Duplicated SVID domain address of Rail A, Rail B and Rail C must be avoided.

RICHTEK

Table 48. LPF_LIMIT_AB

Address	Address: 0x2D									
Bit	7	6	5	4	3	2	1	0		
Field	1_PH_LPF	LIMIT_A	MULTI_PH _LPF_LIMIT_A		1_PH_LPF	LIMIT_B	MULTI_PH _LPF_LIMIT_B			
Default	1	0	0	0	1	1	1	0		
Туре	R	RW		RW		RW		RW		

Bit	Name	Description
7:6	1_PH_LPF_LIMIT_A	Selection of LPF threshold to avoid voltage drop in the range of high frequency for 1-phase operation of Rail A. 00: 60mV. 01: 80mV. 10: 100mV. 11: Disable.
5:4	MULTI_PH _LPF_LIMIT_A	Selection of LPF threshold to avoid voltage drop in the range of high frequency for multi-phase operation of Rail A. 00: Disable. 01: 200mV. 10: 300mV. 11: 400mV.
3:2	1_PH_LPF_LIMIT_B	Selection of LPF threshold to avoid voltage drop in the range of high frequency for 1-phase operation of Rail B. 00: 60mV. 01: 80mV. 10: 100mV. 11: Disable.
1:0	MULTI_PH _LPF_LIMIT_B	Selection of LPF threshold to avoid voltage drop in the range of high frequency for multi-phase operation of Rail B. 00: Disable. 01: 200mV. 10: 300mV. 11: 400mV.

RT3632BE

Table 49. ZCD_HYS_OFST_A

Address	Address: 0x2E									
Bit	7	6	5	4	3	2	1	0		
Field	ZCD_HYS_A		ZCD_OFFSET_A							
Default	1	0	0	0	0	0	0	0		
Туре	RW		RW							

Bit	Name	Description
7:6	ZCD_HYS_A	Selection of ZCD hysteresis for Rail A. ZCD_HYS = 0.208mV/step [00]: 0mV [01]: 0.208mV [10]: -0.417mV [11]: -0.625mV
5:0	ZCD_OFFSET_A	Selection of the additional ZCD offset for Rail A. The additional ZCD offset is set as multiple by ZCD_OFFSET_A in decimal. [5]: sign bit, 0 is positive ZCD_OFFSET = 0.104mV/step [0000001]: 0.104mV [0001100]: 1.25mV [1000001]: -0.104mV [1001100]: -1.25mV

Table 50. ZCD_HYS_OFST_B

Address	Address: 0x2F									
Bit	7	6	5	4	3	2	1	0		
Field	ZCD_HYS_A			ZCD_OFFSET_B						
Default	1	0	0	0	0	0	1	0		
Туре	RW		RW							

Bit	Name	Description
7:6	ZCD_HYS_B	Selection of ZCD hysteresis for Rail B. ZCD_HYS = 0.208mV/step [00]: 0mV [01]: 0.208mV [10]: 0.417mV [11]: 0.625mV
5:0	ZCD_OFFSET_B	Selection of the additional ZCD offset for Rail B. The additional ZCD offset is set as multiple by ZCD_OFFSET_B in decimal. [5]: sign bit, 0 is positive ZCD_OFFSET = 0.104mV/step [0000001]: 0.104mV [0001100]: 1.25mV [1000001]: -0.104mV [1001100]: -1.25mV

RICHTEK

	Table 51. VBOOT_VID_A							
Address: 0x30								
Bit	7	6	5	4	3	2	1	0
Field	VBOOT_VID_A							
Default	1	0	1	0	0	0	0	1
Туре	RW							

Bit	Name	Description
		Selection the non-zero VBOOT voltage for Rail A.
7:0		As $0x14 [7] = 0$ (5mV VID step), The non-zero VBOOT can be selected from $0.25V \sim 1.52V$ corresponding to hexadecimal $0x01$ to $0xFF$ via the equation below. Non-zero VBOOT(V) = $0.245+0.005^{*}(VBOOT_VID_A \text{ in decimal})$.
1.0	VBOOT_VID_A	As $0x14 [7] = 1 (10mV VID step)$, The non-zero VBOOT can be selected from $0.2V \sim 2.2V$ corresponding to hexadecimal $0x01$ to $0xC9$ via the equation below. Non-zero VBOOT(V) = $0.190+0.010*(VBOOT_VID_A \text{ in decimal})$.
		Note that the VBOOT_VID_A = 0x00 is unacceptable.

