
Dual Output LCD Bias for Smartphones and Tablets

General Description

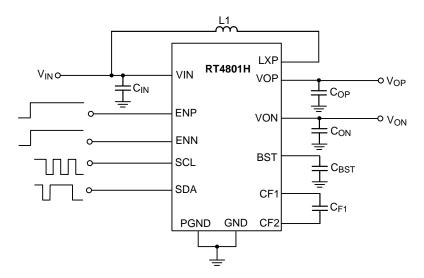
The RT4801H is a highly integrated Boost and LDO and inverting charge pump to generate positive and negative output voltage. The output voltages can be adjusted from ±4V to ±6V with 100mV steps by I²C interface protocols. With its input voltage range of 2.5V to 5.5V, the RT4801H is optimized for products powered by single-cell batteries and symmetrical output currents up to 80mA. The RT4801H is available in the WL-CSP-15B 1.31x2.07 (BSC) package.

The recommended junction temperature range is -40°C to 125°C, and the ambient temperature range is -40°C to 85°C.

Ordering Information

Note:

Richtek products are Richtek Green Policy compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.

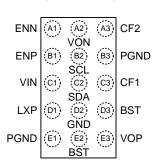

Features

- 2.5V to 5.5V Supply Voltage Range
- Up to 90% Efficiency with Small Magnetics
- Support Up to 80mA Output Current
- Low 1µA Shutdown Current
- Internal Soft-start Function
- Short Circuit Protection Function
- Over-Voltage Protection Function
- Over-Current Protection Function
- Over-Temperature Protection Function
- Elastic Positive and Negative Voltage On/Off Control by ENP/ENN
- Voltage Output from 4V to 6V per 0.1V
- Low Input Noise and EMI
- Output with Programmable Fast Discharge when IC Shutdown
- Adjustable Output Voltage by I²C Compatible Interface
- Available in the 15-Ball WL-CSP Package

Applications

- TFT-LCD Smartphones
- TFT-LCD Tablets
- General Dual Power Supply Applications

Simplified Application Circuit

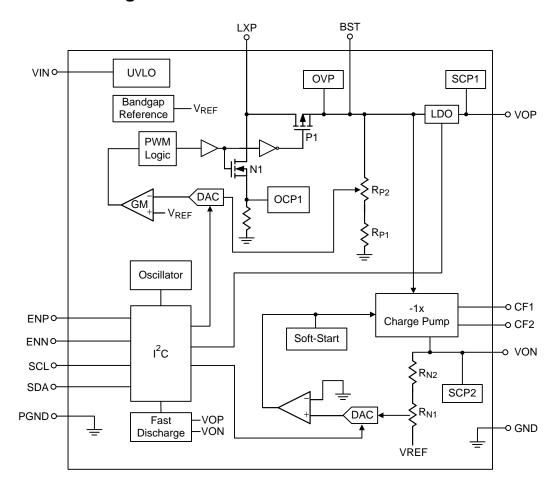


Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Pin Configuration

(TOP VIEW)

Marking Information


WL-CSP-15B 1.31x2.07 (BSC)

Functional Pin Description

Pin No.	Pin Name	Pin Function
A1	ENN	Enable control input for VON.
A2	VON	Negative terminal output.
A3	CF2	Negative charge pump flying capacitor pin.
B1	ENP	Enable control input for VOP.
B2	SCL	Clock of I ² C.
B3, E1	PGND	Power ground.
C1	VIN	Power input.
C2	SDA	Data of I ² C.
C3	CF1	Negative charge pump flying capacitor pin.
D1	LXP	Switching node of boost converter.
D2	GND	Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.
D3, E2	BST	Output voltage of boost converter.
E3	VOP	Positive terminal output.

Functional Block Diagram

Operation

The RT4801H is a highly integrated Boost, LDO and inverting charge pump to generate positive and negative output voltages for LCD panel bias or consumer products. It can support input voltage range from 2.5V to 5.5V and the output current up to 80mA. Both positive and negative voltages can be programmed by a MCU through the dedicated I²C

interface. The RT4801H provides Over-Temperature Protection (OTP) and Short Circuit Protection (SCP) mechanisms to prevent the device from damage with abnormal operations. When the EN voltage is logic low for more than $375\mu s$, the IC will be shut down with low input supply current less than $1\mu A$.

Absolute Maximum Ratings (Note 1)

Supply Input Voltage VIN Pin	- −0.3V to 6V
Output Voltage VOP Pin	0.3V to 7V
Output Voltage VON Pin	7V to 0.3V
Others Pin to GND	0.3V to 6V
• Power Dissipation, PD @ TA = 25°C	
WL-CSP-15B 1.31x2.07 (BSC)	- 2.00W
Package Thermal Resistance (Note 2)	
WL-CSP-15B 1.31x2.07 (BSC), θJA	- 49.8°C/W
• Lead Temperature (Soldering, 10 sec.)	- 260°C
• Junction Temperature	- 150°C
Storage Temperature Range	65°C to 150°C
ESD Susceptibility (Note 3)	
HBM (Human Body Model)	- 2kV
Recommended Operating Conditions (Note 4)	
Supply Input Voltage	- 2.5V to 5.5V
Ambient Temperature Range	- −40°C to 85°C
Junction Temperature Range	40°C to 125°C

