

RT5801

3V to 5.5V, 4-Phase, Step-Down Converter with I²C Interface

1 General Description

The RT5801 series products are synchronous stepdown converters with 4-phase capability, allowing for both multiphase and single-phase operations. These products offer a wide range of configuration options. The RT5801A provides triple outputs with 2+1+1 phase, while the RT5801B offers quad outputs with 1+1+1+1 phase. The RT5801C provides dual outputs with 3+1 phase, and the RT5801D offers a single output with 4phase. Lastly, the RT5801E provides dual outputs with 2+2 phase. This flexibility and high integration make the RT5801 series suitable for various applications that require high current and compact power management solutions, such as low-power processors, I/O power, the core power of FPGA, DSP, and other ASICs. With an input voltage range of 3V to 5.5V, these converters are compatible with a wide variety of low voltage systems. They can deliver up to 20A peak current and support output voltages ranging from 0.4V to 1.55V.

The RT5801 series products also offer programmable functions, including voltage level, voltage change slew rate, and soft-start slew rate, which can be controlled through an I²C interface operating at up to 3.4MHz. Additionally, these products support remote-sense function to ensure accurate output voltage under heavy loads. They are equipped with interrupt and fault-detection functions to report any error status. The RT5801 series products are available in a WL-CSP-54B 2.69x3.92 (BSC) package.

The recommended junction temperature range is -40° C to 125°C.

See Ordering Information for the key features of each part number.

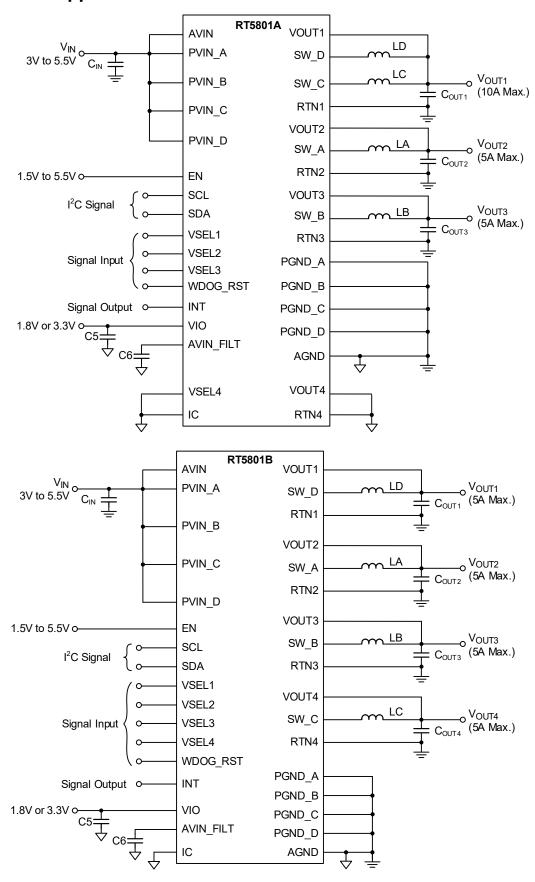
2 Features

- 4-Phase Buck Converter with Integrated MOSFETs
- Input Supply Voltage Range: 3V to 5.5V
- Typical Switching Frequency:
 - 2MHz and 2.2MHz
- I²C Programmable Output Voltage Range:
 - 0.4V to 2.05V
- (0.4 to 1.55V for 3-phase and 4-phase outputs)
 Support 5A Output Current Capability Per Phase
- Differential Remote Sense for Each Output with High Accuracy
- Fast Transient Response
- Power Saving Mode Enables Higher Light Load Efficiency
- Output Dynamic Voltage Scaling (DVS) with Programmable Ramp Up/Down Slew Rate
- Programmable Soft-Start Function
- Programmable Startup/Shutdown Sequence
- Interrupt Function and Fault Detection
- Watchdog Reset Function Prevents System Hang
- Input Undervoltage-Lockout (UVLO)
- Cycle-by-Cycle Current Limit for Each Phase
- Output Overvoltage/Undervoltage Protection
- Over-Temperature Protection
- WL-CSP-54B 2.69x3.92 (BSC) Package

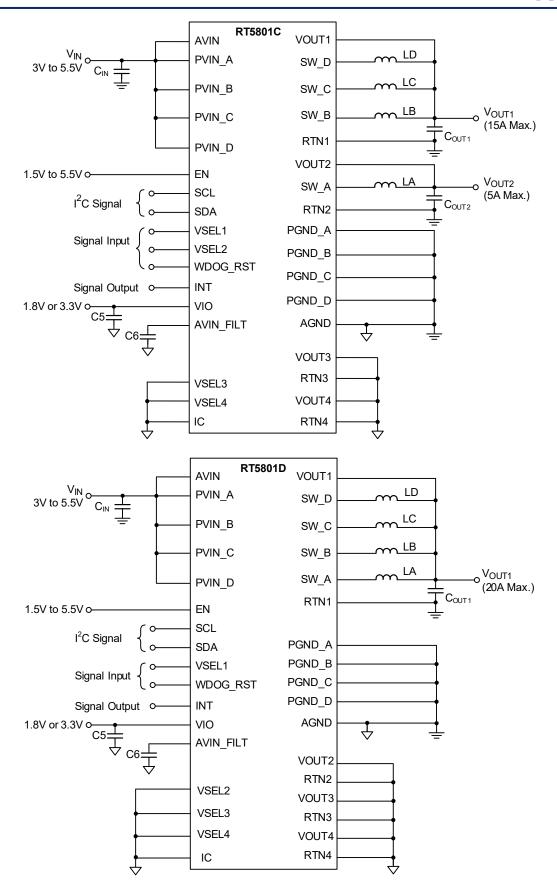
3 Applications

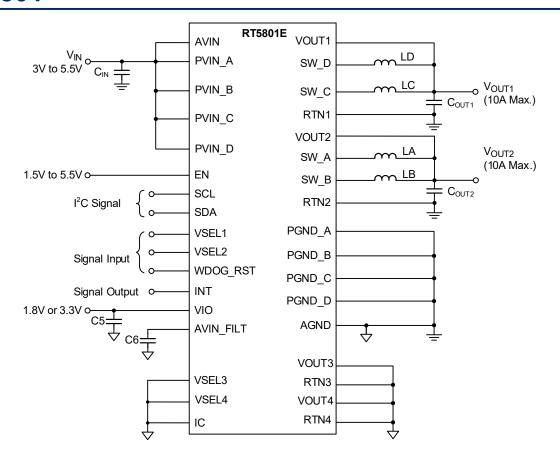
- Home Gateway and Access Point Networks
- Optical Modules
- Set-Top Boxes and OTT Devices
- Storage Systems
- Surveillance Systems

RICHTEK


June

RT5801 DS-03


www.richtek.com


4 Simplified Application Circuit

5 Ordering Information

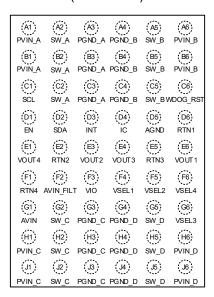
Product Number ⁽¹⁾	Output Channel	Configuration	Typical Switching Frequency	I ² C Programmable Output Voltage	Package Type ⁽²⁾
RT5801AWSC-YY	Vout1~3	2+1+1 phase			
RT5801BWSC-YY	Vout1~4	1+1+1+1 phase	2MHz	0.4V to 2.05V	
RT5801EWSC-YY	Vout1~2	2+2 phase			WL-CSP-54B
RT5801CWSC-YY	Vout1	2+1 phase		0.4V to 1.55V	2.69x3.92 (BSC)
K15001CWSC-11	Vout2	3+1 phase	2.2MHz	0.4V to 2.05V	
RT5801DWSC-YY	Vout1	4+0 phase		0.4V to 1.55V	

Note 1.

- Marked with ⁽¹⁾ indicated: The last two bits "YY" represent the trim version. See Product Status for all available devices. For additional trim options, contact our sales representative directly or through a Richtek distributor located in your area.
- Marked with (2) indicated: Compatible with the current requirements of IPC/JEDEC J-STD-020.

6 Marking Information

For marking information, contact our sales representative directly or through a Richtek distributor located in your area.


Table of Contents

1	Gene	eral Description	1		17.6 Watchdog Function	31
2	Featu	ures	1		17.7 Fault Detection and Interrupt Pin	32
3	Appli	ications	1		17.8 Current-Limit Protection	33
4	Simp	lified Application Circuit	2		17.9 Output Undervoltage Protection	33
5	Orde	ring Information	5		17.10 Output Overvoltage Protection	34
6	Mark	ing Information	5		17.11 Over-Temperature Protection	34
7	Pin C	Configuration	7		17.12 Negative Overcurrent Protection	
8	Func	tional Pin Description	7		(FCCM Only)	34
9	Func	tional Block Diagram	10	18	Application Information	35
10	Abso	olute Maximum Ratings	11		18.1 Inductor Selection	35
11	ESD	Ratings	11		18.2 Input Capacitor Selection	35
12	Reco	mmended Operating Conditions	11		18.3 Output Capacitor Selection	35
13	Ther	mal Information	11		18.4 Thermal Considerations	36
14	Elect	rical Characteristics	12		18.5 Layout Guidelines	37
	14.1	System Characteristics	13		18.6 I ² C Interface	40
15	Typic	cal Application Circuit	16	19	Functional Register Description	42
16	Typic	cal Operating Characteristics	21	20	Outline Dimension	75
17	Oper	ation	26	21	Footprint Information	76
	17.1	UVLO, Enable Control, and Soft-Start		22	Packing Information	77
		Function	27		22.1 Tape and Reel Data	77
	17.2	Dynamic Voltage Scaling (DVS)	29		22.2 Tape and Reel Packing	78
	17.3	MODE Selection			22.3 Packing Material Anti-ESD Property	79
	17.4	Automatically Phase Adding/Shedding	31	23	Product Status	80
	17.5	Power-Good Indication	31			

