

2.4MHz 4A/6A Step-Down Converter with I²C Interface

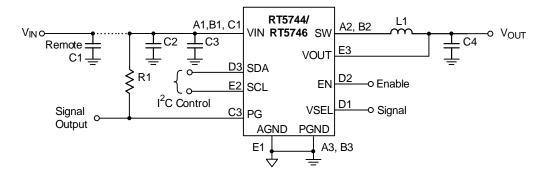
General Description

The RT5744 and RT5746 are step-down switching voltage regulators that deliver a digitally programmable output from an input voltage supply of 2.5V to 5.5V. The output voltage is programmed through an I²C interface that can operate up to 3.4MHz.

Using a proprietary architecture with synchronous rectification, the RT5744 and RT5746 are capable of delivering continuous 4A and 6A, maintaining that efficiency at load currents as low as 10mA. The regulator operates at a nominal fixed frequency of 2.4MHz, which reduces the external component counts. Additional output capacitance can be added to improve regulation during load transients without affecting stability.

At moderate and light loads, Pulse Frequency Modulation (PFM) is used to operate in power-saving mode with a typical quiescent current of $45\mu A$ at room temperature. Even with such a low quiescent current, the part exhibits excellent transient response during large load swings. At higher loads, the system automatically switches to fixed frequency control, operating at 2.4MHz. In shutdown mode, the supply current is typically $0.1\mu A$, and is excellent in reducing power consumption. The PFM mode can be disabled if the fixed frequency is desired. The RT5744 and RT5746 are available in WL-CSP-14B 1.31x2.02 (BSC) package.

The recommended junction temperature range is -40° C to 125°C.


Features

- Programmable Output Voltage Range
 ▶ 0.27V to 1.4V, 6.25mV/bit
- Programmable Slew Rate for Voltage Transitions
- Steady 2.4MHz Switching Frequency
- Fast Load Transient
- Continuous Output Current Capability: 4A/6A
- 2.5V to 5.5V Input Voltage Range
- Digitally Programmable Output Voltage
- I²C-Compatible Interface Up to 3.4Mbps
- PFM Mode for High Efficiency at Light Load
- Quiescent Current in PFM Mode: 45μA (Typical)
- Input Undervoltage Lockout (UVLO)
- Thermal Shutdown and Overload Protection
- Power Good Indicator

Applications

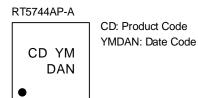
- Application, Graphic, and DSP Processors
- ARMTM, TegraTM, OMAPTM, NovaThorTM, ARMADATM, KraitTM, etc.
- Hard Disk Drives, LPDDR3, LPDDR4, LPDDR5
- Tablets, Netbooks, Ultra-Mobile PCs
- Smart Phones
- Gaming Devices

Simplified Application Circuit

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

RICHTEK

is a registered trademark of Richtek Technology Corporation.


Ordering Information

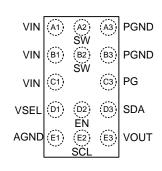
Ī	Dort No.	Power-Up Defaults EN Delay Slave		Dookege Type			
	Part No.	VSEL0	VSEL1	Time	Address	Package Type	
	RT5744AP-A	0.8V	0.9V	0ms	0x52		
Ī	RT5744BP-A	0.8V	0.9V	0ms	0x51	P: WL-CSP-14B 1.31x 2.02 (BSC)	
Ī	RT5746AP-A	1.05V	0.9V	0ms	0x52		

Note:

Richtek products are Richtek Green Policy compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.

Marking Information

CF: Product Code YMDAN: Date Code

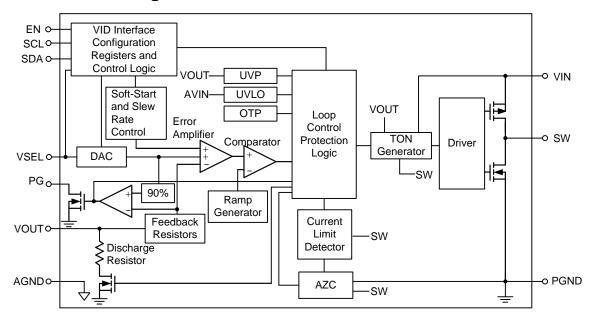

RT5746AP-A

CG: Product Code YMDAN: Date Code

Pin Configuration

(TOP VIEW)

WL-CSP-14B 1.31x 2.02 (BSC)



Functional Pin Description

Pin No. Pin Name		Pin Function
A1, B1, C1	VIN	Power input voltage. Connect to the input power source. Connect to CIN with minimal path.
A2, B2	SW	Switching node. Connect to the inductor.
A3, B3	PGND	Power ground. The low-side MOSFET is referenced to this pin. The CIN and COUT should be returned with a minimal path to these pins.
C3	PG	Power good indicator. The output of this pin is an open-drain with external pull-up resistor. After soft-startup, PG is pulled up when the FB voltage is within 90% (typ.). The PG status is low while EN is disabled. Note that when VIN is lower than 2.32V (typ.), the PG pin will keep low to indicate the power is not ready.
D1	VSEL	Output voltage and operation mode selection pin. When this pin is low, VOUT is set by the VSEL0 register. When this pin is high, VOUT is set by the VSEL1 register. Except the output voltage setting, operation mode can also be configured and selected by the VSEL pin; for example, when 0x02 Bit1 & Bit0 are equal to 0, then VSEL0 = Auto PFM/PWM mode, and VSEL1 = Auto PFM/PWM mode. Please refer to the I ² C register map for more details.
D2	EN	Enable control input. A logic-high enables the converter. A logic-low forces the device into shutdown mode, and all registers will reset to default values.
D3	SDA	I ² C serial data.
E1	AGND	Analog ground. All signals are referenced to this pin. Avoid routing high dV/dt AC currents through this pin.
E2	SCL	I ² C serial clock.
E3	VOUT	Output feedback sense pin. Output voltage sense through this pin. Connect to output capacitor.

Functional Block Diagram

Absolute Maximum Ratings (Note 1)

I	ESD Ratings	
•	• Storage Temperature Range	–65°C to 150°C
•	Junction Temperature	150°C
•	Lead Temperature (Soldering, 10 sec.)	260°C
•	Other I/O Pin Voltages	-0.3V to 7V
	<10ns	-4V to 8.5V
•	• VIN Pin to SW PIN	0.3V to 7V
	<10ns	-4V to 8.5V
•	SW Pin Switch Voltage, SW	-1V to 7.3V
•	Supply Input Voltage, VIN	0.3V to 7V

• ESD Susceptibility (Note 2) HBM (Human Body Model) ------ 2kV

Recommended Operating Conditions (Note 3)

• Supply Input Voltage, VIN------ 2.5V to 5.5V

Thermal Information (Note 4 and Note 5)

	Thermal Parameter	WL-CSP-14B 1.31x2.02	Unit
θЈА	Junction-to-ambient thermal resistance (JEDEC standard)	42	°C/W
θJC(Top)	Junction-to-case (top) thermal resistance	0.2	°C/W
θ JC(Bottom)	Junction-to-case (bottom) thermal resistance	9.5	°C/W
θJA(EVB)	Junction-to-ambient thermal resistance (specific EVB)	49.9	°C/W
ΨJC(Top)	Junction-to-top characterization parameter	1.1	°C/W
ΨЈВ	Junction-to-board characterization parameter	27.7	°C/W

