High Efficiency Backlight LED Driver

General Description

The RT4501/A is a high-efficiency LED driver for backlight applications. An asynchronous boost converter with an internal Schottky diode and a current source driver are designed to support 6LED/channel with wide input voltage range from 2.5V to 5.5V.

An I2C interface can provide easy backlight control in fast and high speed mode. The RT4501 supports linear mappings with 256 steps to setup the brightness of backlight LEDs. It also supports PWM dimming to adjust the brightness.

For brightness dimming, the RT4501A supports 128 steps pulse dimming which determines the LED current, and RT4501 support 256 steps PWM dimming which determines the LED current.

The RT4501/A provides complete protection functions such as input under-voltage lockout, over-current, output over-voltage and over-temperature protection. The OVP threshold voltage can be set at 16V and 25.5V for different applications. The RT4501/A is available in the WL-CSP-10B 0.87x2.07 (BSC) package.

Features

- Input Voltage Range : 2.5V to 5.5V
- Internal Schottky Diode
- Fast-speed mode I2C Compatible Interface
- Drive Up to 7 WLEDs in 2 String
- External PWM/Pulse Brightness Control
- 550k/1.1MHz Switching Frequency
- Built-in Internal Soft-Start
- PWM Dimming/Pulse Dimming Resolution 256/128 Steps
- I2C Programmable 256 Steps Linear Current Regulation
- Up to 85% Efficiency with Small Magnetics
- Programmable 16V/25.5V OVP
- Current Accuracy ±5% and Current Balance ±3%
- UVLO, OVP, OCP, OTP Protection
- Shutdown Current : < 1μA
- Temperature Range : −40°C to 85°C
- RoHS Compliant and Halogen Free

Applications

- Cellular Phones
- Digital Cameras
- PDAs and Smart Phones
- Portable Instruments

Simplified Application Circuit
Ordering Information

RT4501/A

Package Type
WSC : WL-CSP-10B 0.87x2.07 (BSC)
RT4501 : PWM Dimming
RT4501A : Pulse Dimming

Note:

Richtek products are:

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Pin Configurations

(TOP VIEW)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>LX</td>
<td>GND</td>
</tr>
<tr>
<td>VOUT</td>
<td>VIN</td>
</tr>
<tr>
<td>PWM</td>
<td>EN</td>
</tr>
<tr>
<td>SDA</td>
<td>SCL</td>
</tr>
<tr>
<td>FB1</td>
<td>FB2</td>
</tr>
</tbody>
</table>

Marking Information

RT4501WSC

1T : Product Code
W : Date Code

RT4501AWSC

28 : Product Code
W : Date Code

Functional Pin Description

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Pin Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>LX</td>
<td>Switch Node of Boost Converter. Connect an inductor between LX and VIN.</td>
</tr>
<tr>
<td>A2</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>B1</td>
<td>VOUT</td>
<td>Power Output of the Asynchronous Boost Converter for Backlight LEDs. Connect a 1μF or larger ceramic capacitor from VOUT to ground.</td>
</tr>
<tr>
<td>B2</td>
<td>VIN</td>
<td>Power Input. Connect this pin to the input power supply voltage. Connect a 10μF or larger ceramic capacitor from the VIN to ground.</td>
</tr>
<tr>
<td>C1</td>
<td>PWM</td>
<td>PWM Dimming Input for Backlight LED.</td>
</tr>
<tr>
<td>C2</td>
<td>EN</td>
<td>Enable Control Input (Active High). The chip is in shutdown mode when the EN pin is low.</td>
</tr>
<tr>
<td>D1</td>
<td>SDA</td>
<td>I²C Serial Data Input/Output. An external pull-up resistor is required.</td>
</tr>
<tr>
<td>D2</td>
<td>SCL</td>
<td>I²C Serial Clock Input. An external pull-up resistor is required.</td>
</tr>
<tr>
<td>E1</td>
<td>FB2</td>
<td>Single Output 2 for Backlight LED.</td>
</tr>
<tr>
<td>E2</td>
<td>FB1</td>
<td>Single Output 1 for Backlight LED.</td>
</tr>
</tbody>
</table>
Function Block Diagram

Operation Description

The RT4501/A is a high efficiency solution with 14 WLEDs in 2 parallels 7 series for backlight applications. The RT4501/A optimizes the feedback regulation voltage to provide up to 85% high efficiency with as high as 8bits resolution application.