Pin Configuration

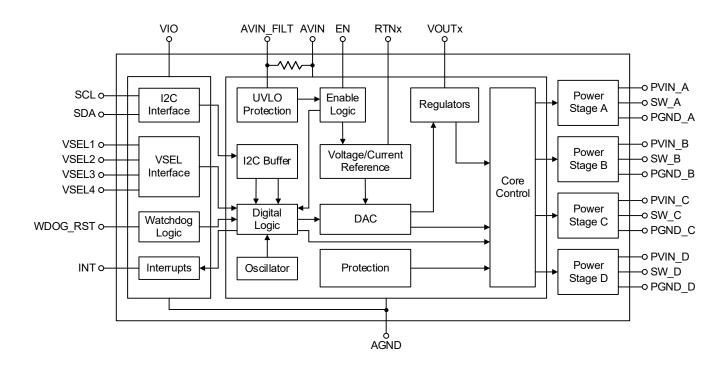
(TOP VIEW)

WL-CSP-54B 2.69x3.92 (BSC)

Functional Pin Description

Pin No.	Pin Name	Pin Function
A1, B1	PVIN_A	Power input for power stage A. It is recommended to use a $10\mu\text{F},~\text{X7R}$ capacitor.
A2, B2, C2	SW_A	Switch node for power stage A. Connect to the power inductor.
A3, B3, C3	PGND_A	Power ground for power stage A.
A4, B4, C4	PGND_B	Power ground for power stage B.
A5, B5, C5	SW_B	Switch node for power stage B. Connect to the power inductor.
A6, B6	PVIN_B	Power input for power stage B. It is recommended to use a $10\mu\text{F},~\text{X7R}$ capacitor.
C1	SCL	Clock input for the I ² C interface. The pull-up voltage supply must be the same as the VIO voltage for correct operation. Connect this pin to AGND if the I ² C interface is not used. "Do Not" leave this pin floating.
C6	WDOG_RST	Control input for output voltage reset. Reset each buck output voltage, DVSx, and ENDVSx registers to the factory default setting value when this pin is pulled low. Connect this pin to be higher than 70% of the VIO pin voltage if this pin is not used. "Do Not" leave this pin floating. The minimum watchdog debounce time is $100\mu s$.
D1	EN	Master chip enable. A logic-high enables the converter; a logic-low forces the device into shutdown mode. "Do Not" leave this pin floating.
D2	SDA	Data line for the I ² C interface. The pull-up voltage supply must be the same as the VIO voltage for correct operation. Connect this pin to AGND if the I ² C interface is not used. "Do Not" leave this pin floating.
D3	INT	Interrupt indicator.
D4	IC	Internal connection. Connect this pin to AGND.
D5	AGND	Ground for internal analog and digital circuitry.

Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.


Pin No.	Pin Name	Pin Function
D6	RTN1	Remote ground sense for Buck1.
E1	VOUT4	Output voltage sense for Buck4. Short to AGND for RT5801A/C/D/E.
E2	RTN2	Remote ground sense for Buck2. Short to AGND for RT5801D.
E3	VOUT2	Output voltage sense for Buck2. Short to AGND for RT5801D.
E4	VOUT3	Output voltage sense for Buck3. Short to AGND for RT5801C/D/E.
E5	RTN3	Remote ground sense for Buck3. Short to AGND for RT5801C/D/E.
E6	VOUT1	Output voltage sense for Buck1.
F1	RTN4	Remote ground sense for Buck4. Short to AGND for RT5801A/C/D/E.
F2	AVIN_FILT	Filtered analog supply voltage. It is recommended to connect a $1\mu\text{F},~\text{X7R}$ capacitor from this pin to AGND.
F3	VIO	I/O supply voltage for digital communications. Connect this pin to 1.8V or 3.3V. "Do Not" leave this pin floating.
F4	VSEL1	Buck1 DVS register selection control input. $0x52[1:0]$ determines the DVS register control input of Buck1. When $0x52[1:0]$ is set to "10", Buck1 DVS up or down operation is controlled by the external VSEL1 pin. Then $0x52[2]$ determines the polarity of the VSEL1 pin: DVS0 is selected if the VSEL1 pin is pulled up to V_{VIO} , but DVS1 is selected if the VSEL1 pin is pulled down to AGND. The factory default setting value of $0x52[1:0]$ is 00 (DVS0 is selected and ignores the VSEL1 pin). "Do Not" leave this pin floating.
F5	VSEL2	Buck2 DVS register selection control input. 0x6C[1:0] determines the DVS register control input of Buck2. When 0x6C[1:0] is set to "10", Buck2 DVS up or down operation is controlled by the external VSEL2 pin. Then 0x6C[2] determines the polarity of the VSEL2 pin: DVS0 is selected if the VSEL2 pin is pulled up to VVIO, but DVS1 is selected if the VSEL2 pin is pulled down to AGND. The factory default setting value of 0x6C[1:0] is 00 (DVS0 is selected and ignores the VSEL2 pin). "Do Not" leave this pin floating. Short to AGND for RT5801D.
G6	VSEL3	Buck3 DVS register selection control input. $0x86[1:0]$ determines the DVS register control input of Buck3. When $0x86[1:0]$ is set to "10", Buck3 DVS up or down operation is controlled by the external VSEL3 pin. Then $0x86[2]$ determines the polarity of the VSEL3 pin: DVS0 is selected if the VSEL3 pin is pulled up to V_{VIO} , but DVS1 is selected if the VSEL3 pin is pulled down to AGND. The factory default setting value of $0x86[1:0]$ is 00 (DVS0 is selected and ignores the VSEL3 pin). "Do Not" leave this pin floating. Short to AGND for RT5801C/D/E.
G1	AVIN	Analog supply voltage input.
G2, H2, J2	SW_C	Switch node for power stage C. Connect to the power inductor.
G3, H3, J3	PGND_C	Power ground for power stage C.
G4, H4, J4	PGND_D	Power ground for power stage D.
G5, H5, J5	SW_D	Switch node for power stage D. Connect to the power inductor.

Pin No.	Pin Name	Pin Function
F6	VSEL4	Buck4 DVS register selection control input. 0xA0[1:0] determines the DVS register control input of Buck4. When 0xA0[1:0] is set to "10", Buck4 DVS up or down operation is controlled by the external VSEL4 pin. Then 0xA0[2] determines the polarity of the VSEL4 pin: DVS0 is selected if the VSEL4 pin is pulled up to VVIO, but DVS1 is selected if the VSEL4 pin is pulled down to AGND. The factory default setting value of 0xA0[1:0] is 00 (DVS0 is selected and ignores the VSEL4 pin). "Do Not" leave this pin floating. Short to AGND for RT5801A/C/D/E.
H1, J1	PVIN_C	Power input for power stage C. It is recommended to use a $10\mu\text{F},~\text{X7R}$ capacitor.
H6, J6	PVIN_D	Power input for power stage D. It is recommended to use a $10\mu\text{F},~\text{X7R}$ capacitor.

9 Functional Block Diagram

www.richtek.com

10 Absolute Maximum Ratings

(Note 2)

- **Note 2.** Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

11 ESD Ratings

(Note 3)

ESD Susceptibility

HBM (Human Body Model) ----- 2kV

Note 3. Devices are ESD sensitive. Handling precautions are recommended.

12 Recommended Operating Conditions

(Note 4)

Supply Input Voltage	- 3V to 5.5V
Output Voltage Range for 1 and 2 Phase Configuration	- 0.4V to 2.05V
Output Voltage Range for 3 and 4 Phase Configuration	- 0.4V to 1.55V
Junction Temperature Range	40°C to 125°C

Note 4. The device is not guaranteed to function outside its operating conditions.

13 Thermal Information

(Note 5 and Note 6)

	Thermal Parameter	WL-CSP-54B 2.69x3.92 (BSC)	Unit
θ JA	Junction-to-ambient thermal resistance (JEDEC standard)	37.9	°C/W
θ JC(Top)	Junction-to-case (top) thermal resistance	0.8	°C/W
θ JC(Bottom)	Junction-to-case (bottom) thermal resistance	2.3	°C/W
θJA(EVB)	Junction-to-ambient thermal resistance (specific EVB)	35.2	°C/W
ΨJC(Top)	Junction-to-top characterization parameter	2.4	°C/W
ΨЈВ	Junction-to-board characterization parameter	19.6	°C/W

Note 5. For more information about thermal parameter, see the Application and Definition of Thermal Resistances report, AN061.

Note 6. θ_{JA(EVB)} and Ψ_{JC(TOP)} are measured on a high effective-thermal-conductivity four-layer test board which is in size of 110mm x 100mm; furthermore, all layers with 1 oz. Cu. Thermal resistance/parameter values may vary depending on the PCB material, layout, and test environmental conditions.

Copyright © 2025 Richtek Technology Corporation. All rights reserved.

14 Electrical Characteristics

(Note 7)

(V_{IN} = 3.7V, V_{VIO} = 1.8V or 3.3V, T_J = -40°C to 125°C, unless otherwise specified.)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Analog Input Voltage	VAVIN		3		5.5	V	
Power Input Voltage	VPVIN		3		5.5	V	
Shutdown Current	ISHDN	EN = 0V, Digital circuit does not work		0.1		μΑ	
Buck Off Current	ISDBO	EN = VIO = 1.8V, disable all Buck converters by software		30		μА	
1Phase No Switching Current	ISLP_1ph	Vout = 1.2 x Vout_setting		100		μΑ	
2Phase No Switching Current	ISLP_2ph	Vout = 1.2 x Vout_setting		130		μА	
3Phase No Switching Current	ISLP_3ph	Vout = 1.2 x Vout_setting		160		μΑ	
4Phase No Switching Current	ISLP_4ph	Vout = 1.2 x Vout_setting		190		μΑ	
Undervoltage-Lockout Threshold	Vuvlo	V _{IN} rising	2.45	2.7	2.95	V	
Undervoltage-Lockout Hysteresis	ΔVUVLO			300		mV	
Switching Frequency	fsw	RT5801A/B/E, Vout = 1V (FCCM)	1.7	2	2.3	MHz	
		RT5801C/D, Vout = 1V (FCCM)	1.9	2.2	2.4	IVII IZ	
On-Resistance of High- side MOSFET	RDSON_H	VIN = 5V		17		mΩ	
On-Resistance of Low- side MOSFET	RDSON_L	V _{IN} = 5V		5		mΩ	
HSFET Current-Limit per Channel	Ішм_н		6.5	8	9	Α	
LSFET Current-Limit per Channel	ILIM_L		5	7	8.5	Α	
LSFET Negative Current- Limit per Channel	ILIM_NL			3.5		Α	
SDA, SCL, WDOG_RST, VSEL Input Voltage Logic- High	VIH	$3V \leq V_{IN} \leq 5.5V$	0.7 x VIO			V	
SDA, SCL, WDOG_RST, VSEL Input Voltage Logic- Low	VIL	$3V \le V_{IN} \le 5.5V$			0.3 x VIO	V	
EN Input Voltage Rising Threshold	VEN_R		1.2			V	
EN Input Voltage Falling Threshold	VEN_F				0.4	v	
Vout DC Accuracy	VOUT_FPWM	Forced PWM, 0.6V ≤ V _{OUT} ≤ 2.05V	-1.5		1.5	%	
Output Undervoltage Protection Rising Threshold	VUVP_R	Trigger level	40	50	60	%	