Electrical Characteristics

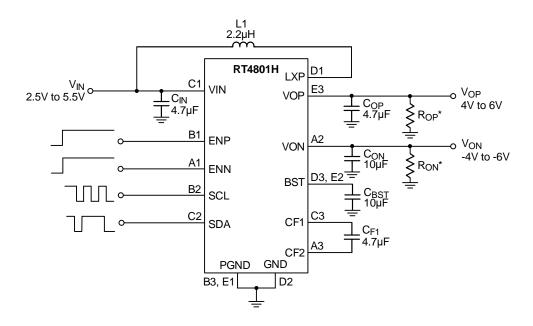
 $(V_{IN}=3.7V,\,C_{IN}=C_{OP}=C_{F1}=4.7\mu\text{F},\,C_{BST}=C_{ON}=10\mu\text{F},\,L1=2.2\mu\text{H},\,T_{A}=25^{\circ}\text{C},\,unless\,\,otherwise\,\,specified.})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Power Supply						
Input Voltage Range	VIN		2.5		5.5	V
Under Voltage Lockout	Vuvlo_h	VIN Rising		1	2.5	V
Threshold Voltage	Vuvlo_l	VIN Falling			2.3	V
Over-Temperature Protection	Тотр	(Note 5)		140		°C
Over-Temperature Protection Hysteresis	Totp_Hyst	(Note 5)		15		°C
Shutdown Current	ISHDN	ENP = ENN = 0V			1	μА
Boost Converter						
Boost Voltage Range	VBST		4.15		6.2	V
Peak Current Limit	ІОСР			1		Α
Boost Switching Frequency	fosc_p		8.0	1	1.2	MHz

RT4801H

Parame	ter	Symbol	Test Conditions	Min	Тур	Max	Unit
LDO		<u> </u>	I			l	l
Positive Output Vo	ltage Range	VOP		4		6	V
Positive Output Vo Range	ltage Setting	VOP_SET	per step		100		mV
Positive Output Vo Accuracy	ltage	VOP_ACC		-1		1	%
Positive Output Cu Capability	ırrent	IOP_MAX				80	mA
Dropout Voltage		VOP_DROP	V _{BST} = 5.4V, V _{OP} = 5.4V, I _{OP} = 100mA			150	mV
Line Regulation		ΔV LINE_OP	VIN = 2.5 to 5.5V, IOP = 40mA		2		mV
Load Regulation		ΔV LOAD_OP	ΔIOP = 80mA		3		%/A
Fast Discharge Re	esistance	RDISP			70		Ω
Negative Charge	Pump						
Negative Output V Range	oltage	Von		-4		-6	V
Negative Output V Setting Range	oltage	VON_SET	per step		100		mV
Negative Output V Accuracy	oltage	Von_acc		-1		1	%
Negative Output C Capability	urrent	ION_MAX				80	mA
Negative Charge F Switching Frequen		fosc_N		0.8	1	1.2	MHz
Line Regulation		ΔVLINE_ON	VIN = 2.5 to 5.5V, ION = 40mA		10		mV
Load Regulation		ΔV load_on	ΔI _{ON} = 80mA		6		%/A
Fast Discharge Re	sistance	RDISN			20		Ω
Logic Input (ENP,	ENN, SCL, S	DA)					
Input Threshold	Logic-High	ViH	VIN =2.5V to 5.5V	1.2			V
Voltage	Logic-Low	VIL	VIN =2.5V to 5.5V			0.4	V
ENP, ENN Pull-dov Resistance	wn	REN			200		kΩ
SDA, SCL Sink Cu	ırrent	IIH VSDA, VSCL = 3V			0.5		μΑ
SDA, SCL Logic	Low-Level	Vscl_L				0.4	V
Input Voltage	High-Level	Vscl_h		1.2			٧
SCL Clock Freque	ncy	fclk				400	kHz
Output Fall Time		tFL2COUT				250	ns
Bus Free Time Bet Stop/Start	tween	tBUF		1.3			μS

RT4801H



Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Hold Time Start Condition	thd,sta		0.6			μS
Setup Time for Start Condition	tsu,sta		0.6			μS
SCL Low Time	tLOW		1.3			μS
SCL High Time	thigh		0.6			μS
Data Setup Time	tsu,dat		100			ns
Data Hold Time	thd,dat		0		900	ns
Setup Time for Stop Condition	tsu,sto		0.6			μS

- Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 2. θ_{JA} is measured at T_A = 25°C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θ_{JC} is measured at the exposed pad of the package.
- Note 3. Devices are ESD sensitive. Handling precautions are recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.
- Note 5. Totp, Totp_HYST are guaranteed by design.