Electrical Characteristics

 $(V_{IN} = 3.6V, T_A = 25^{\circ}C, unless otherwise specified)$

Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit		
Operating C PWM	Quiescent Current	IQ_PWM	ILOAD = 0, mode Bit = 1 (Forced PWM) (Note 6)		15		mA		
Operating C	Quiescent Current	IQ_PFM	ILOAD = 0A		45		μА		
	ow Power Mode Current PFM	IQ_PFM_LPM	ILOAD = 0A and Enable LPM (Note 6)		36		μА		
H/W Shutdo Current	own Supply	ISHDN_H/W	EN = GND		0.1	3	μА		
S/W Shutdo Current	own Supply	ISHDN_S/W	EN = VIN, BUCK_ENx = 0, 2.5V ≤ VIN ≤ 5.5V		2	12	μА		
Undervoltag Threshold	je Lockout	Vuvlo	VIN rising	-	2.32	2.45	V		
Undervoltag Hysteresis	ge Lockout	ΔVυνιο			350		mV		
RDS(ON) of F	P-MOSFET	RDS(ON)_P	VIN = 5V		30		mΩ		
RDS(ON) of I	N-MOSFET	RDS(ON)_L	VIN = 5V		17		mΩ		
Input Logic-High Voltage Logic-Low		VIH	2.5V ≤ VIN ≤ 5.5V	1.1			V		
		VIL	2.5V ≤ V _{IN} ≤ 5.5V			0.4	V		
EN Input Bia	as Current	len	EN input tied to GND or VIN	/IN 0.01		1	μΑ		
			$ \begin{array}{lll} 2.8 \text{V} \leq \text{Vin} \leq 4.8 \text{V}, \\ \text{Iout(DC)} = 0 \text{ to 4A, Vout} > 0.6 \text{V}, \\ \text{Auto PFM/PWM} & (\text{Note 6}) \end{array} $	-2		3	%		
V DO A				-12		18	mV		
VOUT DC A	ccuracy		$2.8V \leq VIN \leq 4.8V, \\ IOUT(DC) = 0 \text{ to } 4A, \ VOUT > 0.6V, \\ Forced PWM \qquad (Note 6)$	-2		2	%		
			$ 2.8 \text{V} \leq \text{VIN} \leq 4.8 \text{V}, \\ \text{IOUT(DC)} = 0 \text{ to 4A, VOUT} \leq 0.6 \text{V}, \\ \text{Forced PWM} \qquad \text{(Note 6)} $	-12		12	mV		
Load Regulation		AV/1 0.1-	IOUT(DC) = 1 to 4A, VOUT > 0.6V, (Note 6)		0.1		0/ /4		
		ΔVLOAD	$IOUT(DC) = 1 \text{ to } 4A, VOUT \le 0.6V,$ (Note 6)		0.2		%/A		
Lino Boarda	ition	AV/LINE	$ 2.5 \text{V} \leq \text{Vin} \leq 5.5 \text{V, Vout} > 0.4 \text{V,} \\ \text{Iout(DC)} = 2 \text{A} \qquad \text{(Note 6)} $		0.2		0/ /\ /		
Line Regula	uiOf1	ΔVLINE	$2.5V \le VIN \le 5.5V$, $VOUT \le 0.4V$, $IOUT(DC) = 2A$ (Note 6)		0.3				

Parameter	Parameter Symbol Test Conditions		Min	Тур	Max	Unit		
		ILOAD step 0.01A to 1.5A, tR = tF = 500ns, Vout = 1.125V (Note 6)		±45				
Transient Load Response	ACLOAD	ILOAD step 0.1A to 1.8A, tR = tF = 1 μ s, VIN = 3.8V, VOUT = 0.9V (Note 6)		±56		mV		
		ILOAD step 0.01A to 0.8A, tR = tF = 1 μ s, L = 0.33 μ H, COUT = 22 μ F x 2 (Note 6)		45				
Line Transient	VLINE	$V_{IN} = 3V$ to 3.6V, $t_R = t_F = 10 \mu s$, $l_{OUT} = 100 mA$, Forced PWM mode (Note 6)		±40		mV		
P-MOSFET Peak Current		RT5744	5.5	6	6.5	Α		
Limit	ILIM_P	RT5746	7	7.7	8.5	Α		
		RT5744	4	4.5	5	Α		
Valley Current Limit	ILIM_V	RT5746	6	6.5	7	Α		
Thermal Shutdown	TsD			150		°C		
Thermal Shutdown Hysteresis	ΔT _{SD}			15		°C		
Input OVP Shutdown	VSDHD_OVPrth Rising threshold			6.15		V		
Input OVP Shutdown	VSDHD_OVPfth	Falling threshold	5.5	5.73		V		
Switching Frequency	fsw	VOUT = Default RT5744A: 0.8V RT5744B: 0.8V RT5746A: 1.05V (Note 7)	2100	2400	2700	kHz		
Minimum Off-Time	toff_min			170		ns		
DAC Resolution		(Note 6)		8		bits		
DAC Differential Nonlinearity		(Note 6)			0.5	LSB		
I ² C Interface (Note 6)								
SDA, SCL Input Voltage	High Level		1.2			V		
ODA, OOL Input Voltage	Low Level				0.4	V		
		Standard mode			100	kHz		
		Fast mode			400	kHz		
SCL Clock Rate	fscl	Fast mode Plus			1	MHz		
		High speed mode, load 100pF max			3.4	MHz		
Hold Time (Repeated) Start		Standard mode	4					
Condition. After this Period,	thd;sta	Fast mode	0.6					
the First Clock Pulse is Generated	אוט,טוא,	Fast mode Plus	0.26			μS		
Contrated		High speed mode	0.16					

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

RT5744/RT5746

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit			
		Standard mode	4.7						
Low Period of the SCL Clock	ti OW	Fast mode	1.3						
LOW Period of the SCL Clock	ILOW	Fast mode Plus	0.5			μS			
		High speed mode	0.16						
		Standard mode	4						
High Period of the SCL	thigh	Fast mode	0.6			μS			
Clock	THOM	Fast mode Plus	0.26			μο			
		High speed mode	0.06						
		Standard mode	4.7						
Set-Up Time for a Repeated	tsu;sta	Fast mode	0.6			μS			
START Condition	130,314	Fast mode Plus	0.26			μο			
		High speed mode	0.16						
		Standard mode	5						
Data Hold Time	thd;dat	Fast mode	0			μS			
		Fast mode Plus	0						
		High speed mode	0.01						
	tsu;dat	Standard mode	250			ns			
Data Oat Ha Tina		Fast mode	100						
Data Set-Up Time		Fast mode Plus	50						
		High speed mode	30						
		Standard mode	4						
Set-Up Time for STOP	4	Fast mode	0.6						
Condition	tsu;sto	Fast mode Plus	0.26			μS			
		High speed mode	0.16						
		Standard mode	4.7						
Bus Free Time between a STOP and START Condition	tBUF	Fast mode	1.3			μS			
OTOT and OTATAL Condition		Fast mode Plus	0.5						
		Standard mode			1000				
		Fast mode	20		300				
Rising Time of both SDA and		Fast mode Plus			120				
SCL Signals	tR	High speed mode (SDA) load 100pF max	10		80	ns			
		High speed mode (SCL) load 100pF max	10		40				

Parameter	Symbol	Min	Тур	Max	Unit	
		Standard mode			300	
		Fast mode	20 x (VDD/5.5V)		300	
Falling Time of both SDA and SCL Signals	tF	Fast mode Plus	20 x (VDD/5.5V)		120	ns
		High speed mode (SDA) load 100pF max	10		80	
		High speed mode (SCL) load 100pF max	10		40	
SDA Output Low Sink Current	loL	SDA voltage = 0.4V	2			mA

- **Note 1.** Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 2. Devices are ESD sensitive. Handling precautions are recommended.
- Note 3. The device is not guaranteed to function outside its operating conditions.
- Note 4. For more information about thermal parameter, see the Application and Definition of Thermal Resistances report, AN061.
- Note 5. $\theta_{JA(EVB)}$, $\Psi_{JC(Top)}$ and Ψ_{JB} are measured on a high effective-thermal-conductivity four-layer test board which is in size of 70mm x 50mm; furthermore, all layers with 1 oz. Cu. Thermal resistance/parameter values may vary depending on the PCB material, layout, and test environmental conditions.
- Note 6. Guaranteed by design.
- Note 7. Measured switching frequency may not meet the declared range due to different operation modes and output voltages. For operating in PSM, the f_{SW} varies according to the operating condition. For $V_{OUT} < 0.5V$, the f_{SW} may be reduced if the duty cycle is too small.