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Output Undervoltage Protection Falling Threshold	Vuvp_f	Recovery level	47	57	67	%
Output Overvoltage Protection Rising Threshold	Vovp_r	Trigger level	120	133	145	%
Output Overvoltage Protection Falling Threshold	Vovp_f	Recovery level	110	125	140	%
Minimum On-Time	ton_min		-	40		ns
Minimum Off-Time	toff_min			90		ns
Discharge Resistor	Rdischg			10		Ω
O		RT5801A/E, Load = 10A, IAvg – ISW_N; N = A to D , TA = 0 to 85°C			0.5	Α
Current Balance	IBALANCE	Load = 10A, IAvg - ISW_N; N = A to D			1.2	Α
INT Output Voltage Logic- High	Vон	Push-pull, ISINK = 2mA	1.6		VIO	V
INT Output Voltage Logic- Low	VoL	Output low level, ISOURCE = 2mA			0.4	V

Note 7. The measured switching frequency may not always fall within the declared range due to variations in operation modes and operating points. In auto mode, the switching frequency (fsw) is reduced to enable power-saving functionality during light load conditions. Additionally, in multiphase operation, the fsw varies based on the active phase count in auto mode, meaning that the switching frequency adjusts according to the number of active phases.

14.1 System Characteristics

The following specifications are guaranteed by design and are not performed in production testing. ($V_{IN} = 3.7V$, $V_{VIO} = 1.8V$ or 3.3V, $T_{J} = -40^{\circ}$ C to 125°C, unless otherwise specified.)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit			
System	System								
Vout DC Accuracy	Vout_auto	Auto Mode, Vout = 1V	-2.5		2.5	%			
Load Regulation	VLOAD_REG	IOUT(DC) = 0A to 10A (FCCM)		-0.08		%/A			
Line Regulation	VLINE_REG	$3V \le V_{IN} \le 5V$, $I_{OUT(DC)} = 0A$ (FCCM)		0.2		%/V			
Load Transient Response	VLOAD_TRAN	1-phase configuration, 0.01A to 2.5A, tR = tF = 100ns, L= 0.22 μ H, VOUT = 1V, COUT = 22 μ F x 2/phase, TA = 25°C (FCCM)		±50		mV			
		2-phase configuration, 0.01A to 5A, $t_R = t_F = 200 ns$, $L = 0.22 \mu H$, $V_{OUT} = 1 V$, $C_{OUT} = 22 \mu F$ x 2/phase, $T_A = 25 ^{\circ} C$ (FCCM)		±50		mV			
		3-phase configuration, 0.01A to 7.5A, tR = tF = 300ns, L= 0.22 μ H, VOUT = 1V, COUT = 22 μ F x 2/phase, TA = 25°C (FCCM)		±50		mV			
		4-phase configuration, 0.01A to 10A, tR = tF = 200ns, L= 0.22 μ H, VOUT = 1V, COUT = 22 μ F x 2/phase, TA = 25°C (FCCM)		±50		mV			

Copyright © 2025 Richtek Technology Corporation. All rights reserved.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
		From 1-phase to 2-phase, Vout = 1V		3.6		Α	
Phase Adding Level	IPHASE_ADD	From 2-phase to 3-phase, V _{OUT} = 1V		5.4		Α	
		From 3-phase to 4-phase, V _{OUT} = 1V		8.2		Α	
		From 2-phase to 1-phase, Vout = 1V		2			
Phase Shedding Level	IPHASE_SHED	From 3-phase to 2-phase, Vout = 1V		4.5		Α	
20001		From 4-phase to 3-phase, Vout = 1V		6.4			
Soft-Start Time	tss	Slew Rate = 10mV/μs	-20		+20	%	
Dynamic Voltage Scaling Rising Slew Rate	tDVS_SR_R	VIN = 3.7V, VOUT = 0.6V to 1.2V, Slew Rate = 16mV/μs (default)	-20		+20	%	
Dynamic Voltage Scaling Falling Slew Rate	tDVS_SR_F	VIN = 3.7V, VOUT = 1.2V to 0.6V, Slew Rate = 4mV/μs (default)	-20		+20	%	
Over-Temperature Protection Threshold	Тотр			160		°C	
Over-Temperature Protection Hysteresis	TOTP_HYS			40		°C	
HOT Die Warning	THD			110		°C	
HOT Die Warning Hysteresis	THD_HYS			15		°C	
I ² C Interface							
	fscL	Standard mode			100	kHz	
SCL Clock Rate		Fast mode			400	kHz	
SOL CIOCK Nate		Fast mode plus			1	MHz	
		High speed mode, load 100pF max			3.4	MHz	
		Standard mode	4			- μs	
(Repeated) Start Hold	thd;sta	Fast mode	0.6				
Time	IND,STA	Fast mode plus	0.26				
		High speed mode	0.16				
		Standard mode	4.7				
SCL Clock Low	t. 014	Fast mode	1.3				
Period	tLOW	Fast mode plus	0.5			μS	
		High speed mode	0.16				
		Standard mode	4				
SCL Clock High	tu no u	Fast mode	0.6				
Period	thigh	Fast mode plus	0.26			μS	
		High speed mode	0.09				
		Standard mode	4.7				
(Repeated) Start	toures	Fast mode	0.6				
Setup Time	tsu;sta	Fast mode plus	0.26			μS	
		High speed mode	0.16			-	

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
	4	Standard mode	5			
SDA Data Hold Time		Fast mode	0			
SDA Data Hold Time	thd;dat	Fast mode plus	0			μS
		High speed mode	0			
		Standard mode	250			
CDA Catur Time	tournat	Fast mode	100			no
SDA Setup Time	tsu;dat	Fast mode plus	50			ns
		High speed mode	10			
		Standard mode	4			
STOP Condition	touro	Fast mode	0.6			
Setup Time	tsu;sto	Fast mode plus	0.26			μS
		High speed mode	0.16			
Bus Free Time		Standard mode	4.7			μs
between Stop and	tBUF	Fast mode	1.3			
Start		Fast mode plus	0.5			
		Standard mode			1000	ns
		Fast mode	20		300	ns
Rise Time of SDA		Fast mode plus			120	ns
and SCL Signals	tR	High speed mode (SDA) load 100pF max	10		80	ns
		High speed mode (SCL) load 100pF max	10		40	ns
		Standard mode			300	
		Fast mode	20 x (VDD/ 5.5V)		300	ns
Fall Time of SDA and SCL Signals	tF	Fast mode plus	20 x (VDD/ 5.5V)		120	ns
		High speed mode (SDA) load 100pF max	10	1	80	ns
		High speed mode (SCL) load 100pF max	10	-	40	ns
SDA Output Low Sink Current	lol_i2C	SDA voltage = 0.4V	2			mA

15 Typical Application Circuit

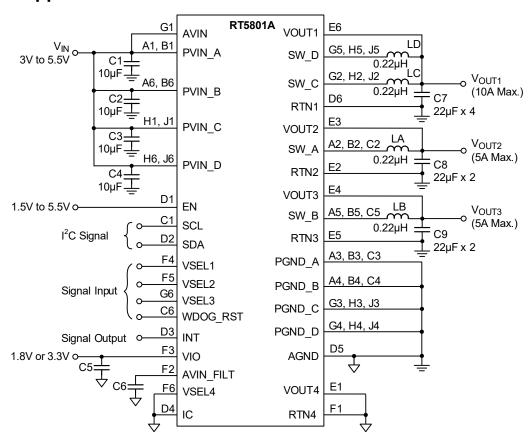


Table 1. Recommended BOM

Table 1. Necommended Bow					
Reference	Qty	Part Number	Description	Package	Manufacture
U1	1	RT5801A	DC-DC Converter	WL-CSP-54B 2.69x3.92 (BSC)	Richtek
04 00 00 04		GRM188D70J106MA73	40 F	0.0000	Murata
C1, C2, C3, C4	4	GRM188C81A106MA73	10μF	C-0603	
05.00	2	GCM188R71C105KA64	1	C-0603	Murata
C5, C6		GRM155C71C105KE11	1μF	C-0402	
07.00.00		GRM188C80G226ME15	22. 5	C-0603	Murata
C7, C8, C9	8	GRM188D70J226ME01	22μF		
LA, LB, LC, LD	4	DFE201610E-R24M	0.24μΗ	2016 -	Murata
		TFM201610ALM-R24MTAA			TDK
L (, LD, LO, LD		HMMQ25201B-R22MSR-57	0.22μΗ	2520	Cyntec

Note 8. All the input and output capacitors are the suggested values, referring to the effective capacitances, subject to any derating effect, like a DC bias. The effective values of capacitors C1 to C4 must be larger than 4μF, and capacitors C7 to C9 must be larger than 14μF.