Typical Application Circuit

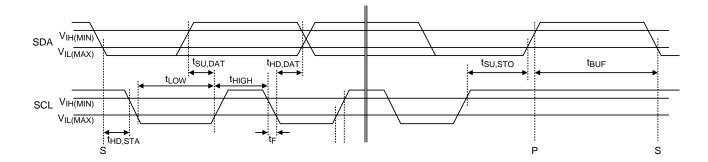

^{*:} R_{OP} And R_{ON} should be paralleled with VOP and VON if output continuous discharge is required when channel is powered off.

Table 1. Component List of Evaluation Board

Reference	Qty	Part Number	Description	Package	Supplier
CIN, COP, CF1	1	GRM188R61C475KAAJ	4.7μF/16V/X5R	0603	Murata
CBST, CON	1	GRM188R61C106KAAL	10μF/16V/X5R	0603	Murata
L1	1	1269AS-H-2R2N = P2	$2.2 \mu H/130 m \Omega$	2.5mm x 2.0mm x 1.0mm	Murata

I²C Interface

I²C Command

Slave Address

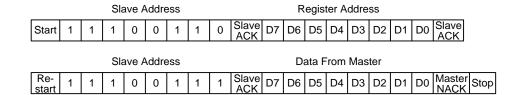
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 = LSB
1	1	1	0	0	1	1	R/W

Write Command

(a) Write single byte of data to Register

			Sla	ave A	ddre	ess					Regi	ister	Addı	ess				D	ata I	rom	Mas	ster			
Start	1	1	1	0	0	1	1	0	Slave R7	R6	R5	R4	R3	R2	R1	R0 Slave ACK	D7	D6	D5	D4	D3	D2	D1	D0	Slave ACK Stop

(b) Write multiple bytes of data to Registers


(n + 1)_{th} Data From Master

Last Data From Master

D7 D6 D5 D4 D3 D2 D1 D0 Slave ACK Stop

Read Command

(a) Read single byte of data from Register

(b) Read multiple bytes of data from Registers

		SI	ave .	Addr	ess					n _{th} I	Data	Fro	n Ma	ster							Last	t Dat	a Fro	om M	laste	er.		
Re-	1 1	1	0	0	1	1	1	Slave	D7	D6	D5	D4	D3	D2	D1	D0	Master]	D7	D6	D5	D4	D3	D2	D1	D0	Master Stop	5

Start : Start command ACK : Acknowledge = L active

R7 to R0 : Register Address. D7 to D0 : Write data when WRITE command or read

VOP : Register address = 0X00h data when READ command

VON : Register address = 0X01h Stop : Stop command

DISP : Register address = 0x03h DISN : Register address = 0x03h APPS : Register address = 0x03h

R/W: Read active (R/W = H) or Write active (R/W = L)

DS4801H-02 February 2024 www.richtek.com

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Registers Map

Table 2. VOP Voltage Selection

Name	Register Address	DATA	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	VOP(V)
VOP	00h	00h	Reserved	Reserved	Reserved	0	0	0	0	0	4
VOP	00h	01h	Reserved	Reserved	Reserved	0	0	0	0	1	4.1
VOP	00h	02h	Reserved	Reserved	Reserved	0	0	0	1	0	4.2
VOP	00h	03h	Reserved	Reserved	Reserved	0	0	0	1	1	4.3
VOP	00h	04h	Reserved	Reserved	Reserved	0	0	1	0	0	4.4
VOP	00h	05h	Reserved	Reserved	Reserved	0	0	1	0	1	4.5
VOP	00h	06h	Reserved	Reserved	Reserved	0	0	1	1	0	4.6
VOP	00h	07h	Reserved	Reserved	Reserved	0	0	1	1	1	4.7
VOP	00h	08h	Reserved	Reserved	Reserved	0	1	0	0	0	4.8
VOP	00h	09h	Reserved	Reserved	Reserved	0	1	0	0	1	4.9
VOP	00h	0Ah	Reserved	Reserved	Reserved	0	1	0	1	0	5
VOP	00h	0Bh	Reserved	Reserved	Reserved	0	1	0	1	1	5.1
VOP	00h	0Ch	Reserved	Reserved	Reserved	0	1	1	0	0	5.2
VOP	00h	0Dh	Reserved	Reserved	Reserved	0	1	1	0	1	5.3
VOP	00h	0Eh	Reserved	Reserved	Reserved	0	1	1	1	0	5.4
VOP	00h	0Fh	Reserved	Reserved	Reserved	0	1	1	1	1	5.5
VOP	00h	10h	Reserved	Reserved	Reserved	1	0	0	0	0	5.6
VOP	00h	11h	Reserved	Reserved	Reserved	1	0	0	0	1	5.7
VOP	00h	12h	Reserved	Reserved	Reserved	1	0	0	1	0	5.8
VOP	00h	13h	Reserved	Reserved	Reserved	1	0	0	1	1	5.9
VOP	00h	14h	Reserved	Reserved	Reserved	1	0	1	0	0	6