Linear Brightness Dimming

The RT4501/A is built-in a I2C 8-bit resolution brightness control with maximum 20mA/30mA selection. Reg0x02<3> corresponds to full-scale LED current control. Reg0x04 sets 8bits resolution brightness dimming.

PWM Brightness Dimming

Besides programmable built-in I2C backlight LED current control, the RT4501 features a built-in PWM dimming current control by setting Reg0x02<6> to 1, offering a linear current dimming by external clock source. In order to guarantee the PWM dimming resolution, recommending dimming frequency have to be operated at range of 400Hz to 20kHz.

Pulse Brightness Dimming

The EN pin features a simple digital interface to allow digital brightness control. Using the one-wire dimming brightness control can achieve as high as 128 steps resolution, recommending dimming pulse is larger than 0.2μs. RT4501/A keeps shunt down status, when EN pin is pulled low keeping 1ms.

OCP Protection

The RT4501/A features a 1A current limitation. Once detecting current level over current limitation, the RT4501/A's LX witching will be forced off to avoid large current damage.

OTP Protection

The over-temperature protection function will be latched at shutdown status when the junction temperature exceeds 150°C for 2ms. After re-power on sequence, the converter will automatically resume switching.

OVP Protection

The over-voltage protection function monitors the output voltage via the VOUT pin voltage. The OVP threshold voltage is 25.5V/16V by selection Reg0x02<7>, Once the LED is open, the output voltage will be limited at OVP protection level to avoid device breakdown. RT4501 is shunt-down latched, by triggering OVP event over 40 times.
Absolute Maximum Ratings (Note 1)
- Supply Input Voltage, VIN: −0.3V to 6V
- Boost Output Voltage, VOUT: −0.3V to 27V
- Switching Voltage, LX: −0.3V to 27V
- Current Source Voltage, FB1, FB2: −0.3V to 27V
- Other Pins, EN, PWM, SCL, SDA: −0.3V to 6V
- Power Dissipation, PD @ TA = 25°C: 1W
- Package Thermal Resistance (Note 2): WL-CSP-10B 0.87x2.07 (BSC), θJA: 99.6°C/W
- Lead Temperature (Soldering, 10 sec.): 260°C
- Junction Temperature: 150°C
- Storage Temperature Range: −65°C to 150°C
- ESD Susceptibility (Note 3): HBM (Human Body Model): 2kV, MM (Machine Model): 200V

Recommended Operating Conditions (Note 4)
- Supply Input Voltage, VIN: 2.5V to 5.5V
- Junction Temperature Range: −40°C to 125°C
- Ambient Temperature Range: −40°C to 85°C

Electrical Characteristics
(VIN = 3.6V, CIN = 10μF, COUT = 1μF, L = 10μH, TA = 25°C, unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Supply Voltage</td>
<td>VIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VIN Quiescent Current</td>
<td>IQ</td>
<td>PWM, No Switching</td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Shutdown Current</td>
<td>ISHDN</td>
<td>V_IN = 4.2V, EN = GND</td>
<td></td>
<td></td>
<td>1</td>
<td>3 μA</td>
</tr>
<tr>
<td>Under-Voltage Lockout Threshold</td>
<td>V_UVLO</td>
<td>V_IN Falling, Check IQ < 200μA</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Under-Voltage Lockout Hysteresis</td>
<td>ΔV_UVLO</td>
<td>After UVLO, V_IN Rising, Until IQ > 200μA</td>
<td></td>
<td></td>
<td>200</td>
<td>mV</td>
</tr>
<tr>
<td>Backlight LED Current Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy of Output Current</td>
<td>I_LED_ACC</td>
<td>FB1, FB2 = 0.15V, I_FB1 = I_FB2 = 20mA</td>
<td>−5</td>
<td></td>
<td>5</td>
<td>%</td>
</tr>
<tr>
<td>Matching of Output Current</td>
<td>I_LED_MAT</td>
<td>FB1, FB2 = 0.15V, I_FB1 = I_FB2 = 20mA</td>
<td>−3</td>
<td></td>
<td>3</td>
<td>%</td>
</tr>
<tr>
<td>Oscillator and Timing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Frequency</td>
<td>f_SW</td>
<td>Reg0x03[6] = 1</td>
<td>0.88</td>
<td></td>
<td>1.1</td>
<td>1.32 MHz</td>
</tr>
<tr>
<td>Maximum Duty Cycle</td>
<td>D_MAX</td>
<td>FB1 = FB2 = 0V, check MAX duty</td>
<td>90</td>
<td></td>
<td>95</td>
<td>%</td>
</tr>
<tr>
<td>Brightness Ramp Rate</td>
<td>T_RAMP</td>
<td>Reg0x03[5:0] = 111111</td>
<td>209.72</td>
<td></td>
<td>262.14</td>
<td>314.58 ms</td>
</tr>
</tbody>
</table>
Power Switch