Table 52. SD_GD_VID_A

Address	Address: 0x31								
Bit	7	6	5	4	3	2	1	0	
Field		SD_GD_VID_A							
Default	1	0	1	0	0	0	0	1	
Туре				RV	V				

Bit	Name	Description
7:0	Name	Description Description Selection the soldering good voltage for Rail A. As 0x14 [7] = 0 (5mV VID step), The soldering good voltage can be selected from 0.25V~1.52V corresponding to hexadecimal 0x01 to 0xFF via the equation below. Soldering good voltage(V) = 0.245+0.005*(SD_GD_VID_A in decimal). As 0x14 [7] = 1 (10mV VID step), The soldering good voltage can be selected from 0.2V~2.2V corresponding to hexadecimal 0x01 to 0xC9 via the equation below. Soldering good voltage (V) = 0.190+0.010*(SD_GD_VID_A in decimal).
		Note that the SD_GD_VID_A = $0x00$ is unacceptable.

RT3632BE

Table	53.	VBOOT VID	В

Address	Address: 0x32										
Bit	7	6	5	4	3	2	1	0			
Field	VBOOT_VID_B										
Default	1	0	1	0	0	0	0	1			
Туре	RW										

Bit	Name	Description
Bit 7:0	Name VBOOT_VID_B	Description Selection the non-zero VBOOT voltage for Rail B. As 0x14 [6] = 0 (5mV VID step), The non-zero VBOOT can be selected from 0.25V~1.52V corresponding to hexadecimal 0x01 to 0xFF via the equation below. Non-zero VBOOT(V) = 0.245+0.005*(VBOOT_VID_B in decimal). As 0x14 [6] = 1 (10mV VID step), The non-zero VBOOT can be selected from 0.2V~2.2V corresponding to hexadecimal 0x01 to 0xC9 via the equation below.
		Non-zero VBOOT(V) = $0.190+0.010^{*}$ (VBOOT_VID_B in decimal).
		Note that the VBOOT_VID_B = 0x00 is unacceptable.

Table 54. SD_GD_VID_B

Address	Address: 0x33											
Bit	7	6	5	4	3	2	1	0				
Field	SD_GD_VID_B											
Default	1	0	1	0	0	0	0	1				
Туре	RW											

Bit	Name	Description
Bit 7:0	Name SD_GD_VID_B	Description Selection the soldering good voltage for Rail B. As 0x14 [6] = 0 (5mV VID step), The soldering good voltage can be selected from 0.25V~1.52V corresponding to hexadecimal 0x01 to 0xFF via the equation below. Soldering good voltage(V) = 0.245+0.005*(SD_GD_VID_B in decimal). As 0x14 [6] = 1 (10mV VID step), The soldering good voltage can be selected from 0.2V~2.2V corresponding to hexadecimal 0x01 to 0xC9 via the equation below. Soldering good voltage (V) = 0.190+0.010*(SD GD VID B in decimal).
		Note that the SD_GD_VID_B = $0x00$ is unacceptable.

RICHTEK

Table 55. VBOOT_VID_C

Address	Address: 0x34										
Bit	7	6	5	4	3	2	1	0			
Field	VBOOT_VID_C										
Default	1	0	1	0	0	0	0	1			
Туре	RW										

Bit	Name	Description
		Selection the non-zero VBOOT voltage for Rail C.
		As 0x14 [5] = 0 (5mV VID step),
		The non-zero VBOOT can be selected from 0.25V~1.52V corresponding to
		hexadecimal 0x01 to 0xFF via the equation below.
		Non-zero VBOOT(V) = 0.245+0.005*(VBOOT_VID_C in decimal).
7:0	VBOOT_VID_C	
		As 0x14 [5] = 1 (10mV VID step),
		The non-zero VBOOT can be selected from 0.2V~2.2V corresponding to
		hexadecimal 0x01 to 0xC9 via the equation below.
		Non-zero VBOOT(V) = 0.190+0.010*(VBOOT_VID_C in decimal).
		Note that the VBOOT_VID_C = 0x00 is unacceptable.

Table 56. SD_GD_VID_C

Address	Address: 0x35										
Bit	7	6	5	4	3	2	1	0			
Field	SD_GD_VID_C										
Default	1	0	1	0	0	0	0	1			
Туре	RW										

Bit	Name	Description
		Selection the soldering good voltage for Rail C.
		As 0x14 [5] = 0 (5mV VID step),
		The soldering good voltage can be selected from 0.25V~1.52V corresponding to hexadecimal 0x01 to 0xFF via the equation below.
7:0	SD GD VID C	Soldering good voltage(V) = 0.245+0.005*(SD_GD_VID_C in decimal).
-		As 0x14 [5] = 1 (10mV VID step),
		The soldering good voltage can be selected from 0.2V~2.2V corresponding to hexadecimal 0x01 to 0xC9 via the equation below.
		Soldering good voltage (V) = 0.190+0.010*(SD_GD_VID_C in decimal).
		Note that the SD_GD_VID_C = 0x00 is unacceptable.

www.richtek.com

RT3632BE

	Table 57. Reserved									
	: 0x36~0x3F			1 1	1.6.14	- I				
Descript	tion: Register	<u>s of 0x36~0x</u>	3⊢ are reserv	ed and with sa	ame default v	alue.				
Bit	7	6	5	4	3	2	1	0		
Field				Rese	rved					
Default	0	0	0	0	0	0	0	0		
Туре	RW									

Bit	Name	Description
7:0	Reserved	Reserved bits.