Table 3. VON Voltage Selection

Name	Register Address	DATA	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	VON(V)
VON	01h	00h	Reserved	Reserved	Reserved	0	0	0	0	0	-4
VON	01h	01h	Reserved	Reserved	Reserved	0	0	0	0	1	-4.1
VON	01h	02h	Reserved	Reserved	Reserved	0	0	0	1	0	-4.2
VON	01h	03h	Reserved	Reserved	Reserved	0	0	0	1	1	-4.3
VON	01h	04h	Reserved	Reserved	Reserved	0	0	1	0	0	-4.4
VON	01h	05h	Reserved	Reserved	Reserved	0	0	1	0	1	-4.5
VON	01h	06h	Reserved	Reserved	Reserved	0	0	1	1	0	-4.6
VON	01h	07h	Reserved	Reserved	Reserved	0	0	1	1	1	-4.7
VON	01h	08h	Reserved	Reserved	Reserved	0	1	0	0	0	-4.8
VON	01h	09h	Reserved	Reserved	Reserved	0	1	0	0	1	-4.9
VON	01h	0Ah	Reserved	Reserved	Reserved	0	1	0	1	0	-5
VON	01h	0Bh	Reserved	Reserved	Reserved	0	1	0	1	1	-5.1
VON	01h	0Ch	Reserved	Reserved	Reserved	0	1	1	0	0	-5.2

Name	Register Address	DATA	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	VON(V)
VON	01h	0Dh	Reserved	Reserved	Reserved	0	1	1	0	1	-5.3
VON	01h	0Eh	Reserved	Reserved	Reserved	0	1	1	1	0	-5.4
VON	01h	0Fh	Reserved	Reserved	Reserved	0	1	1	1	1	-5.5
VON	01h	10h	Reserved	Reserved	Reserved	1	0	0	0	0	-5.6
VON	01h	11h	Reserved	Reserved	Reserved	1	0	0	0	1	-5.7
VON	01h	12h	Reserved	Reserved	Reserved	1	0	0	1	0	-5.8
VON	01h	13h	Reserved	Reserved	Reserved	1	0	0	1	1	-5.9
VON	01h	14h	Reserved	Reserved	Reserved	1	0	1	0	0	-6

Table 4. VOP Active Discharge

Name	Register Address	DATA	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	VOP Discharge
DISP	03h	00h	Reserved	APPS	Reserved	Reserved	Reserved	Reserved	0	DISN	W/O
DISP	03h	02h	Reserved	APPS	Reserved	Reserved	Reserved	Reserved	1	DISN	W

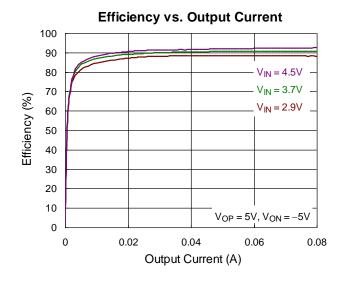
Table 5. VON Active Discharge

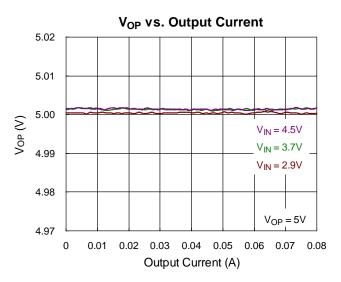
Name	Register Address	DATA	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	VON Discharge
DISN	03h	00h	Reserved	APPS	Reserved	Reserved	Reserved	Reserved	DISP	0	W/O
DISN	03h	01h	Reserved	APPS	Reserved	Reserved	Reserved	Reserved	DISP	1	W

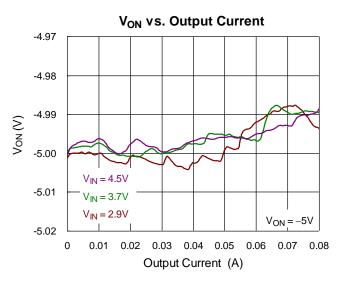
Table 6. Application

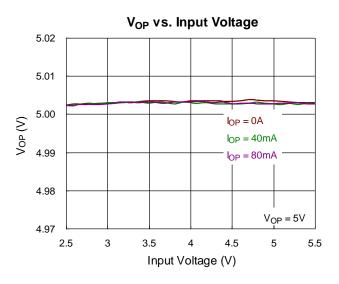
Name	Register Address	DATA	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Application
APPS	03h	00h	Reserved	0	Reserved	Reserved	Reserved	Reserved	DISP	DISN	Tablet
APPS	03h	40h	Reserved	1	Reserved	Reserved	Reserved	Reserved	DISP	DISN	Smartphone

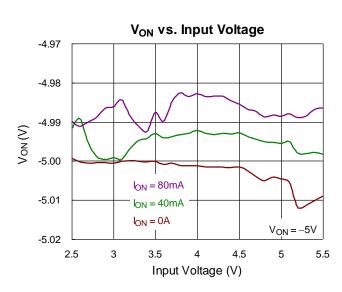
The Reserved bits are ignored when written and return either 0 or 1 when read.