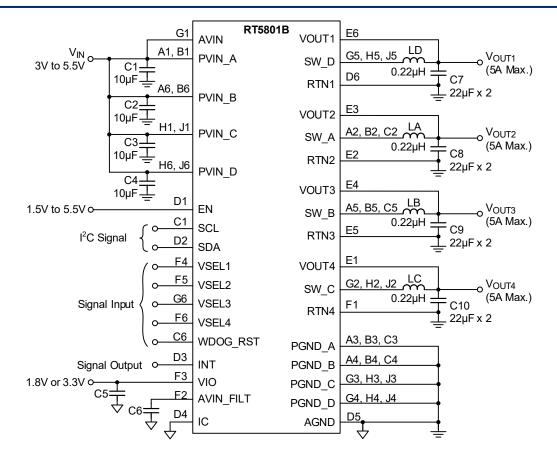


Table 2. Recommended BOM

Reference	Qty	Part Number	Description	Package	Manufacture
U1	1	RT5801B	DC-DC Converter	WL-CSP-54B 2.69x3.92 (BSC)	Richtek
C1 C2 C3 C4	4	GRM188D70J106MA73	10. F	C-0603	Murata
C1, C2, C3, C4	4	GRM188C81A106MA73	10μF	C-0003	
C5, C6	2	GCM188R71C105KA64	1⊏	C-0603	Murata
C5, C6	2	GRM155C71C105KE11	1μF	C-0402	
C7 C9 C0 C10	0	GRM188C80G226ME15	22⊏	C-0603	Murata
C7, C8, C9, C10	8	GRM188D70J226ME01	22μF		
LA, LB, LC, LD	4	DFE201610E-R24M	0.24μΗ	2016	Murata
		TFM201610ALM-R24MTAA			TDK
		HMMQ25201B-R22MSR-57	0.22μΗ	2520	Cyntec

Note 9. All the input and output capacitors are the suggested values, referring to the effective capacitances, subject to any derating effect, like a DC bias. The effective values of capacitors C1 to C4 must be larger than $4\mu F$, and capacitors C7 to C9 must be larger than $14\mu F$.

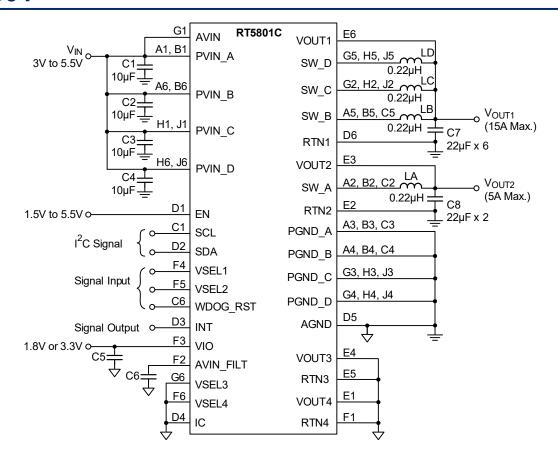


Table 3. Recommended BOM

Reference	Qty	Part Number	Description	Package	Manufacture
U1	1	RT5801C	DC-DC Converter	WL-CSP-54B 2.69x3.92 (BSC)	Richtek
C1 C2 C2 C4	4	GRM188D70J106MA73	10. F	C-0603	Murata
C1, C2, C3, C4	4	GRM188C81A106MA73	10μF		
C5, C6	2	GCM188R71C105KA64	1⊏	C-0603	Murata
C5, C6	2	GRM155C71C105KE11	1μF	C-0402	
C7 C9	0	GRM188C80G226ME15	22. 5	C-0603	Murata
C7, C8	8	GRM188D70J226ME01	22μF	C-0603	
	4	DFE201610E-R24M	0.24μΗ	2016	Murata
LA, LB, LC, LD		TFM201610ALM-R24MTAA			TDK
		HMMQ25201B-R22MSR-57	0.22μH	2520	Cyntec

Note 10. All the input and output capacitors are the suggested values, referring to the effective capacitances, subject to any derating effect, like a DC bias. The effective values of capacitors C1 to C4 must be larger than $4\mu F$, and capacitors C7 to C9 must be larger than $14\mu F$.

eserved. RICHTEK

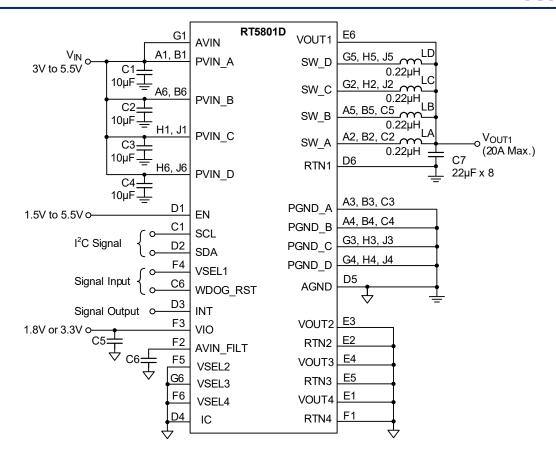
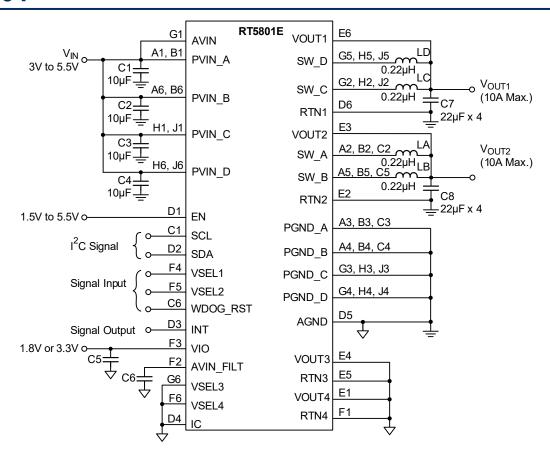
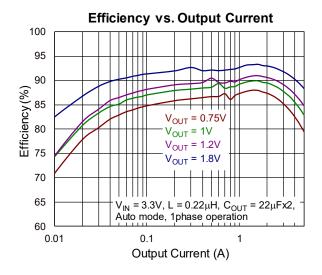


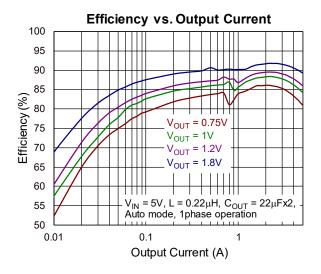
Table 4. Recommended BOM

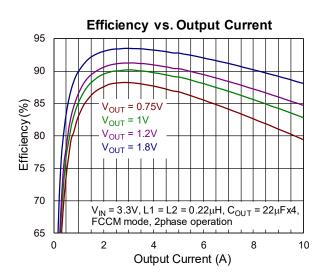
Reference	Qty	Part Number	Description	Package	Manufacture
U1	1	RT5801D	DC-DC Converter	WL-CSP-54B 2.69x3.92 (BSC)	Richtek
C1 C2 C2 C4	4	GRM188D70J106MA73	10. F	0.0000	Murata
C1, C2, C3, C4	4	GRM188C81A106MA73	10μF	C-0603	
C5, C6	2	GCM188R71C105KA64	1⊏	C-0603	Murata
C5, C6	2	GRM155C71C105KE11	1μF	C-0402	
C7	0	GRM188C80G226ME15	22. 5	C-0603	Murata
C7	8	GRM188D70J226ME01	22μF	C-0603	
LA, LB, LC, LD	4	DFE201610E-R24M	0.24μΗ	2016 -	Murata
		TFM201610ALM-R24MTAA			TDK
		HMMQ25201B-R22MSR-57	0.22μΗ	2520	Cyntec

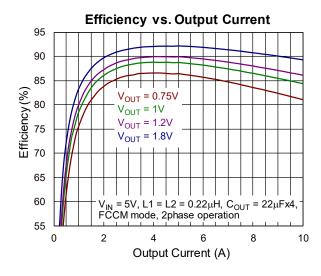
Note 11. All the input and output capacitors are the suggested values, referring to the effective capacitances, subject to any derating effect, like a DC bias. The effective values of capacitors C1 to C4 must be larger than $4\mu F$, and capacitors C7 to C9 must be larger than $14\mu F$.



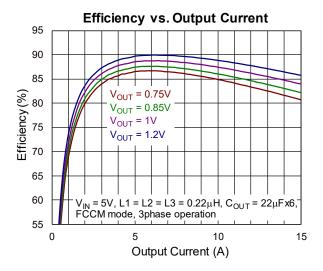

Table 5. Recommended BOM

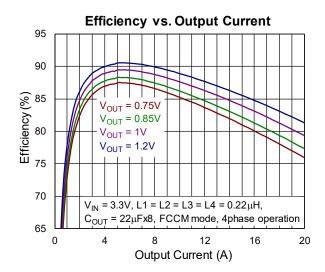

Reference	Qty	Part Number	Description	Package	Manufacture
U1	1	RT5801E	DC-DC Converter	WL-CSP-54B 2.69x3.92 (BSC)	Richtek
C1 C2 C2 C4	4	GRM188D70J106MA73	10. F	C-0603	Murata
C1, C2, C3, C4	4	GRM188C81A106MA73	10μF		
C5, C6	2	GCM188R71C105KA64	1μF	C-0603	Murata
C3, C0	2	GRM155C71C105KE11	ιμε	C-0402	
C7, C8	0	GRM188C80G226ME15	22⊏	C-0603	Murata
C7, C8	8	GRM188D70J226ME01	22μF	C-0003	
	4	DFE201610E-R24M	0.24μΗ	2016	Murata
LA, LB, LC, LD		TFM201610ALM-R24MTAA			TDK
		HMMQ25201B-R22MSR-57	0.22μH	2520	Cyntec

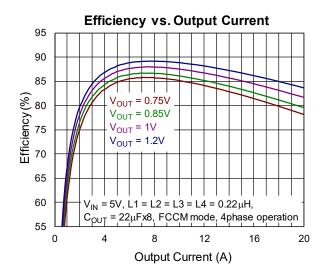

Note 12. All the input and output capacitors are the suggested values, referring to the effective capacitances, subject to any derating effect, like a DC bias. The effective values of capacitors C1 to C4 must be larger than $4\mu F$, and capacitors C7 to C9 must be larger than $14\mu F$.

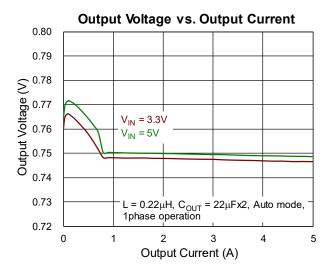


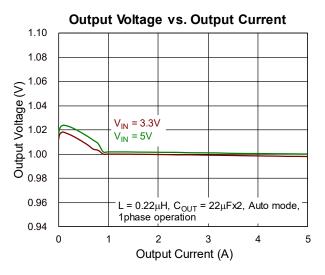
16 Typical Operating Characteristics

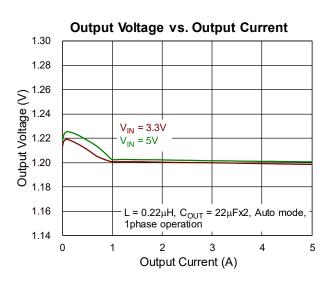


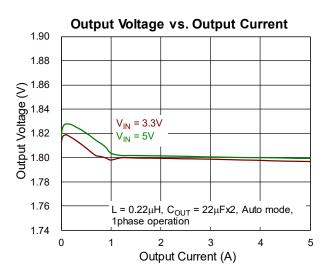


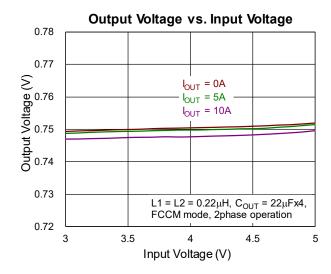

Copyright © 2025 Richtek Technology Corporation. All rights reserved.