Table 58. SET_FW_VER_LSB

Address	Address: 0x70											
Bit	7	6	5	4	3	2	1	0				
Field	GROUP_1_FW_VER_LSB											
Default	0	0	0	0	0	0	0	1				
Туре	RW											

Bit	Name	Description
7:0	GROUP_1_FW_VER_LSB	The least significant bits of the FW version of the Set Page (GROUP_1) (0x00~0x7E).

Table 59. SET_FW_VER_MSB

Address: 0x71										
Bit	7	6	5	4	3	2	1	0		
Field	GROUP_1_FW_VER_MSB									
Default	0	0	0	0	0	0	0	0		
Туре	RW									

Bit	Name	Description
7:0	GROUP_1_FW_VER_MSB	The most significant bits of the FW version of the Set Page (GROUP_1) (0x00~0x7E).

	Table 60. Reserved										
Address: 0x72											
Bit	7	6	5	4	3	2	1	0			
Field	Reserved										
Default	0	0	0	0	0	0	0	1			
Туре	RW										

Bit	Name	Description
7:0	Reserved	Reserved bits.

RICHTEK

	Table 61. Reserved										
Address: 0x73											
Bit	7	6	5	4	3	2	1	0			
Field	Reserved										
Default	0	0	1	1	0	0	1	0			
Туре	RW										

Bit	Name	Description
7:0	Reserved	[7:0] = 00110010. All other combination are not defined.

Table 62. MODEL_ID

Address: 0x74										
Bit	7	6	5	4	3	2	1	0		
Field	MODEL_ID									
Default	0	0	0	0	0	0	0	0		
Туре	RW									

Bit	Name	Description
7:0	MODEL_ID	Model ID.

	Table 63. Reserved										
Address: 0x7A											
Bit	7	6	5	4	3	2	1	0			
Field	Reserved										
Default	0	0	0	0	0	0	1	1			
Туре	RW										

Bit	Name	Description
7:0	Reserved	[7:0] = 00000011. All other combination are not defined.

	Table 64. Reserved										
Address: 0x7B											
Bit	7	6	5	4	3	2	1	0			
Field	Reserved										
Default	0	1	0	0	0	0	0	0			
Туре	RW										

Bit	Name	Description
7:0	Reserved	[7:0] = 01000000. All other combination are not defined.

RT3632BE

	Table 65. Reserved								
Address: 0x7C									
Bit	7	6	5	4	3	2	1	0	
Field				Rese	rved				
Default	0	0	0	0	0	0	0	0	
Туре		RW							

Bit	Name	Description
7:0	Reserved	[7:0] = 00000000. All other combination are not defined.

Table 66. Reserved

Address: 0x7D									
Bit	7	7 6 5 4 3 2 1 0							
Field		Reserved							
Default	0	0	0	0	0	0	0	1	
Туре		RW							

Bit	Name	Description
7:0	Reserved	Reserved bits.

Table 67. CRC _PAGE_GROUP_1

Address: 0x7E									
Bit	7	7 6 5 4 3 2 1 0							
Field		CRC _PAGE_GROUP_1							
Default		N/A							
Туре		R							

Bit	Name	Description
7:0	CRC_PAGE_GROUP_1	The cyclic redundancy code (CRC) of the data in the user configurable Set Page (GROUP_1).

			Та	ble 68. CBG	_A_1			
Address		.	0					
Descript	ion: Adjust p	hase 1, phase	e 2 current ba	ance gain of	Rall A.		r	
Bit	7	6	5	4	3	2	1	0
Field		CBG1_A			CBG2_A		Rese	rved
Default	1	0	0	1	0	0	1	0
Туре	ype RW RW RW							

Bit	Name	Description
7:5	CBG1_A	Adjust phase 1 current balance gain of Rail A 000: 69.2%, 001: 76.9%, 010: 84.6%, 011: 92.3%, 100: 100% (default), 101: 107.69%, 110: 115.38%, 111: 123.08%.
4:2	CBG2_A	Adjust phase 2 current balance gain of Rail A 000: 69.2%, 001: 76.9%, 010: 84.6%, 011: 92.3%, 100: 100% (default), 101: 107.69%, 110: 115.38%, 111: 123.08%.
1:0	Reserved	Reserved bits.