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-MOSFET On-Resistance</td>
<td>$R_{DS(ON)}$</td>
<td>V$_{IN}$ = 3.6V</td>
<td>90</td>
<td>175</td>
<td>350</td>
<td>mΩ</td>
</tr>
<tr>
<td>N-MOSFET Current Limit</td>
<td>I$_{OCP}$</td>
<td></td>
<td>0.8</td>
<td>1</td>
<td>1.2</td>
<td>A</td>
</tr>
<tr>
<td>N-MOSFET Leakage Current</td>
<td>I$_{LEAK}$</td>
<td>LX = 24V, No Switching</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td>μA</td>
</tr>
</tbody>
</table>

Protection Function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over Voltage Protection</td>
<td>OVP</td>
<td>Reg0x02 [7] = 0</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reg0x02 [7] = 1</td>
<td>24.5</td>
<td>25.5</td>
<td>26.5</td>
<td>V</td>
</tr>
<tr>
<td>Thermal Shutdown Threshold</td>
<td>T_{SD}</td>
<td>Thermal latch</td>
<td>--</td>
<td>150</td>
<td>--</td>
<td>°C</td>
</tr>
</tbody>
</table>

Logic Control

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN Input Voltage</td>
<td>V$_{ENH}$</td>
<td>Logic-High</td>
<td>1.3</td>
<td>--</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V$_{ENL}$</td>
<td>Logic-Low</td>
<td>--</td>
<td>--</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>PWM Input Voltage</td>
<td>V$_{PWML}$</td>
<td>Logic-High</td>
<td>1.3</td>
<td>--</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V$_{PWML}$</td>
<td>Logic-Low</td>
<td>--</td>
<td>--</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>SCL Input Voltage</td>
<td>V$_{SCLH}$</td>
<td>Logic-High</td>
<td>1.3</td>
<td>--</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V$_{SCLL}$</td>
<td>Logic-Low</td>
<td>--</td>
<td>--</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>SDA Input Voltage</td>
<td>V$_{SDAH}$</td>
<td>Logic-High</td>
<td>1.3</td>
<td>--</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V$_{SDAL}$</td>
<td>Logic-Low</td>
<td>--</td>
<td>--</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>EN Pull-Down Resistance</td>
<td>--</td>
<td>400</td>
<td>--</td>
<td>--</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>PWM Pull-Down Resistance</td>
<td>--</td>
<td>400</td>
<td>--</td>
<td>--</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>Clock Frequency of SCL</td>
<td>f$_{SCL}$</td>
<td></td>
<td>--</td>
<td>--</td>
<td>400</td>
<td>kHz</td>
</tr>
</tbody>
</table>

Pulse Dimming Control

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN Minimum Shut Down Pulse Width</td>
<td>t$_{OFF}$</td>
<td></td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>ms</td>
</tr>
<tr>
<td>EN Minimum Logic High Pulse Width</td>
<td>t$_{High_Min}$</td>
<td></td>
<td>0.2</td>
<td>--</td>
<td>--</td>
<td>μs</td>
</tr>
<tr>
<td>EN Minimum Logic Low Pulse Width</td>
<td>t$_{LOW}$</td>
<td></td>
<td>0.2</td>
<td>--</td>
<td>500</td>
<td>μs</td>
</tr>
</tbody>
</table>

Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Note 2. θ_{JA} is measured at $T_A = 25^\circ$C on a high effective thermal conductivity four-layer test board per JEDEC 51-7.

Note 3. Devices are ESD sensitive. Handling precaution is recommended.