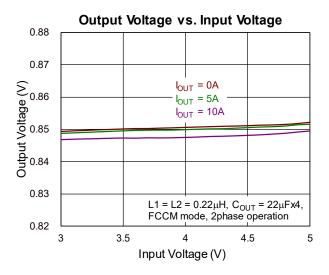

RICHTEK is a registered trademark of Richtek Technology Corporation.

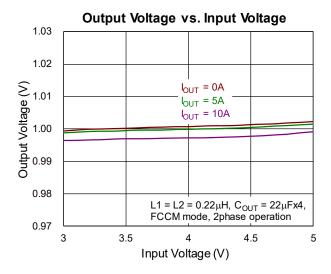

RT5801_DS-03 June 2025 www.richtek.com

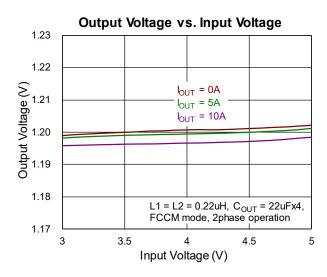


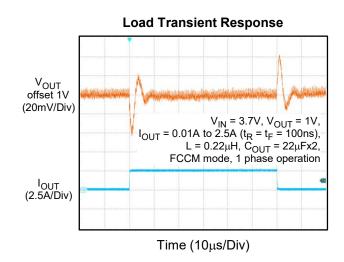


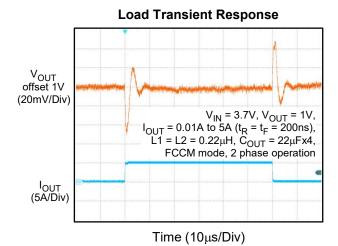


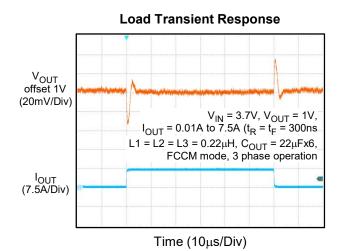


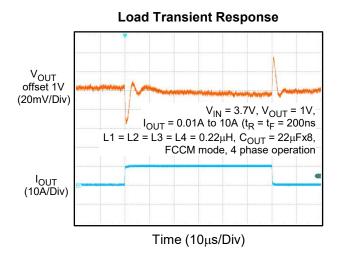


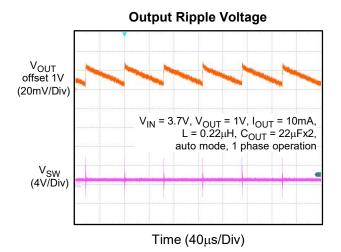

www.richtek.com

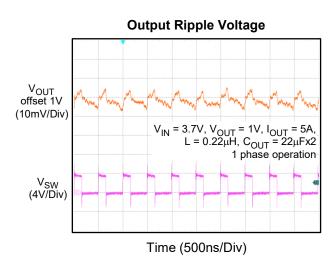


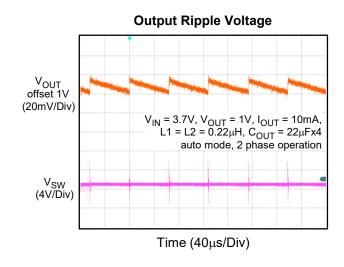


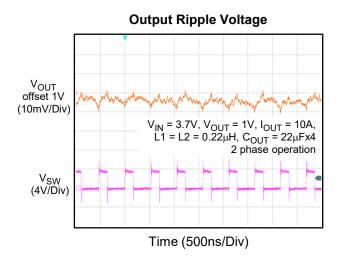


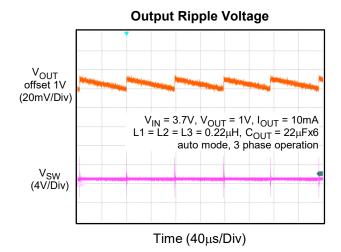

Copyright © 2025 Richtek Technology Corporation. All rights reserved.

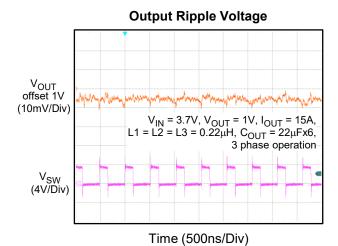

RICHTEK

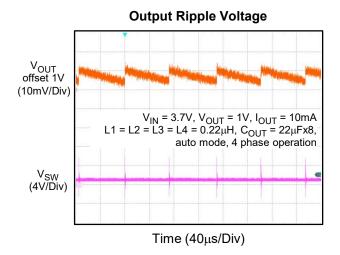

is a registered trademark of Richtek Technology Corporation.

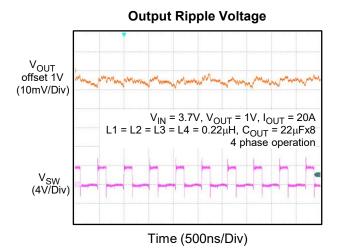












17 Operation

The RT5801 series comprises power management ICs that integrate four high-efficiency buck converters. These series are factory configured as five different part options: RT5801A (2+1+1 phase), RT5801B (1+1+ 1+1 phase), RT5801C (3+1 phase), RT5801D (4-phase) and RT5801E (2+2 phase) converters. The converter is capable of providing up to 20A peak current with an output voltage range from 0.4V to 1.55V.

The RT5801 series utilizes the proprietary Advanced Constant On-Time (ACOT®) control architecture. The ultrafast ACOT® control enables the use of small ceramic capacitors (MLCC) to save the PCB size.

During normal operation, the internal high-side power switch (HSFET) is activated for a predetermined duration determined by a one-shot timer at the start of each clock cycle. When the HSFET is deactivated, the internal lowside power switch (LSFET) is activated. The output voltage is remotely sensed at the VOUT pin and the RTN pin to ensure high accuracy and is compared to an internal reference voltage. As a result, an error signal is obtained and internally compensated. The compensated error signal is then compared to an internal ramp signal. Once the minimum off-time one-shot has elapsed and the inductor current is below the current-limit threshold, the one-shot is triggered again if the internal ramp signal falls below the compensated error signal. The ACOT® control architecture is characterized by its ultrafast transient response. When there is a sudden increase in load, the output voltage rapidly drops, triggering a new on-time to increase the inductor current once again.

In multiphase operation, phase interleaving control is employed to minimize input and output ripple. This technique activates different phases in a cyclical fashion by applying a sequence of control pulses to the phase transistors. By doing so, the ripple in the input and output currents is reduced, resulting in improved performance and efficiency. Additionally, current balance control is utilized to ensure an equal distribution of stress on each phase. This control mechanism helps maintain balanced current flow among the different phases, preventing any phase from being overloaded or underutilized. The use of both phase interleaving control and current balance control enhances the overall performance and reliability of the multiphase system. The phase spacing of each switching stage in various multiphase configurations is as follows:

- In a 2-phase operation, the phases are spaced 180° apart.
- In a 3-phase operation, the phases are spaced 120° apart.
- In a 4-phase operation, the phases are spaced 90° apart.

The RT5801 series features a four-phase buck converter, which is divided into four groups as outlined below:

- Group 1:
 - Power stage: PVIN_D, SW_D, PGND_D;
 - 2. Feedback and Control Pins: VOUT1, RTN1, and VSEL1;
 - 3. I²C registers named Buck1: 0x14, 0x25[4], 0x33, 0x37, 0x3E~0x57.
- Group 2:
 - 1. Power stage: PVIN A, SW A, PGND A;
 - 2. Feedback and Control Pins: VOUT2, RTN2, and VSEL2;
 - 3. I²C registers named Buck2: 0x15, 0x25[5], 0x34, 0x38, 0x5B~0x71.
- Group 3:
 - 1. Power stage: PVIN_B, SW_B, PGND_B;
 - 2. Feedback and Control Pins: VOUT3, RTN3, and VSEL3;
 - 3. I²C registers named Buck3: 0x16, 0x25[6], 0x35, 0x39, 0x75~0x8B.
- Group 4:

RT5801 DS-03

- Power stage: PVIN_C, SW_C, PGND_C;
- 2. Feedback and Control Pins: VOUT4, RTN4, and VSEL4;
- 3. I²C registers named Buck4: 0x17, 0x25[7], 0x36, 0x3A, 0x8F~0xA5.

To ensure the proper operation of the converter, the circuit diagram is defined, and the control register is assigned based on the output configuration. When the RT5801 is configured for multiphase output, master and slave control is implemented. In the case where the selected group functions as a slave, the feedback pins (VOUTx and RTNx), VSELx pin, and the corresponding I²C control registers (Buckx) are not utilized and should be connected to GND.

For example, the RT5801C consists of two output channels. For Vout1, the output voltage is sensed from the output capacitor through VOUT1 and RTN1 pins, with the phase nodes employed being SW_D (master), SW_C, and SW_B in the specified multiphase control order. The active control registers for this setup are Buck1. Similarly, for Vout2, the output voltage is sensed from the output capacitor through VOUT2 and RTN2 pins, with the employed phase node being SW_A, and the active control registers being Buck2.

The output configuration setups based on the RT5801 part options are detailed in Table 6.