www.richtek.com

Typical Application Circuit



Figure 1. RT5744 Typical Application Circuit

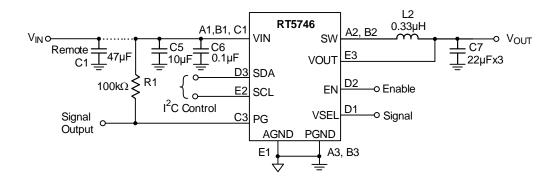
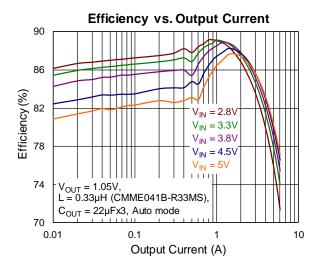
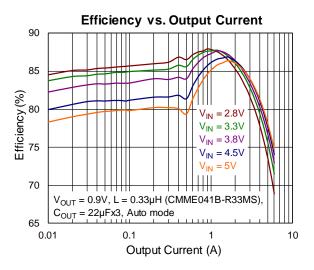
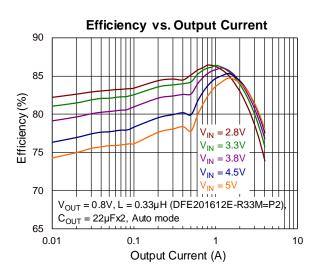


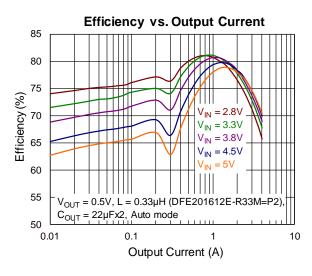
Figure 2. RT5746 Typical Application Circuit

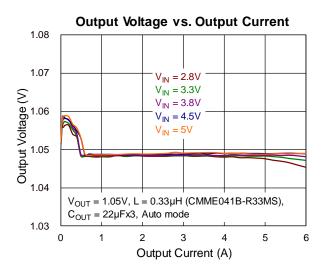
Table 1. Recommended External Components for 4A/6A Maximum Load Current

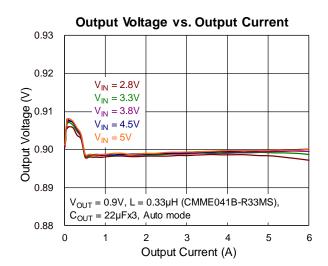

Component	Description	Vendor P/N
L1	330nH, case size	DFE201612E-R33M=P2 (Murata)
LI	470nH, case size	DFE201612E-R47M=P2 (Murata)
C2	4.7μF, 10V, X5R, 0402	GRM155R61A475MEAA (Murata)
C3 ⁽¹⁾	100nF, 6.3V, X5R, 0201	GRM033R60J104KE19D (Murata)
C4	22E v 2 6 2V VED 0602	GRM188R60J226MEA0D (Murata)
C4	22μF x 2, 6.3V, X5R, 0603	C1608X5R0J226M080AC (TDK)
L 2 ⁽³⁾	330nH, 4x4 size (12A, 10.8mΩ)	CMME041B-R33MS (Cyntec)
LZ(e)	220nH, 4x4 size (13A, 7.2mΩ)	CMME041B-R22MS (Cyntec)
C5	22μF, 6.3V, X5R, 0603	GRM188R60J226MEA0D (Murata)
C6 ⁽¹⁾	100nF, 6.3V, X5R, 0201	GRM033R60J104KE19D (Murata)
	22E v 2 6 2V VED 0602	GRM188R60J226MEA0D (Murata)
C7 ⁽³⁾	22μF x 3, 6.3V, X5R, 0603	C1608X5R0J226M080AC (TDK)
	47μF x 3, 6.3V, X5R, 0603	GRM188R60J476ME01 (Murata)

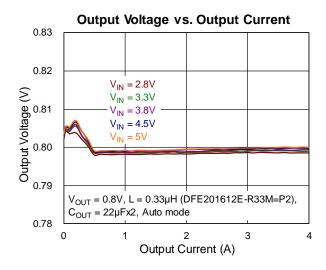

Note:

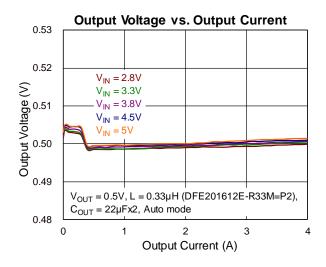

- (1) The decouple capacitors C3 and C6 are recommended to reduce any high frequency component on VIN bus. C3 and C6 are optional and used to filter any high frequency component on VIN bus.
- (2) All the input and output capacitors are the suggested values, referring to the effective capacitances, subject to any de-rating effect, like a DC bias.
- (3) For general purpose application, L2 = 330nH and C7 = $22\mu F$ x 3pcs are recommended. For fast load transient requirement, it is recommended to use L2 = 220nH and C7 = $47\mu F$ x 3pcs.