Note 4. The device is not guaranteed to function outside its operating conditions.
Typical Application Circuit

Timing Diagram

PWM Dimming

Reg0x04 = FF
As Reg Default
Reg0x04 = 00
PWM Enable
Count 2^17
Clock

Note: PWM prd : count by OSC : 17.6MegHz
> 1024 : Resolution = 7bits & < 1000 : Resolution = 8bits

Pulse Dimming

32µs/step x 127 steps

POR = 1 & EN power on
Hold at least 50µs

32µs/step

7bits = 1111111 = I(LED)max * [127/128+1/256]
7bits = 1111100
7bits = 1111010
7bits = 1111110
7bits = 1111111
7bits = 0000000
7bits = 111100
Protection Timing

OTP

- EN
- \(s\text{OTP}\)
- \(s\text{Enbl}\)
- Register

\[2\text{ms} \quad 2\text{ms}\]

LED Short

- EN
- FB1 or FB2 Short
- \(s\text{Enbl}\)
- Register

\[2\text{ms} \quad 2\text{ms}\]

LED Open

- EN
- \(s\text{OVP}\)
- \(s\text{Enbl}\)
- Register

\[
\ldots \times 39\text{ times} \quad 40\text{ times}
\]
Typical Operating Characteristics

Power On
- V_{EN} (2V/Div)
- V_{OUT} (10V/Div)
- I_L (200mA/Div)

Power Off
- V_{EN} (2V/Div)
- V_{OUT} (10V/Div)
- I_L (200mA/Div)

Efficiency vs. Output Current
- $V_{IN} = 3.7V$
- $V_{IN} = 4.2V$

Efficiency vs. Input Voltage
- $I_{LED} = 20mA$
- $I_{LED} = 30mA$

LED Current Accuracy vs. Input Voltage
- $I_{LED} = 20mA$
- $I_{LED} = 30mA$

OVP Threshold vs. Input Voltage
- Reg0x02 [7] = 1, 23V
- Reg0x02 [7] = 0, 16V
Table 1. Pulse Dimming Register Map

<table>
<thead>
<tr>
<th>Address</th>
<th>Address Name</th>
<th>BIT</th>
<th>LABEL</th>
<th>Default (Reset Value)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>Device ID</td>
<td>7:0</td>
<td>DEV_ID</td>
<td>0000000</td>
<td>Revision number</td>
</tr>
<tr>
<td>0x01</td>
<td>Manufacture</td>
<td>7:2</td>
<td>REV</td>
<td>0000000</td>
<td>Revision number</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:0</td>
<td>VID</td>
<td>11</td>
<td>Vendor ID : Richtek</td>
</tr>
<tr>
<td>0x02</td>
<td>Config1</td>
<td>7</td>
<td>OVPsel</td>
<td>1</td>
<td>OVP threshold ([0] 16V, [1] 25.5V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>MAX_Current</td>
<td>0</td>
<td>[0] 20mA, [1] 30mA,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>LED1_EN</td>
<td>1</td>
<td>Backlight LED1 : [0] OFF, [1] ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>LED2_EN</td>
<td>1</td>
<td>Backlight LED2 : [0] OFF, [1] ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>DEV_EN</td>
<td>1</td>
<td>CHIP enable : [0] OFF, [1] ON</td>
</tr>
<tr>
<td>0x03</td>
<td>Timing</td>
<td>7</td>
<td>RST_SW</td>
<td>0</td>
<td>Software reset : [0] Disable(Auto), [1] Reset all registers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>FSW</td>
<td>1</td>
<td>Switching frequency ([0]550kHz, [1]1.1MHz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5:4</td>
<td>Reserved</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0x05</td>
<td>FLAG</td>
<td>7:4</td>
<td>Reserved</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>LED1_FT</td>
<td>0</td>
<td>LED1 short : [0] Normal, [1] Fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>LED2_FT</td>
<td>0</td>
<td>LED2 short : [0] Normal, [1] Fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OVP</td>
<td>0</td>
<td>Output over voltage : [0] Normal, [1] Fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>OTP</td>
<td>0</td>
<td>Over temperature : [0] Normal, [1] Fault</td>
</tr>
</tbody>
</table>