Part No.	Output Channel	Phase Sequence Assignment	Output Voltage Sense Pin	VSEL Pin Control	Active Control Registers
	Vout1	SW_D (master), SW_C	VOUT1, RTN1	VSEL1	Buck1
RT5801A	Vout2	SW_A	VOUT2, RTN2	VSEL2	Buck2
	Vоит3	SW_B	VOUT3, RTN3	VSEL3	Buck3
	Vout1	SW_D	VOUT1, RTN1	VSEL1	Buck1
RT5801B	Vout2	SW_A	VOUT2, RTN2	VSEL2	Buck2
KISOUID	Vout3	SW_B	VOUT3, RTN3	VSEL3	Buck3
	Vout4	SW_C	VOUT4, RTN4	VSEL4	Buck4
DT50040	Vout1	SW_D (master), SW_C, SW_B	VOUT1, RTN1	VSEL1	Buck1
RT5801C	Vout2	SW_A	VOUT2, RTN2	VSEL2	Buck2
RT5801D	Vout1	SW_D (master), SW_C, SW_B, SW_A	VOUT1, RTN1	VSEL1	Buck1
DT5001E	Vout1	SW_D (master), SW_C	VOUT1, RTN1	VSEL1	Buck1
RT5801E	Vout2	SW_A (master), SW_B	VOUT2, RTN2	VSEL2	Buck2

Table 6. Output Configuration Setup

17.1 UVLO, Enable Control, and Soft-Start Function

The RT5801 series implements undervoltage-lockout protection (UVLO) to prevent operation without fully turning on the internal HSFET and LSFET. The UVLO monitors the voltage of AVIN. When the AVIN voltage is lower than the UVLO threshold, the IC stops switching and resets all digital functions.

The RT5801 series provides an EN pin, as an external chip enable control, to enable or disable the device. If VEN is held below a logic-low threshold voltage (VENL) of the enable input (EN), the converter will enter shutdown mode and reset all digital functions (I^2C). Then the converter is disabled even if the VIN voltage is above the VIN undervoltage-lockout threshold (VUVLO). During shutdown mode, the supply current can be reduced to ISHDN ($I_0\mu$ A or below). If the EN voltage rises above the logic-high threshold voltage (VENH), the device starts switching. When appropriate voltages are present on the VIN, AVIN, VIO, and EN pins, the RT5801 series will begin digital functions, switching, and initiate a soft-start ramp of the output voltage. The boot time for the device to implement soft-start approximately 270μ s (typical) when both the input voltage and EN voltage are above UVLO and EN rising threshold. After the device completes the boot process, it takes 500μ s (typical) for the I²C interface circuit to settle. It is advisable to enable the device only after the VIO voltage has stabilized, as the VIO voltage serves as the power supply for digital functions. The RT5801 series supports enable/shutdown delay time setting (factory setting, default = 0ms) and soft-start slew

Copyright © 2025 Richtek Technology Corporation. All rights reserved.

27

rate setting. The soft-start function is used to prevent large inrush current while the converter is powered up. The soft-start time of each buck is programmable through registers 0x55[5:4], 0x6F[5:4], 0x89[5:4], and 0xA3[5:4].

Figure 1 and Figure 2 show the start-up and power-off sequences with enable control by software EN. The output voltage is disabled or enabled by setting the following registers: 0x49[0] and 0x4B[0] (Buck1), 0x63[0] and 0x65[0] (Buck2), 0x7D[0] and 0x7F[0] (Buck3), 0x97[0] and 0x99[0] (Buck4). The RT5801 series also implements enable control by the external EN pin with enable and shutdown delay time. Note that the enable delay time is a factory setting only, and the default value of Buck1 to Buck4 can be read from the following registers: 0x56[5:0], 0x70[5:0], 0x8A[5:0], and 0xA4[5:0]. The shutdown delay time can be either factory programmed or set by software, and the default value of Buck1 to Buck4 can be read from the following registers: 0x57[5:0], 0x71[5:0], 0x8B[5:0], and 0xA5[5:0]. The start-up and power-off sequences by the external EN pin are shown in Figure 3 and Figure 4.

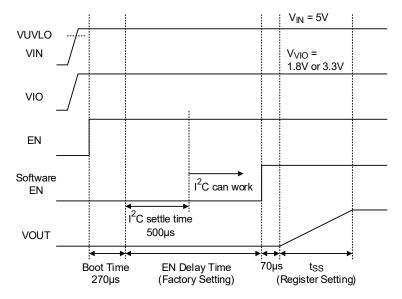


Figure 1. Start-Up Sequence by Software EN

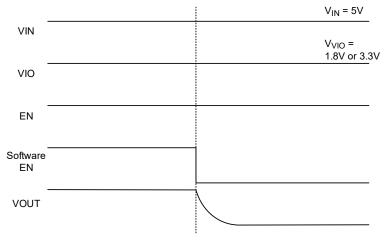


Figure 2. Power-Off Sequence by Software EN

28

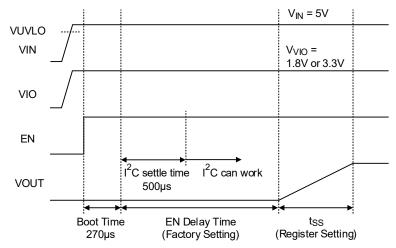


Figure 3. Start-Up Sequence by External EN Pin

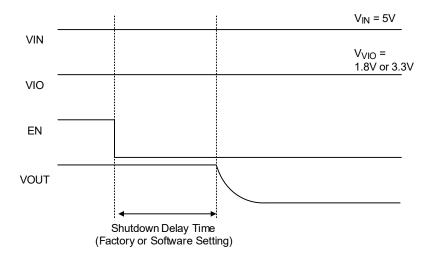


Figure 4. Power-Off Sequence by External EN Pin

17.2 Dynamic Voltage Scaling (DVS)

The RT5801 series offers a wide output voltage range with 8-bit resolution, and each buck converter features two independently programmable voltage settings known as DVS0 and DVS1. Taking Buck1 as an example, register 0x48[7:0] is utilized to set the voltage of DVS0, while 0x4A[7:0] is used to set the voltage of DVS1. There are two methods for selecting the DVS. In the first method, the selection can be changed via software using register 0x52[1:0]. DVS0 can be controlled by setting 0x52[1:0] = 00, and DVS1 can be controlled by setting 0x52[1:0] = 01. In the second method, the selection of the DVS can be controlled by an external hardware pin when setting 0x52[1:0] = 10. The VSEL pin plays this role, and its polarity is defined by 0x52[2]. When setting 0x52[2] = 0, pulling VSEL high uses DVS0, and pulling VSEL low uses DVS1. Conversely, when setting 0x52[2] = 1, pulling VSEL high uses DVS1, and pulling VSEL low uses DVS0. The output setting diagram is shown in Figure 5.

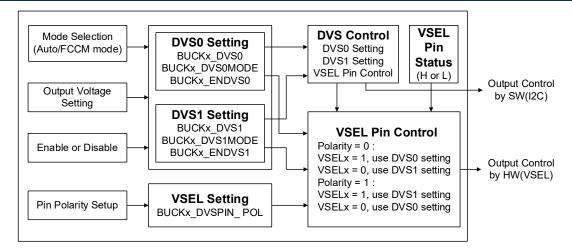


Figure 5. Output Setting Diagram

The RT5801 series also supports DVS speed configuration, regardless of the slew rate of voltage changes within the same DVSx or between DVS0 and DVS1. For example, in Buck1, when the output voltage is set from low to high or high to low, register 0x54[6:4] defines the slew rate of DVS up, while 0x54[2:0] is used to define the slew rate of DVS down. To achieve better performance during voltage changes operations, the master/slave enters PWM operation and maintains it for 100µs after the voltage achieves the target, even if the IC is set to Auto mode. Besides, set the output voltage down to the target voltage within 123% of the internal reference voltage to avoid OVP triggered when DVS down with decay mode. Figure 6 and Figure 7 show the DVS up and down operations.

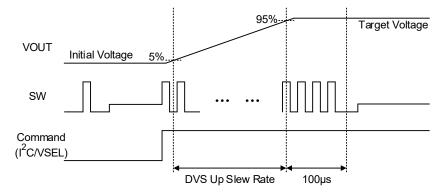


Figure 6. DVS Up Operation

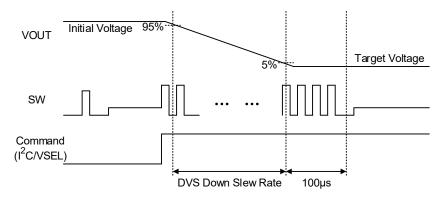


Figure 7. DVS Down Operation

17.3 MODE Selection

The operation modes, whether DVS0 or DVS1, encompass two distinct configurations: forced continuous conduction mode (FCCM) and automatic power-saving mode (Auto mode). These modes are configured using specific registers as follows: 0x49[5] and 0x4B[5] for Buck1, 0x63[5] and 0x65[5] for Buck2, 0x7D[5] and 0x7F[5] for Buck3, and 0x97[5] and 0x99[5] for Buck4. For example, to set Buck1 to FCCM, a value of '1' should be written at 0x49[5].

When Auto mode operation is selected, the RT5801 series automatically adjusts the switching frequency at light-load conditions to maintain high efficiency. This is achieved by enabling the internal zero current detection circuitry to sense the inductor current using the LSFET RDS(ON). As the inductor current decreases to zero and becomes negative, both HSFET and LSFET are turned off, and the output capacitor supplies the load current until the feedback voltage falls below the internal reference voltage. Moreover, the switching frequency increases to 2MHz/2.2MHz as the inductor current reaches the continuous conduction condition.

By setting the MODE to FCCM operation, the internal zero current detection circuitry is disabled, and full phase switching is enforced. This ensures that the switching frequency remains relatively constant to meet stringent voltage regulation accuracy requirements.

17.4 Automatically Phase Adding/Shedding

In a multiphase converter, the phase adding/shedding function is designed to optimize power efficiency based on the output current. The RT5801 series, which features a multiphase configuration, automatically increases the number of operating phases as the output current rises by setting the MODE to Auto mode operation. The phase interleaving function is automatically fine-tuned to correspond with the active phase count, scaling with the output current. For example, in the RT5801C (3-phase), an additional phase is seamlessly integrated and interleaved at 180-degree intervals when the load current exceeds the phase adding level from 1-phase to 2-phase. Conversely, when the load current drops below the phase shedding level from 2-phase to 1-phase, the device autonomously reduces the number of operating phases.