Table 69. CBG_A_2

Address	Address: 0x91									
Bit	7	6	5	4	3	2	1	0		
Field		Reserved								
Default	0	0 1 0 0 1 0 0								
Туре	RW	RW RW Reserved								

Table 70. SPM_TH_A_1

Address: 0x92									
Bit	7	7 6 5 4 3 2 1 0							
Field		Reserved							
Default	0	0	1	0	0	1	0	0	
Туре	RW RW								

www.richtek.com

RT3632BE

			Tabl	e 71. SPM_T	H_A_2					
Address	: 0x93									
Descript	t ion: Adjust si	mart phase m	anagement o	f Rail A for 1-	phase to 2-ph	ase operation				
Bit	7	6	5	4	3	2	1	0		
Field		Rese	erved			SPM_T	H2_A			
Default	0	0 1 1 1 1 0 1 1								
Туре		RW RW								

Bit	Name	Description
7:4	Reserved	Reserved bits.
3:0	SPM_TH2_A	Adjust SPM threshold for 1-phase to 2-phase of Rail A. 0000: SPM_TH2_A = 100% of ICCMAX_A, 0001: SPM_TH2_A = 90% of ICCMAX_A, 0010: SPM_TH2_A = 80% of ICCMAX_A, 0011: SPM_TH2_A = 70% of ICCMAX_A, 0100: SPM_TH2_A = 60% of ICCMAX_A, 0101: SPM_TH2_A = 50% of ICCMAX_A, 0110: SPM_TH2_A = 45% of ICCMAX_A, 0111: SPM_TH2_A = 40% of ICCMAX_A, 1000: SPM_TH2_A = 35% of ICCMAX_A, 1001: SPM_TH2_A = 35% of ICCMAX_A, 1010: SPM_TH2_A = 25% of ICCMAX_A, 1011: SPM_TH2_A = 15% of ICCMAX_A, 1101: SPM_TH2_A = 10% of ICCMAX_A, 1101: SPM_TH2_A = 5% of ICCMAX_A, 1111: SPM_TH2_A = 5% of ICCMAX_A, 1111: SPM_TH2_A = 2.5% of ICCMAX_A,

RICHTEK

	Table 72. SPM_HYS_A_1										
Address: 0x94											
Descript	Description: Adjust smart phase management hysteresis threshold of Rail Ax2.										
Bit	7	6	5	4	3	2	1	0			
Field	EN_SPM_HYS _DOUBLE_A	Reserved	Reserved								
Default	0	0	0	1	0	0	1	0			
Туре	RW	RW	RW				RW				

Bit	Name	Description
		Enable SPM hysteresis threshold x2 of Rail A.
7	EN_SPM_HYS_DOUBLE_A	0: Disable.
		1: Enable.
6	Reserved	Reserved bits.
3:5	Reserved	Reserved bits.
2:0	Reserved	Reserved bits.

Table 73. SPM_HYS_A_2_REV_ID

Address	Address: 0x95										
Description: Adjust smart phase management hysteresis threshold of Rail A for 2-phase to 1-phase operation;											
Revision ID.											
Bit	7	6	5	4	3	2	1	0			
Field	Reserved		SPM_HYS2_A			REVISION_ID					
Default	0	1	0	0	1	0	0	0			
Туре	RW		RW			RW					

Bit	Name	Description
7:5	Reserved	Reserved bits.
4:2	SPM_HYS2_A	Adjust SPM hysteresis threshold for 2-phase to 1-phase operation of Rail A. As EN_SPM_HYS_DOUBLE_A = 0 000: SPM_HYS2_A = 0% of ICCMAX_A 001: SPM_HYS2_A = 2.5% of ICCMAX_A 010: SPM_HYS2_A = 5% of ICCMAX_A 011: SPM_HYS2_A = 7.5% of ICCMAX_A 100: SPM_HYS2_A = 10% of ICCMAX_A 101: SPM_HYS2_A = 12.5% of ICCMAX_A 110: SPM_HYS2_A = 15% of ICCMAX_A 111: SPM_HYS2_A = 17.5% of ICCMAX_A As EN_SPM_HYS_DOUBLE_A = 1 000: SPM_HYS2_A = 0% of ICCMAX_A 001: SPM_HYS2_A = 5% of ICCMAX_A 010: SPM_HYS2_A = 10% of ICCMAX_A 011: SPM_HYS2_A = 15% of ICCMAX_A 100: SPM_HYS2_A = 20% of ICCMAX_A 101: SPM_HYS2_A = 20% of ICCMAX_A 101: SPM_HYS2_A = 25% of ICCMAX_A 101: SPM_HYS2_A = 30% of ICCMAX_A 111: SPM_HYS2_A = 30% of ICCMAX_A 111: SPM_HYS2_A = 35% of ICCMAX_A
1:0	REVISION_ID	[1:0] = 00. All other combination are not defined.

Table 74. SPM_PH_CTRL_A_GROUP_0_FW_VER

Address: 0x96

Description: The sequence adjustment and the timing control for phase shedding and phase adding of Rail A; FW version of GROUP 0.