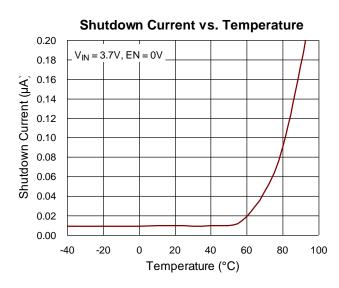

Factory Default Register Value

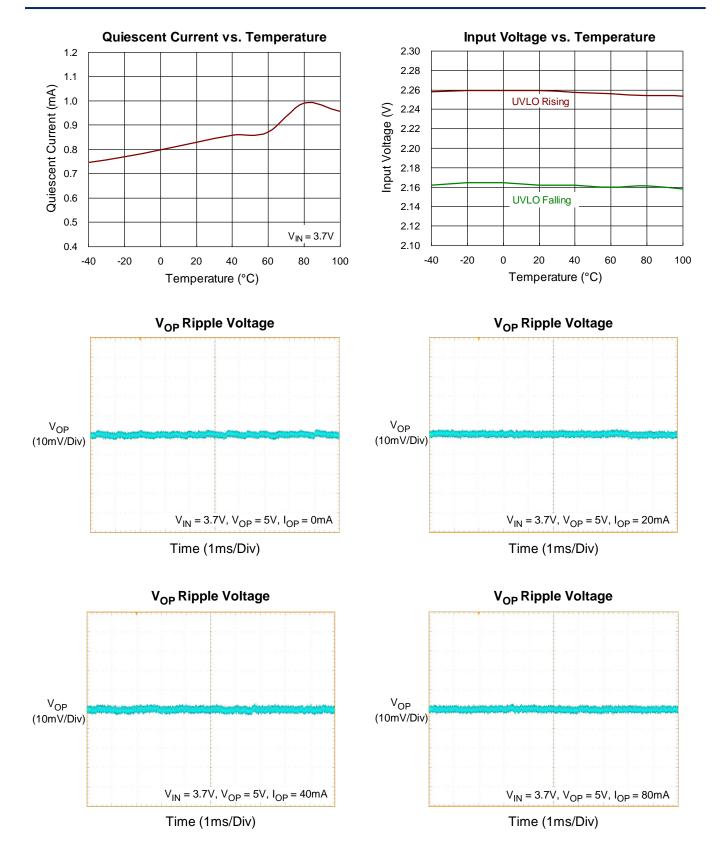

Name	Register Address	DATA
VOP	00h	0Ah
VON	01h	0Ah
DISP	03h	43h
DISN	03h	43h
APPS	03h	43h