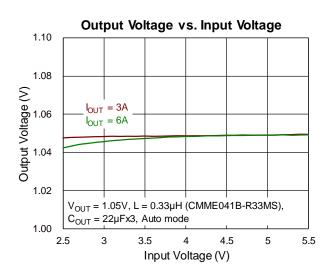


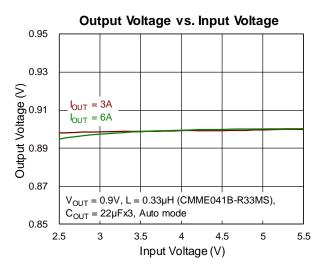

Typical Operating Characteristics

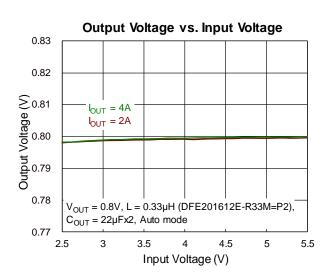


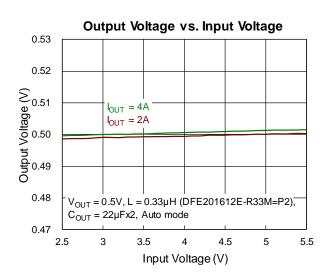


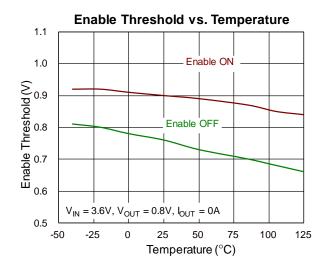


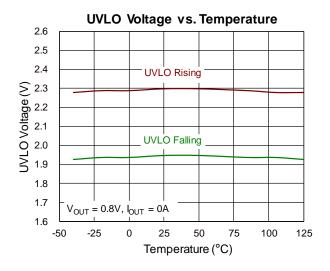


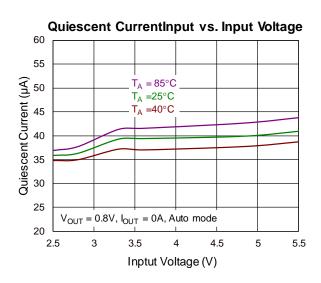


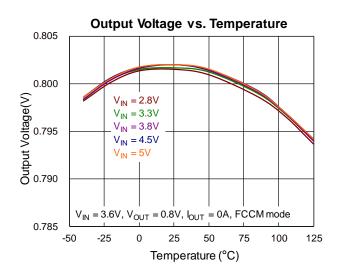


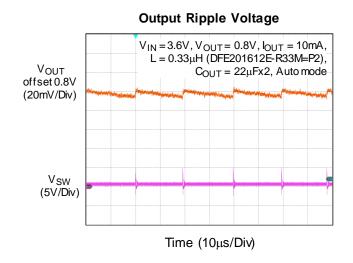


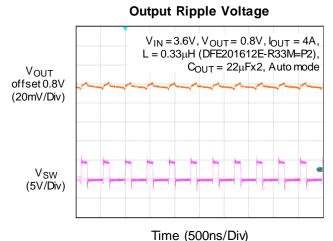


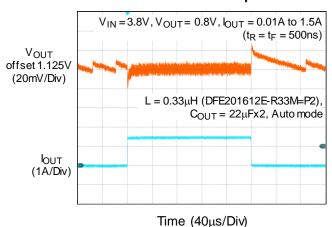


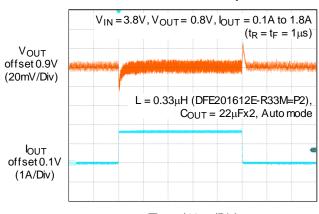




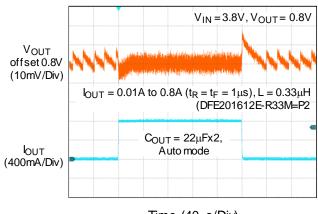




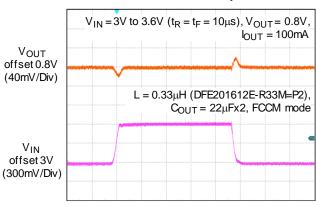




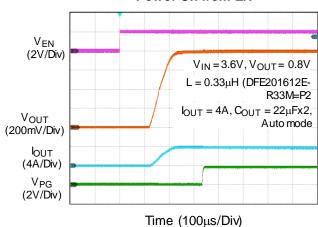
Load Transient Response



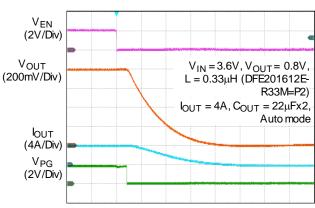
Load Transient Response


Time (40µs/Div)

Load Transient Response


Time (40µs/Div)

Line Transient Response



Time (50µs/Div)

Power On from EN

Power Off from EN

Time (5µs/Div)

Operation

The RT5744 and RT5746 are low voltage synchronous step-down converters that can support input voltage ranging from 2.5V to 5.5V, and the output current can be up to 4A and 6A, respectively. The RT5744 and RT5746 use ACOT® mode control. To achieve good stability with low-ESR ceramic capacitors, the ACOT® uses a virtual inductor current ramp generated inside the IC. This internal ramp signal replaces the ESR ramp normally provided by the output capacitor's ESR. The ramp signal and other internal compensations are optimized for low-ESR ceramic output capacitors.

In steady-state operation, the feedback voltage, with the virtual inductor current ramp added, is compared to the reference voltage. When the combined signal is less than the reference, the on-time one-shot is triggered, as long as the minimum off-time one-shot is cleared and the measured inductor current (through the synchronous rectifier) is below the current limit. The on-time one-shot turns on the high-side switch and the inductor current ramps up linearly. After the on-time, the high-side switch is turned off, the synchronous rectifier is turned on, and the inductor current ramps down linearly. At the same time, the minimum off-time one-shot is triggered to prevent another immediate on-time during the noisy switching times and allows the feedback voltage and current sense signals to settle. The minimum off-time is kept short so that rapidly-repeated on-times can raise the inductor current quickly when needed.

PWM Frequency and Adaptive On-Time Control

The on-time can be roughly estimated by the equation:

$$t_{ON} = \frac{V_{OUT}}{V_{IN}} \times \frac{1}{f_{SW}}$$

where fsw is nominal 2.4MHz.

Undervoltage Protection (UVLO)

The UVLO continuously monitors the voltage of VIN to make sure the device works properly. When the VCC is high enough to reach the high threshold voltage of UVLO, the step-down converter softly starts or pre-biases to its regulated output voltage. When the VIN decreases to its low threshold (350mV hysteresis), the device will shut down.

Power GOOD (Register, 0x05 bit7)

When the output voltage is higher than PGOOD rising threshold (90% of its setting voltage), the PGOOD flag is high.

Power Good Indication Pin

The RT5744 and RT5746 feature an open-drain power-good output (PG) to monitor the output voltage status. The output delay of comparator prevents false flag operation for short excursions in the output voltage, such as during line and load transients. Pull up PG with a resistor to Vout or an external voltage below 5.5V. When VIN voltage rises above VuvLo, the power-good function is activated. After soft-start is finished, the PG pin is controlled by a comparator connected to the feedback signal Vout. If Vout rises above a power-good high threshold (VTH PGLH) (typically 90% of the reference voltage), the PG pin will be in high impedance and VPG will be held high. Moreover, when V_{IN} is above UVLO and device is powered on through the EN pin (EN delay time setting is 0ms), the PG pin will assert high within 500μs (typ.) as soon as the VEN is above logic-high threshold.

When Vout falls below the power-good low threshold (VTH PGHL) (typically 80% of the reference voltage), the PG pin will be pulled low after a certain delay (3μs, typically). Once being started-up, if any internal protection is triggered, PG will be pulled low to GND. The internal open-drain pull-down device (10Ω , typically) will pull the PG pin low. Note that when Vin is lower than 2.32V, the PG pin will keep low to indicate the power is not ready.

Output Undervoltage Protection (UVP) and Overcurrent Protection (OCP)

When the output voltage of the RT5744 and RT5746 are lower than 59% of the reference voltage after soft-start, the UVP is triggered.

The RT5744 and RT5746 sense the current signal when high-side and low-side MOSFETs turn on. As a result, the OCP is cycle-by-cycle limit. If the OCP occurs, the converter holds off the next pulse and turns on low-side switch until inductor drops below the valley current limit, and then turns on high-side again to maintain output voltage and supports loading current to output before triggering UVP.

If the OCP condition keeps and the load current is larger than the current that the converter can provide, the output voltage will decrease and drop below UVP threshold, and the converter will keep switching for 16 consecutive cycles before it enters hiccup operation. The converter latches off 1.7ms when the output voltage is still lower than UVP threshold, and the soft-start sequence begins again after latching off time.

Note that, there is sensing propagation delay time before triggering OCP; hence, the OCP may take a few cycles to occur when the inductor current is near OCP threshold. If the output voltage drops slowly before entering hiccup operation, the converter will extend the high-side switch on-time and turns on low-side switch for only minimum offtime to provide large load current and catch up with the output voltage before detecting peak current limit OCP.

Soft-Start

An internal current source charges an internal capacitor to build the soft-start ramp voltage. The typical soft-start time can be programmed by I²C. When V_{IN} is above UVLO and device is powered on through the EN pin (EN delay time setting is 0ms), the output voltage will start to rise within 150 µs (typ.) as soon as the VEN is above logic-high threshold.

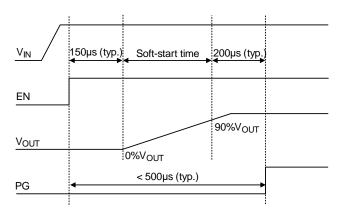


Figure 3. Start-Up Sequence without EN Delay

Thermal Shutdown Protection

The RT5744 and RT5746 have over-temperature protection (OTP) mechanism to prevent overheating due to excessive power dissipation. When the junction temperature exceeds the thermal shutdown threshold (typically 150°C), the device will be shut down immediately. Once its junction temperature is below the recovery threshold (15°C hysteresis), the device will resume normal operation with complete soft-start.

RICHTEK $Copyright @ 2023 \ Richtek \ Technology \ Corporation. \ All \ rights \ reserved.$ is a registered trademark of Richtek Technology Corporation.

Application Information

Richtek's component specification does not include the following information in the Application Information section. Thereby no warranty is given regarding its validity and accuracy. Customers should take responsibility to verify their own designs and reserve suitable design margin to ensure the functional suitability of their components and systems.

The basic RT5744 and RT5746 application circuit are shown in Typical Application Circuit. External component selection is determined by the maximum load current and begins with the selection of the inductor value, operating frequency, and followed by CIN and COUT.