	—							
Bit	7 6		5	4	3	2	1	0
Field	SPM_DOWN_PH_DELAY_A		EN_SPM_STEP _DN_PH_A	EN_SPM_QR _FULL_PH_A		GROUP_0_FW_VER		
Default	1	1	0	0	0	0	0	0
Туре	RW		RW	RW		F	RW	

Bit	Name	Description
7:6	SPM_DOWN_PH_DELAY_A	The delay time setting for each phase shedding of Rail A. 00: 6μs 01: 4.5μs 10: 3μs 11: 1.5μs
5	EN_SPM_STEP_DN_PH_A	 Enable/Disable SPM phase down to target phase by step for Rail A. 0: SPM phase down to target phase directly. e.g. 2PH→1PH. 1: SPM phase down to target phase by step. e.g. 2PH→1PH.
4	EN_SPM_QR_FULL_PH_A	Enable/Disable full-phase operation as quick response is triggered for Rail A. 0: Keep current phase number as quick response is triggered. 1: Turn all phases on as quick response is triggered.
3:0	GROUP_0_FW_VER	The FW version of the Page GROUP_0(0x90~0x9E).

	Table 75. CBG_B_1									
Address	: 0x97									
Description: Adjust phase 1, phase 2 current balance gain of Rail B.										
Bit	7	6	5	4	3	2	1	0		
Field	CBG1_B			CBG2_B				Reserved		
Default	1	0	0	1	0	0	1	0		
Туре	RW		RW			RW				

Bit	Name	Description
7:5	CBG1_B	Adjust phase 1 current balance gain of Rail B. 000: 69.2%, 001: 76.9%, 010: 84.6%, 011: 92.3%, 100: 100% (default), 101: 107.69%, 110: 115.38%, 111: 123.08%.
4:2	CBG2_B	Adjust phase 2 current balance gain of Rail B. 000: 69.2%, 001: 76.9%, 010: 84.6%, 011: 92.3%, 100: 100% (default), 101: 107.69%, 110: 115.38%, 111: 123.08%.
1:0	Reserved	Reserved bits.

Table 76. CBG_B_2_PRODUCT_ID

	Address: 0x98										
Descript	Description: Product ID.										
Bit	7	6	5	4	3	2	1	0			
Field	Reserved		PRODUCT_ID								
Default	0	0	1	1	0	0	1	0			
Туре	RW		RW								

Bit	Name	Description					
7	Reserved	Reserved bits.					
6:0	PRODUCT_ID	Product ID.					

	Table 77. SPM_TH_B										
Address											
Descript	tion: Adjust s	mart phase m	anagement o	t Rail B for 1-	phase to 2-ph	ase operation	l				
Bit	7	6	5	4	3	2	1	0			
Field	Reserved					SPM_T	H2_B				
Default	0	1	1	1	1	0	1	1			
Туре	RW					RV	V				

Bit	Name	Description
7:4	Reserved	Reserved bits.
3:0	SPM_TH2_B	Adjust SPM threshold for 1-phase to 2-phase of Rail B. $0000: SPM_TH2_B = 100\%$ of ICCMAX_B, $0001: SPM_TH2_B = 90\%$ of ICCMAX_B, $0010: SPM_TH2_B = 80\%$ of ICCMAX_B, $0011: SPM_TH2_B = 70\%$ of ICCMAX_B, $0100: SPM_TH2_B = 60\%$ of ICCMAX_B, $0101: SPM_TH2_B = 60\%$ of ICCMAX_B, $0110: SPM_TH2_B = 45\%$ of ICCMAX_B, $0111: SPM_TH2_B = 40\%$ of ICCMAX_B, $1000: SPM_TH2_B = 40\%$ of ICCMAX_B, $1001: SPM_TH2_B = 35\%$ of ICCMAX_B, $1001: SPM_TH2_B = 30\%$ of ICCMAX_B, $1010: SPM_TH2_B = 25\%$ of ICCMAX_B, $1011: SPM_TH2_B = 20\%$ of ICCMAX_B, $1101: SPM_TH2_B = 15\%$ of ICCMAX_B, $1101: SPM_TH2_B = 15\%$ of ICCMAX_B, $1101: SPM_TH2_B = 10\%$ of ICCMAX_B, $1101: SPM_TH2_B = 5\%$ of ICCMAX_B, $1111: SPM_TH2_B = 5\%$ of ICCMAX_B,

Table 78. SPM_HYS_B

	Address: 0x9A Description: Adjust smart phase management hysteresis threshold of Rail B for 2-phase to 1-phase operation.										
Bit	7 6 5 4 3 2 1 0										
Field	EN_SPM_HYS_DOUBLE_B	Reserved		Reserved		SPM_HYS2_B					
Default	0	0	0 1 0			0	1	0			
Туре	RW	RW		RW			RW				