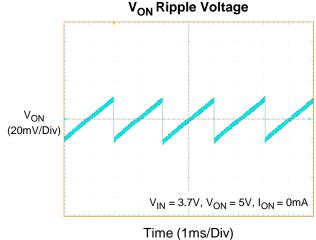

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

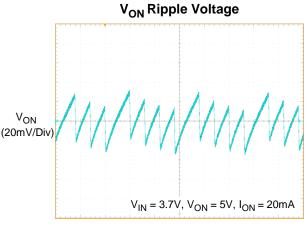


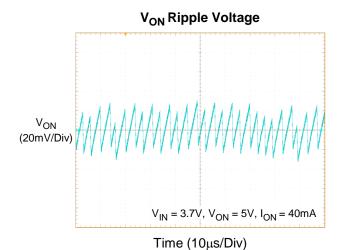

Typical Operating Characteristics

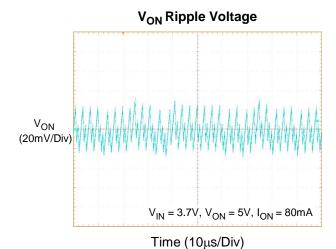


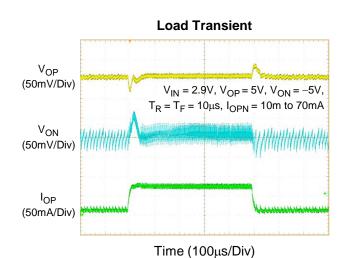


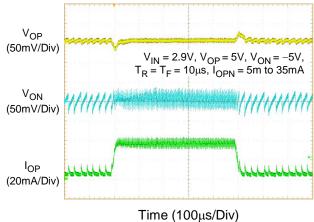


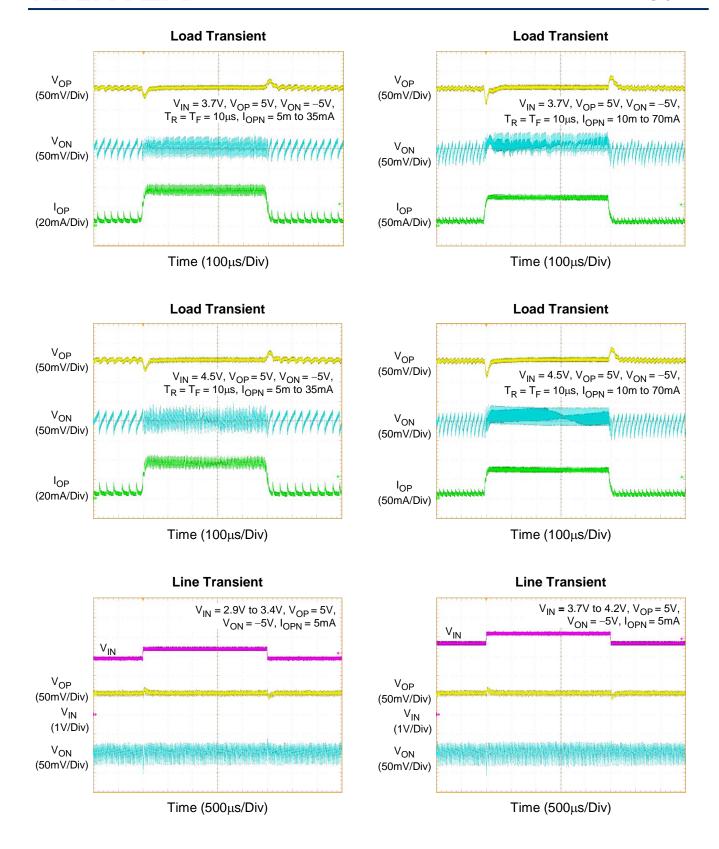


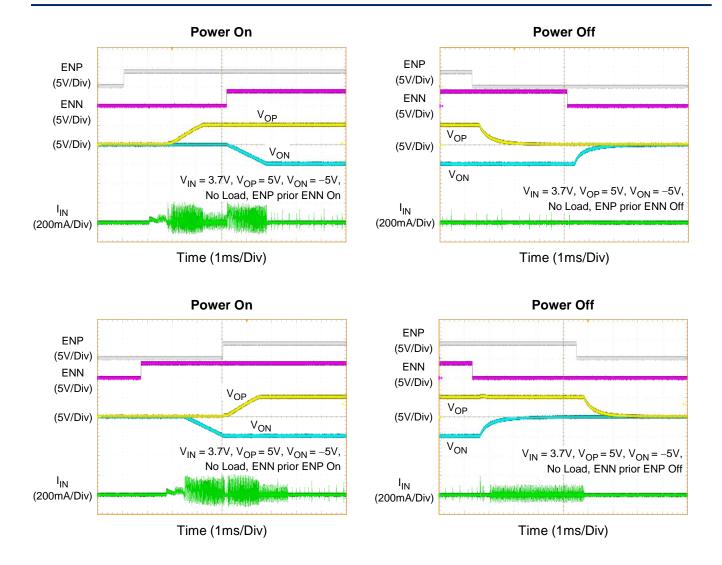

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.











Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Application Information

Richtek's component specification does not include the following information in the Application Information section. Thereby no warranty is given regarding its validity and accuracy. Customers should take responsibility to verify their own designs and reserve suitable design margin to ensure the functional suitability of their components and systems.

The RT4801H is a highly integrated Boost, LDO and inverting charge pump to generate positive and negative output voltages for LCD panel bias or consumer products. It can support input voltage range from 2.5V to 5.5V and the output current up to 80mA. The Vop positive output voltage is generated from the LDO supplied from a synchronous Boost converter, and Vop is set at a typical value of 5V. The Boost converter output also drives an inverting charge pump controller to generate Von negative output voltage which is set at a typical value of -5V. Both positive and negative voltages can be programmed by a MCU through the dedicated I²C interface and the available voltage range is from $\pm 4V$ to $\pm 6V$ with 100mV per step.

Input Capacitor Selection

Input ceramic capacitor with 4.7µF capacitance is suggested for applications. For better voltage filtering, select ceramic capacitors with low ESR, X5R and X7R types are suitable because of their wider voltage and temperature ranges.

Boost Inductor Selection

The inductance depends on the maximum input current. As a general rule, the inductor ripple current range is 20% to 40% of the maximum input current. If 40% is selected as an example, the inductor ripple current can be calculated according to the following equations:

$$I_{IN(MAX)} = \frac{V_{OUT} \times I_{OUT(MAX)}}{\eta \times V_{IN}}$$

$$I_{RIPPLE} = 0.4 \times I_{IN(MAX)}$$

where η is the efficiency of the VOP Boost converter, IIN(MAX) is the maximum input current, and ΔIL is the inductor ripple current. The input peak current can then

be obtained by adding the maximum input current with half of the inductor ripple current as shown in the following equation:

 $IPEAK = 1.2 \times IIN(MAX)$

Note that the saturated current of the inductor must be greater than IPEAK.

The inductance can eventually be determined according to the following equation:

$$L = \frac{\eta \times (V_{IN})^2 \times (V_{OUT} - V_{IN})}{0.4 \times (V_{OUT})^2 \times I_{OUT(MAX)} \times f_{OSC}}$$

where fosc is the switching frequency. For better system performance, a shielded inductor is preferred to avoid EMI problems.

Boost Output Capacitor Selection

The output ripple voltage is an important index for estimating IC performance. This portion consists of two parts. One is the product of ripple current with the ESR of the output capacitor, while the other part is formed by the charging and discharging process of the output capacitor. As shown in Figure 1, ΔV_{OUT1} can be evaluated based on the ideal energy equalization. According to the definition of Q, the $\Delta VOUT1$ value can be calculated as the following equation:

$$Q = I_{OUT} \times D \times \frac{1}{f_{SOC}} = C_{OUT} \times \Delta V_{OUT1}$$
$$\Delta V_{OUT1} = \frac{I_{OUT} \times D}{f_{SOC} \times C_{OUT}}$$

where fosc is the switching frequency and D is the duty cycle.