17.5 Power-Good Indication

The RT5801 series provides a power-good indication to show the output voltage status. When the output voltage is between 110% and 90% of the set voltage, the PG indication bit changes to '1'. The relative registers are 0x14[7], 0x15[7], 0x16[7], and 0x17[7].

17.6 Watchdog Function

The RT5801 series implements a watchdog function that resets the output voltage, DVSx, and ENDVSx registers to the factory default setting value. Register 0x25 can enable or disable watchdog function and provide watchdog timeout for selection. The minimum watchdog debounce time is 100µs when 0x25[2:0] is set to 000. The operation of the watchdog reset is shown in <u>Figure 8</u>. <u>Table 7</u> shows the registers that will be reset when the WDOG_RST pin is pulled low. The I²C command needs to be given after the WDOG_RST pin is pulled high.

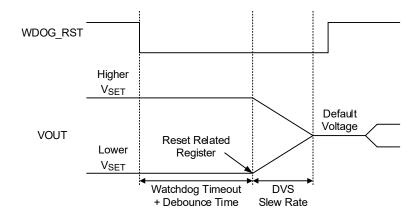


Figure 8. Watchdog Reset Operation

Table 7. Watchdog Reset Register

BUCK1_WDT	BUCK2_WDT	BUCK3_WDT	BUCK4_WDT
0x48	0x62	0x7C	0x96
0x49[0]	0x63[0]	0x7D[0]	0x97[0]
0x4A	0x64	0x7E	0x98
0x4B[0]	0x65[0]	0x7F[0]	0x99[0]
0x52	0x6C	0x86	0xA0

17.7 Fault Detection and Interrupt Pin

The RT5801 series implements an interrupt function to alert the host when warning or fault events have occurred. The warning events are VIN UVLO and Hot Die, and the fault events are conditions such as overvoltage, undervoltage, overcurrent, and over-temperature. Registers 0x13, 0x14, 0x15, 0x16, and 0x17 can help the host to determine if a fault or warning event has occurred. These registers will be cleared when read. Moreover, the device provides an INT pin with open-drain output capability (default factory setting) to show these events using an active-low signal. The pull-high voltage of the INT pin will be the same as the VIO voltage. The RT5801 series also supports a mask function to either mask or pass the internal event flag output to the external INT pin using 0x32, 0x33, 0x34, 0x35, and 0x36 registers. The overall detection function is shown in Figure 9.

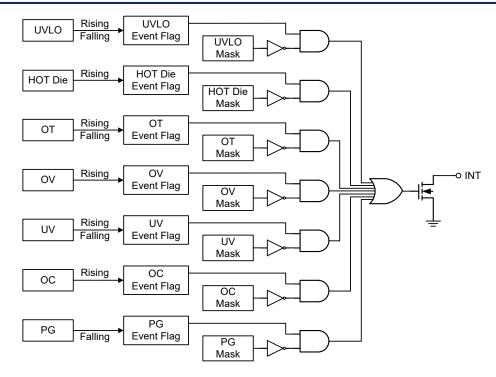


Figure 9. Overall Detection Function

17.8 Current-Limit Protection

The RT5801 series features cycle-by-cycle current-limit protection on both the HSFET and LSFET to prevent the device from catastrophic damage in the event of an output short-circuit, overcurrent, or inductor saturation conditions.

The HSFET current-limit protection is achieved by an internal current comparator that monitors the inductor current during each on-time. The inductor current is compared with the HSFET current limit (I_{LIM_H}) after a certain amount of delay time when the HSFET is turned on in each cycle. If the peak inductor current rises above the HSFET current limit (I_{LIM_H}), the converter will immediately turn off the HSFET and turn on the LSFET to prevent the inductor current from exceeding the HSFET current limit.

The LSFET current-limit protection is achieved by measuring the inductor current during LSFET on-time. Once inductor current rises above the LSFET current limit (ILIM_L), the on-time one-shot will be inhibited, and the next on-time will only be triggered when the inductor current falls below the LSFET current limit (ILIM_L). If the output load current exceeds the available inductor current (clamped by the LSFET current limit), the output capacitor will need to supply the extra current, so that the output voltage will begin to drop. If it drops below the output undervoltage protection trip threshold, the IC will stop switching to avoid excessive heating.

17.9 Output Undervoltage Protection

The RT5801 series includes output undervoltage protection (UVP) against overload or short-circuit conditions by constantly monitoring the output voltage Vout. If Vout drops below the undervoltage protection trip threshold (typically 50% of the internal reference voltage), both the HSFET and LSFET will stop switching. Register 0x37[3], 0x38[3], 0x39[3], and 0x3A[3] can be used to select hiccup or latch protection behavior for each buck converter when the converter is in a UV condition. For hiccup behavior, both the HSFET and LSFET remain in a low state for 1ms, and then the IC starts to switch. If the output voltage is not greater than the UV threshold after the internal soft-start end signal is triggered, both the HSFET and LSFET will remain in a low state again for the next cycle. When each buck is set to latch mode, UVP will let the converter enter shutdown mode unless resetting the IC by the external EN pin or by falling to the UVLO low threshold.

Copyright © 2025 Richtek Technology Corporation. All rights reserved.

17.10 Output Overvoltage Protection

The RT5801 series supports output overvoltage protection (OVP) by constantly monitoring the output voltage Vout. If Vour exceeds the overvoltage protection trip threshold (typically 133% of the internal reference voltage), the HSFET and LSFET will not turn on until the output voltage is lower than overvoltage protection recovery threshold (typically 125% of the internal reference voltage).

17.11 Over-Temperature Protection

The RT5801 series includes an over-temperature protection (OTP) circuitry to prevent overheating due to excessive power dissipation. The OTP shuts down the switching operation when the junction temperature exceeds the Over-Temperature Protection (Totp). Once the junction temperature cools down by the thermal shutdown hysteresis (TOTP HYS), the IC resumes normal operation with a complete soft-start.

Note that the over-temperature protection is intended to protect the device during momentary overload conditions. The protection is activated outside of the absolute maximum range of operation as a secondary fail-safe and, therefore, should not be relied upon operationally. Continuous operation above the specified absolute maximum operating junction temperature may impair device reliability or permanently damage the device.

17.12 Negative Overcurrent Protection (FCCM Only)

The RT5801 series can operate in FCCM and allows for negative current operation. During PWM operation, a high negative current may be generated if an external power source is unexpectedly connected to the output terminal. As the risk described above, the internal circuit monitors the negative current during each on-time interval of the LSFET and compares it with the NOC threshold. If the negative current exceeds the NOC threshold, the LSFET is turned off immediately, and then the HSFET will be turned on to discharge the energy from the output inductor. This behavior can keep the valley of the negative current at the NOC threshold to protect the LSFET. However, the negative current cannot be limited to the NOC threshold anymore once the minimum off-time is reached.

18 Application Information

(Note 13)

The RT5801 series consists of power management ICs that integrate four high-efficiency buck converters. This series is factory-configured into five different part options: RT5801A (2+1+1 phase), RT5801B (1+1+1+1 phase), RT5801C (3+1 phase), RT5801D (4-phase), and RT5801E (2+2 phase) converters.

18.1 **Inductor Selection**

The inductor selection makes trade-offs among size, cost, efficiency, and transient response requirements. Generally, three key inductor parameters are specified for operation with the device: inductance value (L), inductor saturation current (ISAT), and DC resistance (DCR).

A good compromise between size and loss is a 30% peak-to-peak ripple current to the IC rated current, but it still depends on size considerations. The inductor used in the Typical Application Circuit section is recommended. The switching frequency, input voltage, output voltage, and selected inductor ripple current determine the inductor value

$$L = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{V_{IN} \times f_{SW} \times \Delta I_{I}}$$

To enhance efficiency, choose a low-loss inductor with the lowest possible DC resistance that fits within the allotted dimensions. The selected inductor should have a saturation current rating that greater than the peak current limit of the device. The core must be large enough to avoid saturation at the peak inductor current (IL PEAK):

$$\Delta I_{L} = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{V_{IN} \times f_{SW} \times L}$$

$$I_{L_PEAK} = I_{OUT_MAX} + \frac{1}{2} \Delta I_{L}$$

The current flowing through the inductor is the inductor ripple current plus the output current. During power-up, faults, or transient load conditions, the inductor current can increase above the calculated peak inductor current level above. In transient conditions, the inductor current can increase up to the switch current limit of the device. For this reason, the most conservative approach is to specify an inductor with a saturation current rating that is equal to or greater than the device switch current limit, rather than just the peak inductor current.

18.2 **Input Capacitor Selection**

Input capacitance, CIN, is needed to filter the pulsating current at the drain of the HSFET. The CIN should be sized appropriately to accomplish this without causing a large variation in input voltage. Several capacitors may also be paralleled to meet the size, height, and thermal requirements in the design. For low input voltage applications, sufficient bulk input capacitance is needed to minimize transient effects during output load changes.

The input capacitor should be placed as close as possible to each VIN pin with a low inductance connection to the PGND of the IC. It is recommended to connect capacitors between the VIN pin and the PGND pin for a 2MHz/2.2MHz switching frequency, as shown in Typical Application Circuit. The larger input capacitance is required when a lower switching frequency is used. The X7R capacitors are recommended for optimal performance across temperature and input voltage variations.

Output Capacitor Selection 18.3

The selection of Cout is determined by the need to satisfy the voltage ripple and the transient loads. The peak-to-

Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

peak output ripple, $\Delta Vout$, is determined by:

$$\Delta V_{OUT} = \Delta I_{L} \left(ESR + \frac{1}{8 \times C_{OUT} \times F_{SW}} \right)$$

where ΔI_L is the peak-to-peak inductor ripple current. The highest output ripple is at the maximum input voltage since ΔI_L increases with input voltage. Multiple capacitors placed in parallel may be needed to meet the ESR and RMS current handling requirements.

Ceramic capacitors have very low equivalent series resistance (ESR) and provide the best ripple performance. The X7R dielectric capacitor is recommended for optimal performance across temperature and input voltage variations. The variation of the capacitance value with temperature, DC bias voltage, and switching frequency needs to be taken into consideration. For example, the capacitance value of a capacitor decreases as the DC bias across the capacitor increases. Be careful to consider the voltage coefficient of ceramic capacitors when choosing the value and case size. Most ceramic capacitors lose 50% or more of their rated values when used near their rated voltage.