Inductor Selection

The inductor value and operating frequency determine the ripple current according to a specific input and output voltage. The ripple current, ΔIL , increases with higher VIN and decreases with higher inductance, as shown in the equation below:

$$\Delta I_L = \left[\frac{V_{OUT}}{f \times L} \right] \times \left[1 - \frac{V_{OUT}}{V_{IN}} \right]$$

where f is the operating frequency and L is the inductance. Lower ripple current reduces not only ESR losses in the output capacitors, but also the output voltage ripple. Higher operating frequency combined with smaller ripple current is necessary to achieve high efficiency. Thus, a large inductor is required to attain this goal.

The largest ripple current occurs at the highest VIN. A reasonable starting point for selecting the ripple current is $\Delta IL = 0.3 \text{ x ImAx}$ to 0.4 x ImAx. To guarantee that the ripple current stays below a specified maximum, the inductor value should be chosen according to the following equation:

$$L = \left[\frac{V_{OUT}}{f \times \Delta I_{L(MAX)}}\right] \times \left[1 - \frac{V_{OUT}}{V_{IN(MAX)}}\right]$$

Input and Output Capacitor Selection

An input capacitor, CIN, is needed to filter out the trapezoidal current at the source of the high-side MOSFET.

To prevent large ripple current, a low ESR input capacitor sized for the maximum RMS current should be used. The RMS current is given by:

$$I_{RMS} = I_{OUT(MAX)} \times \frac{V_{OUT}}{V_{IN}} \times \sqrt{\frac{V_{IN}}{V_{OUT}}} - 1$$

This formula has a maximum at $V_{IN} = 2V_{OUT}$, where $I_{RMS} = I_{OUT(MAX)}/2$.

This simple worst-case condition is commonly used for design.

Choose a capacitor rated at a higher temperature than required.

Several capacitors may also be paralleled to meet the size or height requirements of the design. Ceramic capacitors have high ripple current, high voltage rating and low ESR, which makes them ideal for switching regulator applications.

However, they can also have a high voltage coefficient and audible piezoelectric effects. The high Q of ceramic capacitors with trace inductance can lead to significant ringing. When a ceramic capacitor is used at the input and the power is supplied by a wall adapter through long wires, a load step at the output can induce ringing at the input, VIN. At best, this ringing can couple to the output and be mistaken as loop instability. At worst, a sudden inrush of current through the long wires can potentially cause a voltage spike at VIN large enough to damage the part. Thus, care must be taken to select a suitable input capacitor.

The selection of Cout is determined by the required ESR to minimize output voltage ripple. Moreover, the amount of bulk capacitance is also a key for Cout selection to ensure that the control loop is stable. Loop stability can be checked by viewing the load transient response.

The output voltage ripple, $\Delta Vout$, is determined by:

$$\Delta V_{OUT} \le \Delta I_L \left[\text{ESR} + \frac{1}{8 \times f_{SW} \times C_{OUT}} \right]$$

I²C Interface Function

The RT5744 and RT5746 use the I²C interface to select VouT voltage level, Dynamic Voltage Scaling (DVS) slew rate, Auto PFM/PSM or FCCM mode, and so on. The register of each function can be found from the following register map and it also explains how to use these functions. Note that it takes 1ms delay for I²C interface to implement read/write command after both input voltage and EN voltage are above UVLO and EN rising threshold.

Vour Selection

The RT5744 and RT5746 all series products have programmable output voltage range from 0.27V to 1.4V with 6.25mV/bit resolution. Note that, the output voltage can be set by the NSELx register bit and the output voltage are given by the following equation and examples:

 $VOUT = 0.27V + NSELx \times 6.25mV$

For example:

if NSELx = 0111100 (60 decimal), then

 $VOUT = 0.27 + 60 \times 6.25 \text{mV}$

= 0.27 + 0.375 = 0.645V.

The RT5744 and RT5746 also have external VSEL pin to select NSEL1(0x01) or NSEL0(0x00). Pull VSEL to high is for VSEL1 and pull VSEL to low is for VSEL0. Upon POR, VSEL0 and VSEL1 are reset to their default voltages.

Enable and Soft-Start

When the EN pin is LOW, the IC is shut down, all internal circuits are off, and the part draws very little current. In this state, I²C cannot be written or read until input voltage is above the UVLO and EN voltage is above rising threshold. The registers will reset when the EN pin is LOW or during a Power-On Reset (POR).

Once the EN pin is HIGH, Vout will ramp up at the chosen soft-start slew rate programmed in the CONTROL2 (0x06) register SS_SR bit.

Raising EN while the EN_VSELx bit is HIGH activates the part and begins the soft-start cycle.

Once the EN and input voltage are above rising threshold, both enable and disable delay time can be adjusted through I^2C in the CONTROL3 (0x07) and CONTROL4 (0x08) registers.

Discharge Function

In the CONTROL1 (0x02) register, set the DISCHG bit to 1 can make VouT discharge by internal resistor when the converter shuts down. If the DISCHG bit is set to 0, VouT will decrease depending on the loading. When the EN pin is set to low, the RT5744 and RT5746 will default turn on internal 10Ω discharge resistor.

Slew Rate Setting

The RT5744 and RT5746 can control slew rate as VouT changing between two voltage levels for both up and down. In the CONTROL1 register, DVS_UP bits can control up-speed. In the CONTROL2 register, DVS_DN can control down-speed. The default slew rate of DVS_UP is 12.5mV/µs and the slew rate of DVS_DN is 3.125mV/µs.

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

RICHTEK

is a registered trademark of Richtek Technology Corporation.

RT5744/RT5746

The details of slew rate setting can be found in the register function description table.

Operation Mode Selection

In the CONTROL1 register, MODE_VSEL0 and MODE_VSEL1 can decide whether the converter is always at FCCM mode or enters power saving mode at light load conditions.

In auto PFM mode, the auto zero current detector circuit senses the SW waveform to adjust the zero current threshold voltage. When the current of low-side MOSFET decreases to the zero current threshold, the low-side MOSFET turns off to prevent negative inductor current. In this way, the zero current threshold can be adjusted for different conditions to get better efficiency.

The default operation mode of MODE_VSEL0 is auto PFM mode and MODE_VSEL1 can be selected by factory setting.

When output voltage is changing from high to low, the RT5744 and RT5746 will make transition operation at PWM mode and output voltage will decrease quickly.

Low Power Mode Operation

RT5744 and RT5746 feature auto PFM/PWM mode to achieve power-saving operation. It generates a single switching pulse to ramp up the inductor current and recharges the output capacitor, followed by a skip pulse or a sleep period to cut down current demand from input source to obtain high efficient at light load conditions. The load current is supported by the output capacitor during this sleep period depending on the load current and the inductor peak current.

To minimize the battery energy consumption, the system requests further quiescent current reduction operation such as shipping mode or suspend operation. RT5744 and RT5746 feature low power mode (LPM) operation, where several of the internal protection circuits (input OVP, UVP) are shutdown to achieve lowest 36μ A operating quiescent current for ultra-light load condition. LPM operation can be enabled by setting LPM control register (0x0A bit1) to 1 in the CONTROL5 register.

I²C Time Out Function

The RT5744 and RT5746 have built-in I²C time out function to make RT5744 and RT5746 resume listening state during communication bus error situation.

When RT5744 and RT5746 detect whether the SCL pin or SDA pin is pulled down for more than 30ms, RT5744 and RT5746 will reset its I^2C interface. The I^2C time out function can be enabled or disabled by control register (0x0A bit0). For more detail setting value, please refer to I^2C register table.