Slave address = 0100010x
Table 2. PWM Dimming Register Map

<table>
<thead>
<tr>
<th>Address</th>
<th>Address Name</th>
<th>BIT</th>
<th>LABEL</th>
<th>Default (Reset Value)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>Device ID</td>
<td>7:0</td>
<td>DEV_ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x01</td>
<td>Manufacture</td>
<td>7:2</td>
<td>REV</td>
<td>000000</td>
<td>Revision number</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:0</td>
<td>VID</td>
<td>11</td>
<td>Vendor ID : Richtek</td>
</tr>
<tr>
<td>0x02</td>
<td>Config1</td>
<td>7</td>
<td>OVPsel</td>
<td>1</td>
<td>OVP threshold ([0] 16V, [1] 25.5V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>PWM_EN</td>
<td>0</td>
<td>PWM enable : [0] Ignored, [1] Enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>PWM_SET</td>
<td>0</td>
<td>PWM active setup : [0] High active, [1] Low active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>MAX_Current</td>
<td>0</td>
<td>[0] 20mA, [1] 30mA,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>LED1_EN</td>
<td>1</td>
<td>Backlight LED1 : [0] OFF, [1] ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>LED2_EN</td>
<td>1</td>
<td>Backlight LED2 : [0] OFF, [1] ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>DEV_EN</td>
<td>1</td>
<td>CHIP enable : [0] OFF, [1] ON</td>
</tr>
<tr>
<td>0x03</td>
<td>Timing</td>
<td>7</td>
<td>RST_SW</td>
<td>0</td>
<td>Software reset : [0] Disable(Auto), [1] Reset all registers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>FSW</td>
<td>1</td>
<td>Switching frequency ([0]550kHz, [1]1.1MHz)</td>
</tr>
<tr>
<td>0x04</td>
<td>Linear</td>
<td>7:0</td>
<td>BRIGHT_LIN</td>
<td>11111111</td>
<td>[00000000] 0.39%, [00000001] 0.39%, …… [11111111] 100%</td>
</tr>
<tr>
<td></td>
<td>Brightness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x05</td>
<td>FLAG</td>
<td>7:4</td>
<td>Reserved</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>LED1_FT</td>
<td>0</td>
<td>LED1 short : [0] Normal, [1] Fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>LED2_FT</td>
<td>0</td>
<td>LED2 short : [0] Normal, [1] Fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>OVP</td>
<td>0</td>
<td>Output over voltage : [0] Normal, [1] Fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>OTP</td>
<td>0</td>
<td>Over temperature : [0] Normal, [1] Fault</td>
</tr>
</tbody>
</table>
Application Information

LED Short Protection
LED short protection prevents abnormal connection to cause IC damage avoiding FB1/FB2 connecting power supply. And, if unbalanced LEDs series (cause FB1 or FB2 >12V) is different between channel1 and channel2, IC will also occur LED short event. As LED short event occur more than deglitch time 2ms, IC will shut-down latch until IC is reset by EN pin.

Soft-Start
The RT4501/A includes a soft-start function to avoid high inrush current during start-up. The soft-start function is achieved by clamping the output voltage of the error amplifier with another voltage source that is increased slowly from zero to near VIN during the soft-start period.

OCP Protection
The RT4501/A features a 1A current limitation. The current flowing through the inductor during a charging period is detected by a current sensing circuit. If the value exceeds the current limit, the N-MOSFET will be turned off. The inductor will then be forced to leave charging stage and enter discharging stage. Therefore, the inductor current will not increase to reach current limit.

The over-temperature protection function will be latched at shutdown status when the junction temperature exceeds 165°C for 2ms. After re-power on sequence, the converter will automatically resume switching.

OVP Protection
The chip provides over-voltage protection function to limit the output voltage in abnormal conditions. The OVP threshold voltage is 25.5V/16V by selecting Reg0x02 <7>

Under-Voltage Lockout
An under-voltage lockout circuit prevents the operation of the device at input voltages below under-voltage threshold (2.3V maximum). When the input voltage is below the threshold, the device is shut down. If the input voltage rises over under-voltage lockout hysteresis (200mV typical), the IC restarts.

Linear Brightness Dimming
The chip is built-in an I^2C 8-bit resolution brightness control with maximum 20mA/30mA selection. Reg0x02 <3> corresponds to full-scale LED current control. Reg0x04 <7:0> sets 8bits resolution LED current dimming control.

\[I_{LED} = \frac{\text{Code}}{255} \times I_{LED, \text{Full}} \]

Where

\[I_{LED, \text{FULL}} : \text{the full-scale LED current set by Reg0x02 <3>}. \]

Code : the 8bit brightness code Reg0x04 <7:0> programmed by I^2C interface.

PWM Brightness Dimming
Besides programmable built-in I^2C backlight LED current control, the RT4501/A features a built-in PWM dimming current control by setting Reg0x02 <6> to 1, offering a linear current dimming by external clock source. In order to guarantee the PWM dimming resolution (7 bit at > 15kHz application), recommending dimming frequency have to be operated at range of 400Hz to 20kHz.