Bit	Name	Description
7	EN_SPM_HYS_DOUBLE_B	Enable SPM hysteresis threshold x2 of Rail B. 0: Disable. 1: Enable.
6:3	Reserved	Reserved bits.
2:0	SPM_HYS2_B	Adjust SPM hysteresis threshold for 2-phase to 1-phase operation of Rail B. As EN_SPM_HYS_DOUBLE_B = 0 000: SPM_HYS2_B = 0% of ICCMAX_B 001: SPM_HYS2_B = 2.5% of ICCMAX_B 010: SPM_HYS2_B = 5% of ICCMAX_B 011: SPM_HYS2_B = 7.5% of ICCMAX_B 100: SPM_HYS2_B = 10% of ICCMAX_B 101: SPM_HYS2_B = 12.5% of ICCMAX_B 110: SPM_HYS2_B = 15% of ICCMAX_B 111: SPM_HYS2_B = 17.5% of ICCMAX_B 111: SPM_HYS2_B = 17.5% of ICCMAX_B 001: SPM_HYS2_B = 0% of ICCMAX_B 001: SPM_HYS2_B = 5% of ICCMAX_B 010: SPM_HYS2_B = 10% of ICCMAX_B 111: SPM_HYS2_B = 15% of ICCMAX_B 111: SPM_HYS2_B = 10% of ICCMAX_B 101: SPM_HYS2_B = 15% of ICCMAX_B 101: SPM_HYS2_B = 20% of ICCMAX_B 101: SPM_HYS2_B = 20% of ICCMAX_B 101: SPM_HYS2_B = 25% of ICCMAX_B 101: SPM_HYS2_B = 25% of ICCMAX_B 101: SPM_HYS2_B = 30% of ICCMAX_B 111: SPM_HYS2_B = 30% of ICCMAX_B 111: SPM_HYS2_B = 30% of ICCMAX_B 111: SPM_HYS2_B = 30% of ICCMAX_B

	Table 79. SPM_PH_CTRL_B											
	Address: 0x9B											
Descript	Description: The sequence adjustment and the timing control for phase shedding and phase adding of Rail B.											
Bit	7	7 6		4	3	2	1	0				
Field	SPM_DOWN	_PH_DELAY_B	EN_SPM_STEP _DN_PH_B	EN_SPM_QR_ FULL_PH_B		Rese	erved					
Default	1	1	0	0	0	1	1	1				
Туре	F	RM	RW	RW		RW						

Bit	Name	Description
7:6	SPM_DOWN_PH_DELAY_B	The delay time setting for each phase shedding of Rail B. 00: 6μs 01: 4.5μs 10: 3μs 11: 1.5μs
5	EN_SPM_STEP_DN_PH_B	 Enable/Disable SPM phase down to target phase by step for Rail B. 0: SPM phase down to target phase directly. e.g. 2PH→1PH. 1: SPM phase down to target phase by step. e.g. 2PH→1PH.
4	EN_SPM_QR_FULL_PH_B	Enable/Disable full-phase operation as quick response is triggered for Rail B. 0: Keep current phase number as quick response is triggered. 1: Turn all phases on as quick response is triggered.
3:0	Reserved	Reserved bits.

Table 80. ANS_EN_SPM_PSK_CTRL

Address: 0x9C

Description: Enable/Disable decay slow down function (acoustic noise suppression, ANS_EN). DCM control in SPM.

Bit	7	6	5	4	3	2	1	0
Field	EN_DECA Y_SLOW_ DOWN	EN_SPM_ PS2_EXIT _RST_LPF _A	EN_SPM_ PS2_EXIT _RST_LPF _B	EN_SPM_ PS2_EXIT _RST_LPF _C	Reserved	SPM_ENT ER_TON_ SEL_A	SPM_ENT ER_TON_ SEL_B	SPM_EN TER_TO N_SEL_C
Default	0	0	0	0	0	0	0	0
Туре	RW	RW	RW	RW	RW	RW	RW	RW

Bit	Name	Description							
7	EN_DECAY_SLOW_DOWN	Enable/Disable decay slow down function (acoustic noise suppression ANS_EN) for Rail A, Rail B and Rail C. 0: Disable. 1: Enable.							
6	EN_SPM_PS2_EXIT_RST_LPF _A	Enable/Disable the resetting of LPF at exiting PS2 to avoid undersho in SPM operation for Rail A. 0: Disable. 1: Enable.							
5	EN_SPM_PS2_EXIT_RST_LPF _B	Enable/Disable the resetting of LPF at exiting PS2 to avoid undershoot in SPM operation for Rail B. 0: Disable. 1: Enable.							
4	EN_SPM_PS2_EXIT_RST_LPF _C	Enable/Disable the resetting of LPF at exiting PS2 to avoid undershoot in SPM operation for Rail C. 0: Disable. 1: Enable.							
3	Reserved	Reserved bit.							
2	SPM_ENTER_TON_SEL_A	 Enable/Disable the fast entering of DCM in SPM operation for Rail A. 0: Disable, entering DCM from CCM after 2x PWM Ton have been counted. 1: Enable, entering DCM from CCM after 4x PWM Ton have been counted. 							
1	SPM_ENTER_TON_SEL_B	 Enable/Disable the fast entering of DCM in SPM operation for Rail B. 0: Disable, entering DCM from CCM after 2x PWM Ton have been counted. 1: Enable, entering DCM from CCM after 4x PWM Ton have been counted. 							
0	SPM_ENTER_TON_SEL_C	 Enable/Disable the fast entering of DCM in SPM operation for Rail C. 0: Disable, entering DCM from CCM after 2x PWM Ton have been counted. 1: Enable, entering DCM from CCM after 4x PWM Ton have been counted. 							