I²C Interface

The all series of RT5744 and RT5746 are able to support fast mode I^2C interface (bit rate 400kb/s), and different parts have their own slave address. For example, the default I^2C slave address of the RT5744A is 7'b1010010. The write or read bit stream (N \geq 1) is shown below:

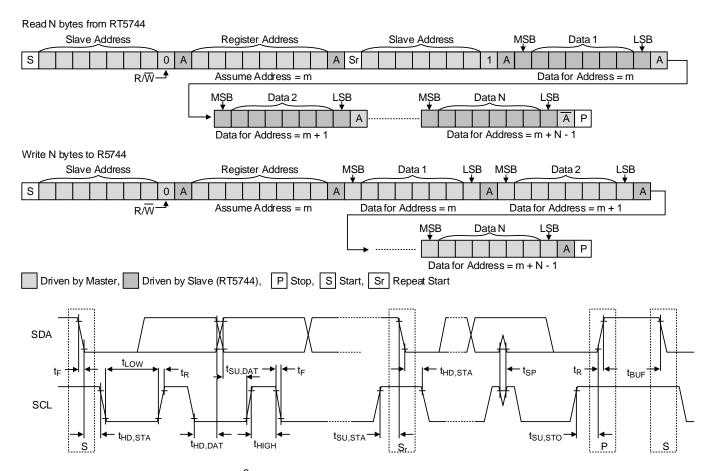


Figure 4. I²C Read and Write Stream and Timing Diagram

The RT5744 and RT5746 also support High-speed mode (bit rate up to 3.4Mb/s) with access code 08H. Figure 5 and Figure 6 show detailed transfer format. Hs-mode can only commence after the following conditions (all of which are in F/S-mode):

- START condition (S)
- 8-bit master code (00001xxx)
- Not-acknowledge bit (A)

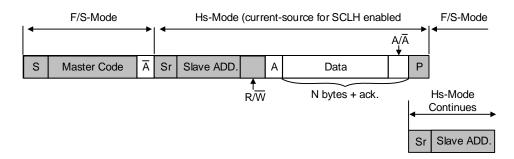


Figure 5. Data Transfer Format in HS-Mode

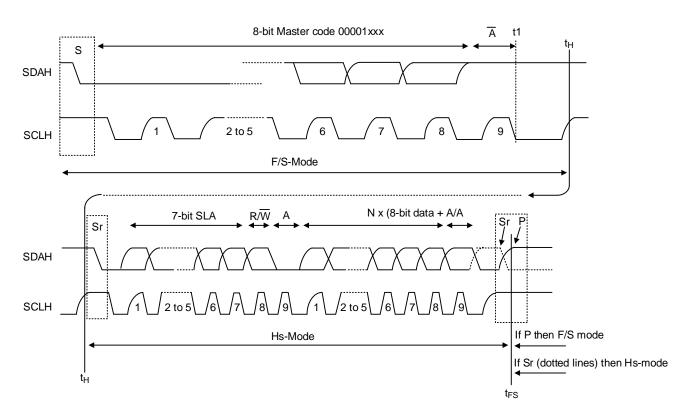


Figure 6. A Complete HS-Mode Transfer

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature T_{J(MAX)}, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

 $PD(MAX) = (TJ(MAX) - TA)/\theta JA$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, $\theta_{JA(EVB)}$, is highly package dependent. The thermal resistance, $\theta_{JA(EVB)}$, is 49.9°C/W on a high effective-thermal-conductivity four-layer test board. The maximum power dissipation at $T_A = 25$ °C can be calculated as below:

RICHTEK

PD(MAX) = (125°C - 25°C)/(49.9°C/W) = 2W for a WL-CSP-14B 1.31x2.02 (BSC) package.

The maximum power dissipation depends on the operating ambient temperature for the fixed TJ(MAX) and the thermal resistance, θJA(EVB). The derating curves in Figure 7 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

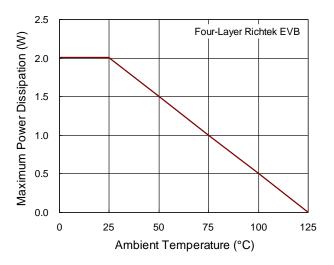


Figure 7. Derating Curve of Maximum Power Dissipation

Layout Considerations

For best performance of the RT5744 and RT5746, the following layout guidelines must be strictly followed.

- ▶ Input capacitor must be placed as close as possible to the IC to minimize the power loop area. A typical 0.1µF decouple capacitor is recommended to reduce power loop area and any high frequency component on VIN.
- ▶ SW node is with high frequency voltage swing and should be kept at small area. Keep analog components away from the SW node to prevent stray capacitive noise pickup.
- ▶ Keep every power trace connected to pin as wide as possible for improving thermal dissipation.
- The AGND pin is suggested to connect to 2nd GND plate through top to 2nd via.
- ▶ Keep current protection setting network as close as possible to the IC. Routing of the network should avoid coupling to high-voltage switching node.
- ▶ Connections from the drivers to the respective gate of the high-side or the low-side MOSFET should be as short as possible to reduce stray inductance.

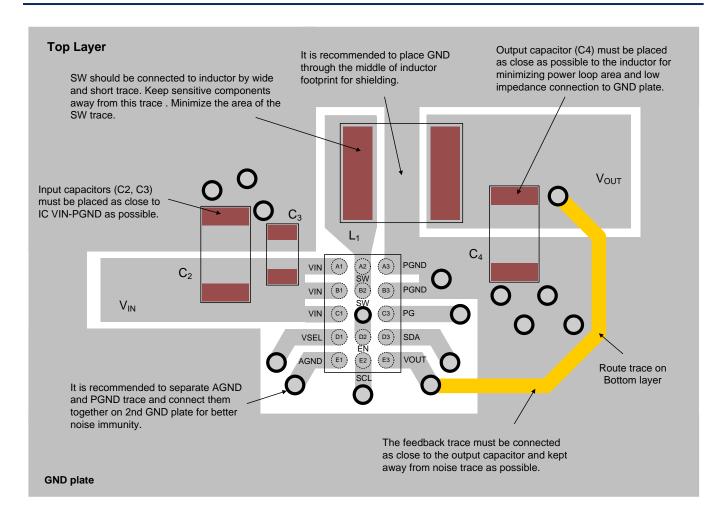
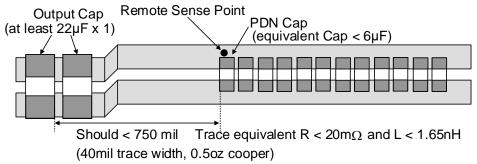
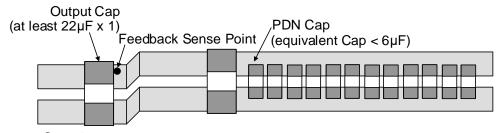
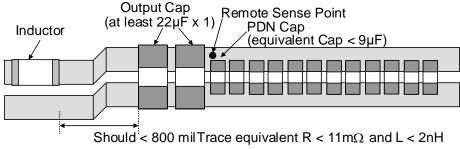



Figure 8. PCB Layout Guide


Layout Constraints for Remote Sense Applications

Case 1:

If the remote sense point is located at PDN cap


, the distance between 1st 22µF cap and PDN cap should not exceed 750 mil.

Case 2:

If the remote sense point is located at 1st 22µF cap

, there will be no constraint between $1^{st}\,22\mu F$ cap and PDN cap yet sacrifice AP transient performance with this configuration.

Case 3: (100mil trace width, 1oz cooper)

If the remote sense point is located at PDN cap and there is long trace between 1^{st} 22 μ F cap and inductor, the distance should not exceed 800mil.

Figure 9. Layout Constraints

Functional Register Description

RT5744A I^2C slave address is 7'b1010010, and its default output voltage setting is 0.8V/0.9V.

RT5744B I²C slave address is 7'b1010001, and its default output voltage setting is 0.8V/0.9V.

RT5746A I²C slave address is 7'b1010010, and its default output voltage setting is 1.05V/0.9V.