Pulse Brightness Dimming
The EN pin features a simple digital interface to allow digital brightness control. Using the one-wire dimming brightness control can achieve as high as 128 steps resolution, recommending dimming pulse is larger than 0.2μs. RT4501/A keeps shunt down status, when EN pin is pulled low keeping 1ms.

\[I_{LED} = \left(\frac{\text{Code}}{128} + \frac{1}{256} \right) \times I_{LED, \text{FULL}} \]

Where

\[I_{LED, \text{FULL}} : \text{the full-scale LED current set by Reg0x02 <3>}. \]
Layout Consideration

As for all switching power supplies, the layout is an important step in the design, especially at high peak currents and switching frequencies. If the layout is not carefully done, the regulator might expose noise problems and duty cycle jitter. Therefore, use wide and short traces for high current paths. The input capacitor should be placed as close as possible to the input pin for good input voltage filtering. The inductor should be placed as close as possible to the switch pin to minimize the noise coupling into other circuits. The output capacitor needs to be placed directly from the VOUT pin to GND rather than across the LEDs. This reduces the ripple current in the trace to the LEDs. When doing the PCB layout, the bold traces should be routed first, as well as placement of the inductor, and input and output capacitors.

Inductor Selection

The recommended inductor value for dual-channel 6 WLEDs applications is 10μH. When selecting the inductor, the inductor rated saturation current should be higher than the peak current at maximum load. Small size and better efficiency are major concerns for portable devices. The inductor should have low core loss at 1.1MHz and low DCR for better efficiency.

Capacitor Selection

10μF input ceramic capacitor and 1μF output ceramic capacitor are recommended for driving dual-channel 6 WLEDs applications. For better voltage filtering, ceramic capacitors with low ESR are recommended. X5R and X7R types are suitable because of their wide voltage and temperature ranges.

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula:

\[P_{D(MAX)} = \frac{T_{J(MAX)} - T_A}{\theta_{JA}} \]

where \(T_{J(MAX)} \) is the maximum junction temperature, \(T_A \) is the ambient temperature, and \(\theta_{JA} \) is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is 125°C. The junction to ambient thermal resistance, \(\theta_{JA} \), is layout dependent. For WL-CSP-10B 0.87x2.07 (BSC) package, the thermal resistance, \(\theta_{JA} \), is 99.6°C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at \(T_A = 25°C \) can be calculated by the following formula:

\[P_{D(MAX)} = \frac{(125°C - 25°C)}{(99.6°C/W)} = 1W \]

The maximum power dissipation depends on the operating ambient temperature for fixed \(T_{J(MAX)} \) and thermal resistance, \(\theta_{JA} \). The derating curve in Figure 1 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

![Figure 1. Derating Curve of Maximum Power Dissipation](image)

Layout Consideration

As for all switching power supplies, the layout is an important step in the design, especially at high peak currents and switching frequencies. If the layout is not carefully done, the regulator might expose noise problems and duty cycle jitter. Therefore, use wide and short traces for high current paths. The input capacitor should be placed as close as possible to the input pin for good input voltage filtering. The inductor should be placed as close as possible to the switch pin to minimize the noise coupling into other circuits. The output capacitor needs to be placed directly from the VOUT pin to GND rather than across the LEDs. This reduces the ripple current in the trace to the LEDs. When doing the PCB layout, the bold traces should be routed first, as well as placement of the inductor, and input and output capacitors.
Outline Dimension

![Diagram of 10B WL-CSP 0.87x2.07 Package (BSC)](image)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions In Millimeters</th>
<th>Dimensions In Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Min. 0.500 - 0.600</td>
<td>Max. 0.020 - 0.024</td>
</tr>
<tr>
<td>A1</td>
<td>Min. 0.170 - 0.230</td>
<td>Max. 0.007 - 0.009</td>
</tr>
<tr>
<td>b</td>
<td>Min. 0.240 - 0.300</td>
<td>Max. 0.009 - 0.012</td>
</tr>
<tr>
<td>D</td>
<td>Min. 2.020 - 2.080</td>
<td>Max. 0.080 - 0.083</td>
</tr>
<tr>
<td>D1</td>
<td>Min. 1.600 - 1.600</td>
<td>Max. 0.063</td>
</tr>
<tr>
<td>E</td>
<td>Min. 0.820 - 0.920</td>
<td>Max. 0.032 - 0.036</td>
</tr>
<tr>
<td>E1</td>
<td>Min. 0.400 - 0.400</td>
<td>Max. 0.016</td>
</tr>
<tr>
<td>e</td>
<td>Min. 0.400 - 0.400</td>
<td>Max. 0.016</td>
</tr>
</tbody>
</table>

10B WL-CSP 0.87x2.07 Package (BSC)