Finally, taking ESR into consideration, the overall output ripple voltage can be determined by the following equation:

$$\Delta V_{OUT} = \Delta V_{ESR} + \Delta V_{OUT1} = \Delta V_{SER} + \frac{I_{OUT} \times D}{f_{OSC} \times C_{OUT}}$$

where $\Delta VESR = ICrms \times RCESR$

The output capacitor, Cout, should be selected accordingly.

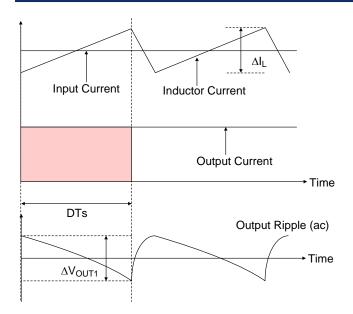


Figure 1. The Output Ripple Voltage without the Contribution of ESR

Under Voltage Lockout

To prevent abnormal operation of the IC in low voltage condition, an under voltage lockout is included which shuts down IC operation when input voltage is lower than the specified threshold voltage.

Soft-Start

The RT4801H employs an internal soft-start feature to avoid high inrush current during start-up. The soft-start function is achieved by clamping the output voltage of the internal error amplifier with another voltage source that is increased slowly from zero to near VIN during the soft-start period.

Output Voltage Setting

The output voltage of WL-CSP package can be programmed by a MCU through the dedicated I²C interface according to the Vop/Von Voltage Selection Table.

Shutdown Delay and Discharge

When the EN signal is logic low for more than $375\mu s$, the output will be powered off. When the output discharge function is selected, the RT4801H starts to discharge the output voltage to ground with 20ms duration and then the output goes back to floating state. If the output continuous discharge function is required for application, the external resistor is recommended to

be paralleled with the output. In shutdown mode, the input supply current for the IC is less than 1μ A.

Over Current Protection

The RT4801H includes a cycle-by-cycle current limit function which monitors the inductor current during each ON period. The power switch will be forced off to avoid large current damage once the current is over the limit level.

Short Circuit Protection

The RT4801H has an advanced output short-circuit protection mechanism which prevents the IC from damage by unexpected applications.

VOP short to ground

When the output voltage is under the limit level with 1ms (typ.) duration, the LCD bias function enters shutdown mode and can only re-start to normal operation after triggering the ENP/ENN pin.

VON short to ground

The output will keep current limit status without shutdown and re-start to normal operation once short condition removed.

Over Temperature Protection

The RT4801H equips an over temperature protection circuitry to prevent overheating due to excessive power dissipation. The OTP will shut down LCD bias operation when ambient temperature exceeds 140°C. Once the ambient temperature cools down by approximately 15°C, IC will automatically resume normal operation. To maintain continuous operation, the maximum junction temperature should be prevented from rising above 125°C.

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula:

 $PD(MAX) = (TJ(MAX) - TA) / \theta JA$

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

where T_J(MAX) is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is 125°C. The junction to ambient thermal resistance, θJA , is layout dependent. For WL-CSP-15B 1.31x2.07 package, the thermal resistance, θJA, is 49.8°C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at $T_A = 25^{\circ}C$ can be calculated by the following formula:

 $PD(MAX) = (125^{\circ}C - 25^{\circ}C) / (49.8^{\circ}C/W) = 2W \text{ for }$ WL-CSP-15B 1.31x2.07 (BSC) package

The maximum power dissipation depends on the operating ambient temperature for fixed TJ(MAX) and thermal resistance, θ JA. The derating curve in Figure 2 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

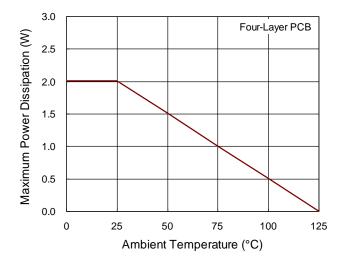


Figure 2. Derating Curve of Maximum Power Dissipation

Layout Considerations

For the best performance of RT4801H, the following PCB layout guidelines should be strictly followed.

- ▶ For good regulation, place the power components as close to the IC as possible. The traces should be wide and short especially for the high current output loop.
- ▶ The input and output bypass capacitor should be placed as close to the IC as possible and connected to the ground plane of the PCB.
- ▶ The flying capacitor should be placed as close to the CF1/CF2 pin as possible to avoid noise injection.
- ▶ Minimize the size of the LXP node and keep the traces wide and short. Care should be taken to avoid running traces that carry any noise-sensitive signals near LXP or high-current traces.
- ▶ Separate power ground (PGND) and analog ground (GND). Connect the GND and the PGND islands at a single end. Make sure that there are no other connections between these separate ground planes.