Table 2. Vour Setting

Vout (V)	Value								
0.27	0x00	0.50125	0x25	0.7325	0x4A	0.96375	0x6F	1.195	0x94
0.27625	0x01	0.5075	0x26	0.73875	0x4B	0.97	0x70	1.20125	0x95
0.2825	0x02	0.51375	0x27	0.745	0x4C	0.97625	0x71	1.2075	0x96
0.28875	0x03	0.52	0x28	0.75125	0x4D	0.9825	0x72	1.21375	0x97
0.295	0x04	0.52625	0x29	0.7575	0x4E	0.98875	0x73	1.22	0x98
0.30125	0x05	0.5325	0x2A	0.76375	0x4F	0.995	0x74	1.22625	0x99
0.3075	0x06	0.53875	0x2B	0.77	0x50	1.00125	0x75	1.2325	0x9A
0.31375	0x07	0.545	0x2C	0.77625	0x51	1.0075	0x76	1.23875	0x9B
0.32	0x08	0.55125	0x2D	0.7825	0x52	1.01375	0x77	1.245	0x9C
0.32625	0x09	0.5575	0x2E	0.78875	0x53	1.02	0x78	1.25125	0x9D
0.3325	0x0A	0.56375	0x2F	0.795	0x54	1.02625	0x79	1.2575	0x9E
0.33875	0x0B	0.57	0x30	0.80125	0x55	1.0325	0x7A	1.26375	0x9F
0.345	0x0C	0.57625	0x31	0.8075	0x56	1.03875	0x7B	1.27	0xA0
0.35125	0x0D	0.5825	0x32	0.81375	0x57	1.045	0x7C	1.27625	0xA1
0.3575	0x0E	0.58875	0x33	0.82	0x58	1.05125	0x7D	1.2825	0xA2
0.36375	0x0F	0.595	0x34	0.82625	0x59	1.0575	0x7E	1.28875	0xA3
0.37	0x10	0.60125	0x35	0.8325	0x5A	1.06375	0x7F	1.295	0xA4
0.37625	0x11	0.6075	0x36	0.83875	0x5B	1.07	0x80	1.30125	0xA5
0.3825	0x12	0.61375	0x37	0.845	0x5C	1.07625	0x81	1.3075	0xA6
0.38875	0x13	0.62	0x38	0.85125	0x5D	1.0825	0x82	1.31375	0xA7
0.395	0x14	0.62625	0x39	0.8575	0x5E	1.08875	0x83	1.32	0xA8
0.40125	0x15	0.6325	0x3A	0.86375	0x5F	1.095	0x84	1.32625	0xA9
0.4075	0x16	0.63875	0x3B	0.87	0x60	1.10125	0x85	1.3325	0xAA
0.41375	0x17	0.645	0x3C	0.87625	0x61	1.1075	0x86	1.33875	0xAB
0.42	0x18	0.65125	0x3D	0.8825	0x62	1.11375	0x87	1.345	0xAC
0.42625	0x19	0.6575	0x3E	0.88875	0x63	1.12	0x88	1.35125	0xAD
0.4325	0x1A	0.66375	0x3F	0.895	0x64	1.12625	0x89	1.3575	0xAE
0.43875	0x1B	0.67	0x40	0.90125	0x65	1.1325	A8x0	1.36375	0xAF
0.445	0x1C	0.67625	0x41	0.9075	0x66	1.13875	0x8B	1.37	0xB0
0.45125	0x1D	0.6825	0x42	0.91375	0x67	1.145	0x8C	1.37625	0xB1
0.4575	0x1E	0.68875	0x43	0.92	0x68	1.15125	0x8D	1.3825	0xB2
0.46375	0x1F	0.695	0x44	0.92625	0x69	1.1575	0x8E	1.38875	0xB3

RICHTEK

RT5744/RT5746

Vout (V)	Value								
0.47	0x20	0.70125	0x45	0.9325	0x6A	1.16375	0x8F	1.395	0xB4
0.47625	0x21	0.7075	0x46	0.93875	0x6B	1.17	0x90	1.40125	0xB5
0.4825	0x22	0.71375	0x47	0.945	0x6C	1.17625	0x91		
0.48875	0x23	0.72	0x48	0.95125	0x6D	1.1825	0x92		
0.495	0x24	0.72625	0x49	0.9575	0x6E	1.18875	0x93		

Table 3. Register List

			109.010. =.01	
Address	Register Name	Default	Туре	Note
0,,00	NOTLO	0x55	DW	RT5744A/ RT5744B
0x00	NSEL0	0x7D	RW	RT5746A
0.01	NCEL 1	0x65	DW	RT5744A/ RT5744B
0x01	NSEL1	0x65	RW	RT5746A
0x02	CONTROL1	0x90	RW	
0x03	ID1	0x01	RO	
0x04	ID2	0x00	RO	
0x05	MONITOR	0x00	RO	All davisas
0x06	CONTROL2	0x63	RW	All devices.
0x07	CONTROL3	0x00	RW	
0x08	CONTROL4	0x00	RW	
0x0A	CONTROL5	0x00	RW	

Table 4. NSEL0

Address: 0	Address: 0x00							
Bit	7	6	5	4	3	2	1	0
Field				VS	EL0			
RT5744A	0	1	0	1	0	1	0	1
RT5744B	0	1	0	1	0	1	0	1
RT5746A	0	1	1	1	1	1	0	1
Туре		RW						

Bit	Name	Description
		VID Table satisfy (activate when the VSEL pin set to logic-low): SEL[7:0] = 10110101: Vout = 1.40125V
7:0	VSEL0	 SEL[7:0] = 0000000 :Vout = 0.27V 6.25mV step for 0.27~1.40125

Table 5. NSEL1

Address: 0	Address: 0x01							
Bit	7	6	5	4	3	2	1	0
Field				VS	EL1			
RT5744A	0	1	1	0	0	1	0	1
RT5744B	0	1	1	0	0	1	0	1
RT5746A	0	1	1	0	0	1	0	1
Туре		RW						

Bit	Name	Description
7:0	VSEL1	VID Table satisfy (activate when the VSEL pin set to logic-high): SEL[7:0] = 10110101: Vout = 1.40125V SEL[7:0] = 0000000 :Vout = 0.27V 6.25mV step for 0.27~1.40125

Table 6. CONTROL1

Address: 0x02								
Bit	7	6	5	4	3	2	1	0
Field	DISCHG	UP_SR			Reserved	SW_RESET	MODE_VSEL1	MODE_VSEL0
Default	1	0	0	1	0	0	0	0
Туре	RW	RW		RV	RW	RW	RW	

Bit	Name	Description
7	DISCHG	Disable internal output discharge resistor Enable internal output discharge resistor
6:4	UP_SR	DVS Speed for UP DVS $000 = 25 \text{mV}/\mu\text{s}$ $001 = 12.5 \text{mV}/\mu\text{s}$ $010 = 6.25 \text{mV}/\mu\text{s}$ $011 = 3.125 \text{mV}/\mu\text{s}$ $100 = 1.5625 \text{mV}/\mu\text{s}$ $101 = 0.78125 \text{mV}/\mu\text{s}$ $101 = 0.39065 \text{mV}/\mu\text{s}$ $101 = 0.1953125 \text{mV}/\mu\text{s}$
3	Reserved	Reserved bits
2	SW_RESET	Write 1 to reset, always read 0
1	MODE_VSEL1	Mode control (activate when the VSEL pin set to logic-high): 1: Forced PWM mode 0: Auto PFM/PWM mode
0	MODE_VSEL0	Mode control (activate when the VSEL pin set to logic-low): 1: Forced PWM mode 0: Auto PFM/PWM mode

Table 7. ID1

Address: 0x03								
Bit	7	6	5	4	3	2	1	0
Field	VENDOR_ID			Reserved	DIE_ID			
Default	0	0	0	0	0	0	0	1
Туре	RO			RV	RO			

Bit	Name	Description
7:5	VENDOR_ID	Vendor_ID
4	Reserved	Reserved bits
3:0	DIE_ID	DIE_ID

Table 8. ID2

Address: 0	Address: 0x04							
Bit	7	6	5	4	3	2	1	0
Field		Rese	erved		DIE_REV			
Default	0	0	0	0	0	0	0	0
Туре		RV				R	0	

Bit	Name	Description
7:4	Reserved	Reserved bits
3:0	DIE_REV	Revision_ID

Table 9. MONITOR

Address: 0	Address: 0x05									
Bit	7	6	5	4	3	2	1	0		
Field	PGOOD	UVLO	OV	POS	NEG	RESET_STAT	ОТ	BUCK_STATUS		
Default	0	0	0	0	0	0	0	0		
Туре	RO	RO	RO	RO	RO	RO	RO	RO		

Bit	Name	Description
7	PGOOD	1: Buck is enabled and soft-start is completed.
6	UVLO	1: Signifies the VIN is less than the UVLO threshold.
5	OV	1: Signifies the VIN is greater than the input OV threshold.
4	POS	1: Signifies a positive voltage transition is in progress
3	NEG	1: Signifies a negative voltage transition is in progress
2	RESET_STAT	1: Indicates that a register reset was performed.
1	ОТ	1: Signifies the thermal shutdown is active.
0	BUCK_STATUS	1: Buck enabled; 0: buck disabled.