RT3632BE

	Table 81. Reserved										
Address: 0x9D											
Bit	7	6	5	4	3	2	1	0			
Field	Reserved										
Default	0	0	1	1	1	0	0	0			
Туре	RW										

Bit	Name	Description
7:0	Reserved	[7:0] = 00111000. All other combination are not defined.

Table 82. Reserved

Address	Address: 0x9E											
Bit	7	6	5	4	3	2	1	0				
Field	Reserved											
Default	0	0	0	0	0	0	0	0				
Туре	RW											

Bit	Name	Description
7:0	Reserved	[7:0] = 00000000. All other combination are not defined.

Table 83. NVM_PROGRAM_STATUS

Address: 0xEC Description: NVM status indicator.										
Bit	7	6	5	4	3	2	1	0		
Field	RESTORE _FLAG	STORE_FL AG	STORE_A LLOW	RESTORE _BUSY	STORE_B USY	CRC_GRO UP_1	CRC_GRO UP_0	CRC_GP 0_GP1		
Default	N/A									
Туре	R	R	R	R	R	R	R	R		

Bit	Name	Description
7	RESTORE_FLAG	1: NVM restoring is done.
6	STORE_FLAG	0: NVM restoring is not done. 1: NVM storing is done. 0: NVM storing is not done.
5	STORE_ALLOW	1: NVM is allowed to be store. 0: NVM is not allowed to be store.
4	RESTORE_BUSY	1: NVM restoring is busy. 0: NVM restoring is not busy.
3	STORE_BUSY	1: NVM storing is busy. 0: NVM storing is not busy.
2	CRC_GROUP_1	1: GROUP_1 (0x00~0x7E) check is failed. 0: GROUP_1 (0x00~0x7E) check is passed.
1	CRC_GROUP_0	1: GROUP_0 (0x90~0x9E) check is failed. 0: GROUP_0 (0x90~0x9E) check is passed.
0	CRC_GP0_GP1	1: GROUP_0 or GROUP_1 check is failed. 0: GROUP_0 and GROUP_1 check are passed.

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

Table 84. STORE_RESTORE_CFG

Address: 0xED

Description: Store command instructs the device to copy the entire contents of the Operating Memory to the matching locations in the non-volatile User Store memory. Restore command instructs the device to copy the entire contents of the non-volatile User Store memory to the matching locations in the Operating Memory. This command must be used only while all outputs are disabled.

Bit	7 6 5 4 3 2						1	0		
Field	STORE_RESTORE_CFG									
Default		N/A								
Туре	W									

Bit	Name	Description
		0x66: Restore all storable register settings from NVM.
7:0	STORE_RESTORE_CFG	0xAA: Store all current storable register settings of GROUP_1 (0x00~0x7D) into NVM as new defaults.
		All other combinations are not defined.

	Table 85. PAGE										
Address: 0xEF Description: Selects the register groups to receive the commands. Do not select page during the VR is operating in non-zero VID.											
Bit	7 6 5 4 3 2 1 0										
Field				PAC	ЭE						
Default	0x80										
Туре				RV	V						

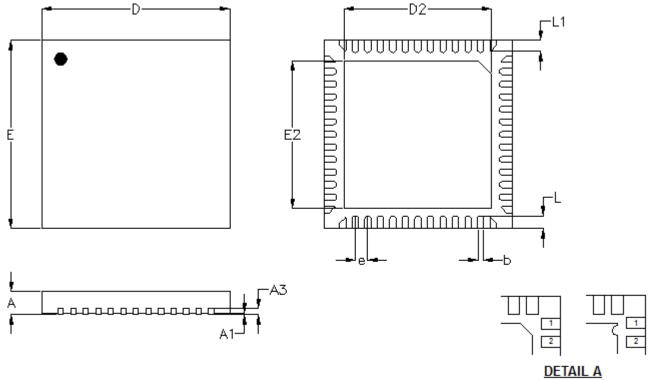
Bit	Name	Description	
7:0	PAGE	0x80: Functions of GROUP_0 (0x90~0x9E) are available. Functions of GROUP_1 (0x00~0x7E) are not available. Functions of SVID commands are available. 0x82:	
		Functions of GROUP_0 (0x90~0x9E) are available. Functions of GROUP_1 (0x00~0x7E) are available. Functions of SVID commands are not available. All other combinations are not defined.	