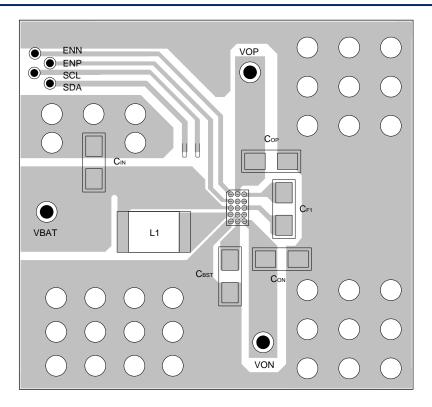
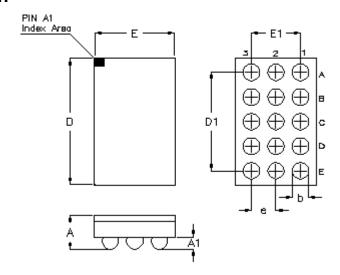
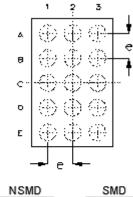
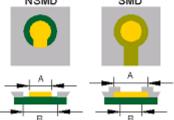



Figure 3. PCB Layout Guide

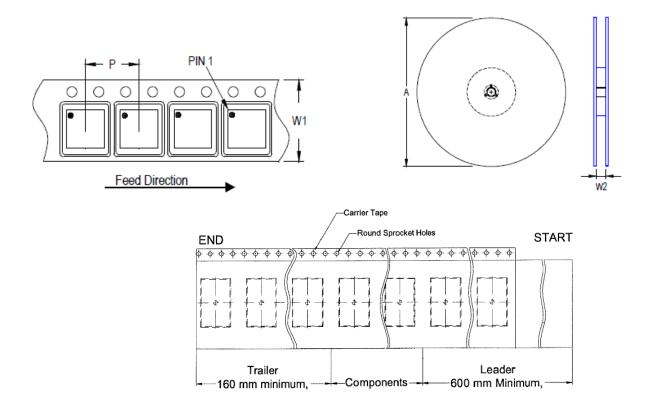
Outline Dimension



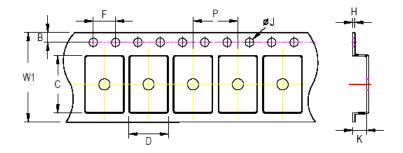

Symbol	Dimensions I	n Millimeters	Dimension	s In Inches	
Symbol	Min.	Max.	Min.	Max.	
Α	0.500	0.600	0.020	0.024	
A1	0.170	0.230	0.007	0.009	
b	0.240	0.300	0.009	0.012	
D	2.020	2.120	0.080	0.083	
D1	1.6	600	0.0	063	
E	1.260	1.360	0.050	0.054	
E1	0.8	300	0.031		
е	0.4	100	0.0)16	

WL-CSP-15B 1.31x2.07 (BSC)

Footprint Information



Dookogo	Number of		Footpri	n (mm)	Tolerance	
Package	Pin	Туре	е	Α	В	Tolerance
\\/\ CCD4 24v2 07 45/DCC\	15	NSMD	0.400	0.240	0.340	.0.025
WL-CSP1.31x2.07-15(BSC)	15	SMD	0.400	0.270	0.240	±0.025



Packing Information

Tape and Reel Data

Package Type	Tape Size (W1) (mm)	Pocket Pitch (P) (mm)	Reel Si	ze (A) (in)	Units per Reel	Trailer (mm)	Leader (mm)	Reel Width (W2) Min./Max. (mm)
WL-CSP 1.31x2.07	8	4	180	7	3,000	160	600	8.4/9.9

- C, D, and K are determined by component size. The clearance between the components and the cavity is as follows:
- For 8mm carrier tape: 0.5mm max.

Tape Size	W1	F)	E	3	I	=	Q	์ ป	Н
Tape Size	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
8mm	8.3mm	3.9mm	4.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1	PICHTER 1 TO THE PICHTE	4	
	Reel 7"		12 inner boxes per outer box
2	THE OFFICE AND THE STATE OF THE	5	RICHTEK TO PARTITUM TO PARTITU
	Packing by Anti-Static Bag		Outer box Carton A
3	RICHTEKS / MANY PRICHTEKS / M	6	
	3 reels per inner box Box A		

Container	R	eel		Вох		Carton				
Package	Size	Units	Item	Size(cm)	Reels	Units	Item	Size(cm)	Boxes	Unit
WL-CSP	7"	0.000	Box A	18.3*18.3*8.0	3	9,000	Carton A	38.3*27.2*38.3	12	108,000
1.31x2.07	<i>\'</i> "	3,000	Box E	18.6*18.6*3.5	1	3,000		For Combined or Pa	artial Reel.	

Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω /cm 2	10 ⁴ to 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C.

Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Datasheet Revision History

Version	Date	Description	Item
02	2024/2/27	Modify	General Description on P1 Ordering Information on P1 Absolute Maximum Ratings on P4 Typical Application Circuit on P7 Application Information on P18 Footprint Information on P23 Packing Information on P24, 25, 26

DS4801H-02 February 2024 www.richtek.com

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.