Table 10. CONTROL2

Address: 0x06										
Bit	7	6	5	4	3	2	1	0		
Field	DN_SR		Reserved	SS_SR		EN_VSEL1	EN_VSEL0			
Default	0 1 1		0	0 0		1	1			
Туре	RW		RV	R'	W	RW	RW			

Bit	Name	Description
7:5	DN_SR	DVS Speed for DN DVS 000 = 25mV/μs 001 = 12.5mV/μs 010 = 6.25mV/μs 011 = 3.125mV/μs 100 = 1.5625mV/μs 101 = 0.78125mV/μs 110 = 0.39065mV/μs 111 = 0.1953125mV/μs
4	Reserved	Reserved bits
3:2	SS_SR	DVS Speed for soft start DVS $00 = 10 \text{mV}/\mu\text{s}$ $01 = 5 \text{mV}/\mu\text{s}$ $10 = 2.5 \text{mV}/\mu\text{s}$ $11 = 1.25 \text{mV}/\mu\text{s}$
1	EN_VSEL1	Software power-on/off control register (activate when the VSEL pin set to logic-high): 0: Disable output 1: Enable output
0	EN_VSEL0	Software power-on/off control register (activate when the VSEL pin set to logic-low): 0: Disable output 1: Enable output

Table 11. CONTROL3

Address: 0x07									
Bit	7	6	5	4	3	2	1	0	
Field	Rese	erved	EN_DLY						
Default	0	0	0 0 0 0 0						
Туре	R	V	RW						

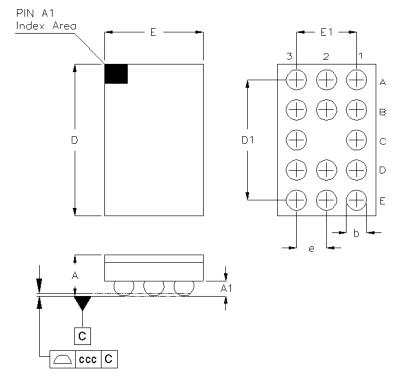
Bit	Name	Description
7:6	Reserved	Reserved bits
5:0	EN_DLY	Delay applied upon enable (ms) 000000b (0ms) to 111111b (63ms) (steps of 1ms)

Table 12. CONTROL4

Address: 0x08										
Bit	7	6	5	4	3	2	1	0		
Field	Rese	erved	DIS_DLY							
Default	0	0	0 0 0 0 0					0		
Туре	R	V	RW							

Bit	Name	Description
7:6	Reserved	Reserved bits
5:0	DIS_DLY	Delay applied upon disable (ms) 000000b (0ms) to 111111b (63ms) (steps of 1ms)

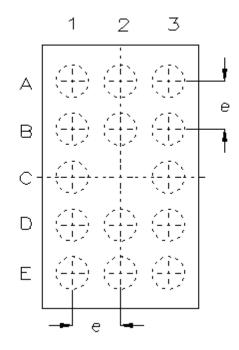
Table 13. CONTROL5

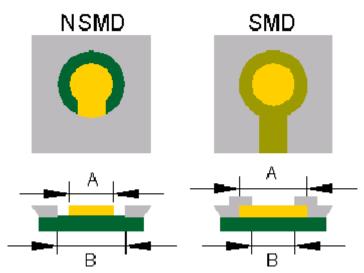

Address: 0x0A									
Bit	7	6	5	4	3	2	1	0	
Field				LPM	I ² C_TIME_OUT				
Default	0	0 0 0 0 0						0	
Туре		RV						RW	

Bit	Name	Description				
7:2	Reserved	Reserved bits				
1	LPM	Low power mode (LPM) control register: 0: Disable low power mode function 1: Enable low power mode function for power saving				
0	I ² C_TIME_OUT	I ² C time-out control register: 0: Disable I ² C time-out feature 1: Enable I ² C time-out feature to prevent from system hangout situation; the device will automatically reset I ² C to restore communication.				

www.richtek.com

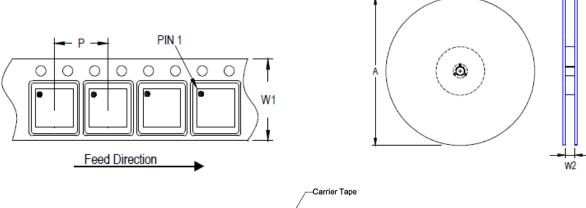
Outline Dimension

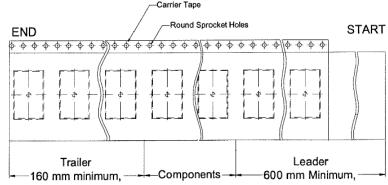


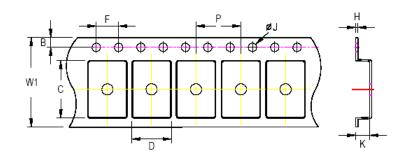

Comple of	Dimensions I	In Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
А	0.500	0.600	0.020	0.024		
A1	0.170	0.230	0.007	0.009		
b	0.240	0.300	0.009	0.012		
D	1.980	2.060	0.078	0.081		
D1	1.6	600	0.063			
E	1.270	1.350	0.050	0.053		
E1	0.8	300	0.031			
е	0.4	100	0.016			
ccc	0.0)20	0.001			

14B WL-CSP 1.31x2.02 Package (BSC)

Footprint Information




Dookogo	Number	T.//p.o	Footprii	Tolerance			
Package	of Pins	Type	е	Α	В	Tolerance	
WI CCD4 24v2 02 44/DCC)	1.1	NSMD	0.400	0.240	0.340	.0.025	
WL-CSP1.31x2.02-14(BSC)	14	SMD	0.400	0.270	0.240	±0.025	


Packing Information

Tape and Reel Data

Package Type	Tape Size (W1) (mm)	Pocket Pitch (P) (mm)	Reel Si	ze (A)	Units per Reel	Trailer (mm)	Leader (mm)	Reel Width (W2) Min./Max. (mm)
WL-CSP 1.31x2.02	8	4	180	7	3,000	160	600	8.4/9.9

C, D and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 8mm carrier tape: 0.5mm max.

Tape Size	W1	F)	В		F		Ø٦		Н
Tape Size	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
8mm	8.3mm	3.9mm	4.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

RICHTEK

is a registered trademark of Richtek Technology Corporation.

Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1	Red 7"	4	12 inner boxes per outer box
2	Packing by Anti-Static Bag	5	Outer box Carton A
3	3 reels per inner box Box A	6	

Container	Reel		Вох				Carton			
Package	Size	Units	Item	Size(cm)	Reels	Units	Item	Size(cm)	Boxes	Unit
WL-CSP	7"	3.000	Box A	18.3*18.3*8.0	3	9,000	Carton A	38.3*27.2*38.3	12	108,000
1.31x2.02	7" 3,00		Box E	18.6*18.6*3.5	1	3,000	For Combined or Partial Reel.			

Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel Cover tape		Carrier tape	Tube	Protection Band	
$\Omega/{ m cm}^2$	10 ⁴ to 10 ¹¹						

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

is a registered trademark of Richtek Technology Corporation.

RT5744/RT5746

Datasheet Revision History

Version	Date	Description	Item
00	2023/11/22	Final	