RT3632BE

Table 86. ENTER_CONF_MODE

Address: 0xF1											
Description: Command to enter the user configuration mode.											
Bit	7 6 5 4 3 2 1 0										
Field	ENTER_CONF_MODE										
Default	It N/A										
Туре				W	1						

Bit	Name	Description
7:0	ENTER CONF MODE	0x62 is not available.
7.0	ENTER_CONF_MODE	Please contact Richtek to receive the password for the user configuration mode.


Table 87. UNLOCK_NVM

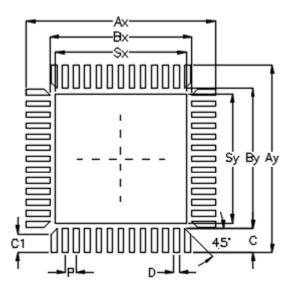
					_					
Address Descript		command for t	the NVM confi	iguration setti	ngs.					
Bit	7	6	5	4	3	2	1	0		
Field		UNLOCK_NVM								
Default		N/A								
Туре		W								

Bit	Name	Description							
7:0	UNLOCK_NVM	Unlock the NVM configuration settings. Please contact Richtek to receive the unlock command for the NVM configuration setting.							

Outline Dimension

Pin #1 ID and Tie Bar Mark Options

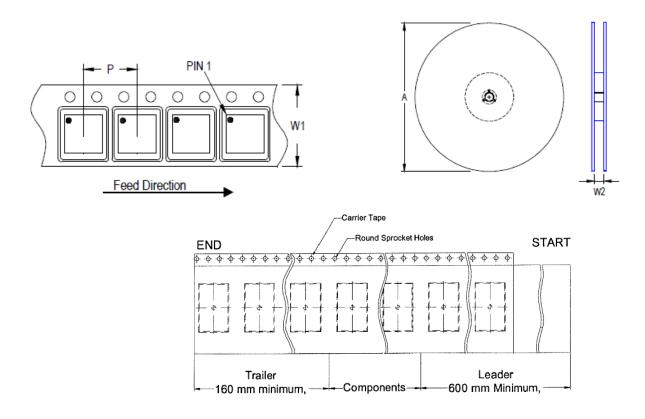
Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.


Symbol	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min.	Max.	Min.	Max.		
A	0.700	0.800	0.028	0.031		
A1	0.000	0.050	0.000	0.002		
A3	0.175	0.250	0.007	0.010		
b	0.150	0.250	0.006	0.010		
D	5.950	6.050	0.234	0.238		
D2	4.650	4.750	0.183	0.187		
E	5.950	6.050	0.234	0.238		
E2	4.650	4.750	0.183	0.187		
е	0.4	00	0.0)16		
L	0.350	0.450	0.014	0.018		
L1	0.300	0.400	0.012	0.016		

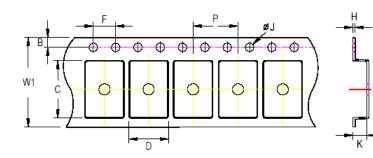
W-Type 52L QFN 6x6 Package

Copyright © 2023 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Footprint Information



Package	Number of		Footprint Dimension (mm)							Tolerance		
	Pin	Р	Ax	Ау	Вx	Ву	C*52	C1*8	D	Sx	Sy	TOIETATICE
V/W/U/XQFN6*6-52	52	0.40	6.80	6.80	5.10	5.10	0.85	0.65	0.20	4.70	4.70	±0.05



Packing Information

Tape and Reel Data

De che se Trance	Tape Size	Pocket Pitch	Reel Si	ze (A)	Units	Trailer	Leader	Reel Width (W2)	
Package Type	(W1) (mm)	(P) (mm)	(mm)	(in)	per Reel	(mm)	(mm)	Min./Max. (mm)	
QFN/DFN 6x6	16	12	330	13	2,500	160	600	16.4/18.4	

C, D and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 16mm carrier tape: 1.0mm max.

Tape Size	W1	Р		В		F		ØJ		Н
	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
16mm	16.3mm	11.9mm	12.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

Copyright © 2023 Richtek Technology Corporation. All rights reserved. DS3632BE-00 www.richtek.com

Tape and Reel Packing

Step	Photo / Description	Step	Photo / Description
1	Reel 13"	4	1 reel per inner box Box G
2		5	
	HIC & Desiccant (2 Unit) inside		6 inner boxes per outer box
3		6	RICHTEK TARIDA BARDA A DA
	Caution label is on backside of Al bag		Outer box Carton A

Container	R	eel	Вох			Carton			
Package	Size	Units	Item	Weight(kg)	Reels	Units	Item	Boxes	Units
QFN and DFN 6x6	13"	2,500	Box G	1.11	1	2,500	Carton A	6	15,000

Copyright © 2023 Richtek Technology Corporation. All rights reserved.	RICHTEK	is a registered trademark of Richtek Technology Corporation.

Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω/cm^2	10 ⁴ ~ 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

www.richtek.com

Datasheet Revision History

Version	Date	Description	Item		
00	2023/8/21	Final	Features Marking Information		