Transient performance can be improved with a higher value output capacitor. Increasing the output capacitance will also decrease the output voltage ripple.

The recommended output capacitors are shown in Typical Application Circuit.

18.4 Thermal Considerations

In many applications, the RT5801 series does not generate significant heat due to its high efficiency and the low thermal resistance of its WL-CSP-54B 2.69x3.92 (BSC) package. However, in applications where the device runs at high ambient temperatures, high input voltages, or high switching frequencies, the generated heat may exceed the maximum junction temperature of the part.

The junction temperature should never exceed the absolute maximum junction temperature T_{J(MAX)}, listed under <u>Absolute Maximum Ratings</u>, to avoid permanent damage to the device. If the junction temperature reaches approximately 160°C, the RT5801 series will stop switching the power MOSFETs until the temperature cools down by 40°C.

The maximum power dissipation can be calculated using the following formula:

$$PD(MAX) = (TJ(MAX) - TA) / \theta JA(EFFECTIVE)$$

where

 $T_{J(MAX)}$ is the maximum allowed junction temperature of the die. For recommended operating condition, the maximum junction temperature is 125°C. Ta is the ambient operating temperature, and $\theta_{JA(EFFECTIVE)}$ is the system-level junction to ambient thermal resistance. This can be estimated from thermal modeling or measurements in the system.

The thermal resistance of the device strongly depends on the surrounding PCB layout and can be improved by providing a heat sink of surrounding copper ground. The addition of backside copper with thermal vias, stiffeners, and other enhancements can also help reduce thermal resistance.

Experiments in the Richtek thermal lab show that simply setting $\theta_{JA(EFFECTIVE)}$ as 110% to 120% of the θ_{JA} is reasonable to obtain the allowed $P_{D(MAX)}$.

From the efficiency measurement, the power loss of system can be found, and the following formula can be used to determine the power loss of the IC by removing the loss of the inductor, including DC loss and AC loss.

4-phase converter power loss:

$$P_{loss} = \left(V_{lN} \times I_{lN} - V_{OUT} \times I_{OUT}\right) - \left(\frac{I_{OUT}}{4}\right)^2 \times DCR \times 4 - P_{core_loss} \times 4 - \left(\frac{V_{OUT}^2 \times ACR}{12 \times L^2 \times f_{SW}^2}\right) \times \left(1 - \frac{V_{OUT}}{V_{lN}}\right)^2 \times 4 - \left(\frac{V_{OUT}^2 \times ACR}{12 \times L^2 \times f_{SW}^2}\right) \times \left(1 - \frac{V_{OUT}^2 \times ACR}{V_{lN}^2 \times ACR}\right) \times \left(1 - \frac{V_{O$$

where

Pcore_loss and ACR need to be obtained from the inductor supplier.

The total loss of the IC cannot exceed the maximum power loss. If the application requires a higher ambient temperature and/or higher switching frequency, care should be taken to reduce the temperature rise of the part by using a heat sink or airflow. Note that the over-temperature protection is intended to protect the device during momentary overload conditions. The protection is activated outside of the absolute maximum range of operation as a secondary fail-safe and, therefore, should not be relied upon operationally. Continuous operation above the specified absolute maximum operating junction temperature may impair device reliability or permanently damage the device.

18.5 Layout Guidelines

When designing the printed circuit board, the following checklist should be followed to ensure proper operation of the RT5801 series:

- A four-layer or six-layer PCB with a maximum ground plane is strongly recommended for good thermal performance.
- Keep the traces of the main current paths wide and short.
- Place high-frequency decoupling capacitor as close as possible to the IC to reduce the loop impedance and minimize switch node ringing.
- Place multiple vias under the device near PVIN and PGND and close to input capacitors to reduce parasitic
 inductance and improve thermal performance. To keep thermal resistance low, extend the ground plane as much
 as possible, and add at least 40 thermal vias under and near the device to additional ground planes within the
 circuit board and on the bottom side.
- The high-frequency switching nodes, LX, should be as small as possible. Keep analog components away from the LX node.
- Reduce the area size of the LX exposed copper to reduce the electrically coupling from this voltage.
- Connect the feedback sense network behind the via of the output capacitor.
- Connect all analog grounds to a common node and then connect the common node to the power ground with a single point.

Figure 10 and Figure 11 show the layout examples for RT5801B and RT5801D, respectively.

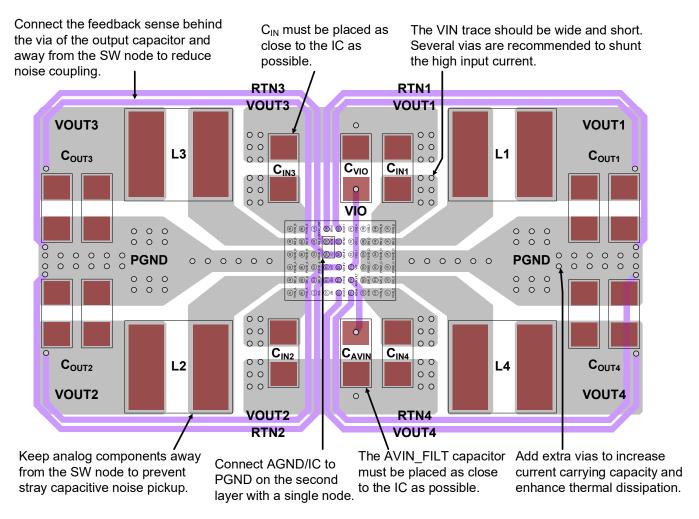


Figure 10. RT5801B Layout Guideline

38

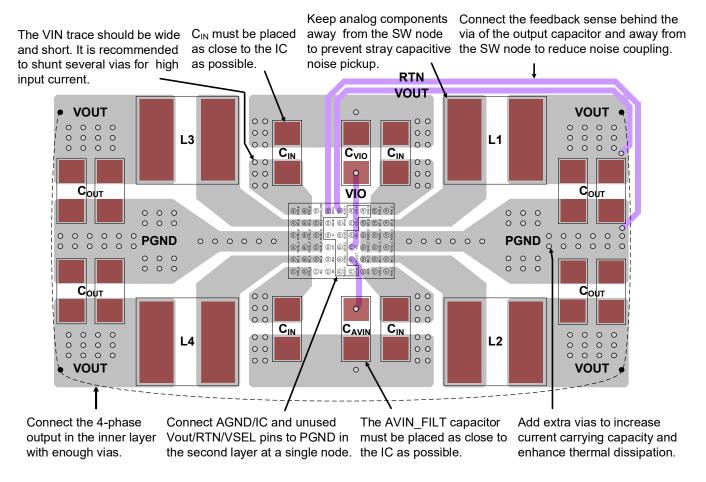


Figure 11. RT5801D Layout Guideline

18.6 I²C Interface

The RT5801 series utilizes the I^2C interface for configuring various settings such as output voltage, Dynamic Voltage Scaling (DVS) slew rate, mode selection, VSEL function setting, and more. The register map provides details on each function's register and how to utilize these functions effectively.

It is important to note that the I^2C interface can only execute read/write commands when the digital power (VIO) is operational and the converter boot process has been completed (ensuring that the input voltage and EN voltage are above the UVLO and EN rising threshold). Additionally, the I^2C slave ID for the RT5801 series is pre-configured by the factory and ranges from 0x18 to 0x1F.

The RT5801 series supports fast mode (a bit rate up to 400kb/s). The write or read bit stream (N \geq 1) is shown in Figure 12.

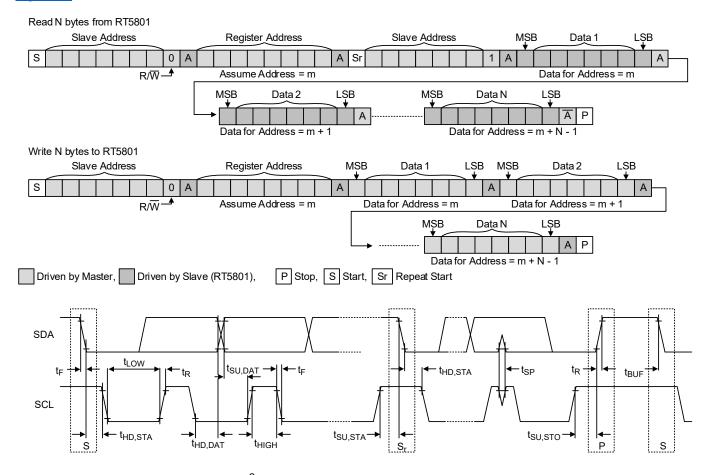


Figure 12. I²C Read and Write Stream and Timing Diagram

The RT5801 series also supports High-speed mode (a bit rate up to 3.4Mb/s) with the access code 08H. <u>Figure 13</u> and <u>Figure 14</u> show the detailed transfer format. Hs-mode can only commence after the following conditions (all of which are in F/S-mode):

- START condition (S)
- 8-bit master code (00001xxx)
- Not-acknowledge bit (Ā)

RT5801 DS-03

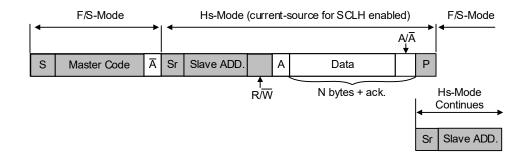


Figure 13. Data Transfer Format in Hs-mode

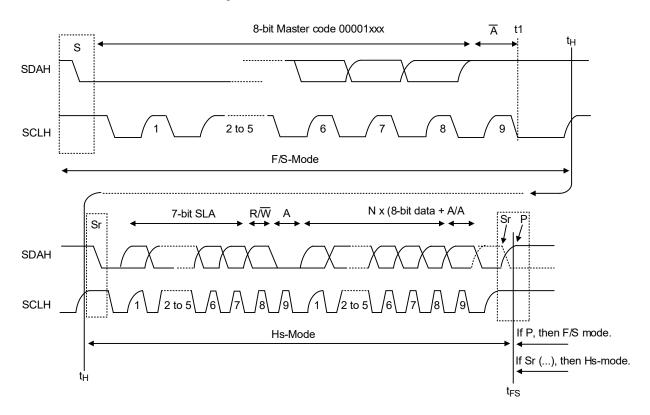


Figure 14. A Complete Hs-Mode Transfer

Note 13. The information provided in this section is for reference only. The customer is solely responsible for the designing, validating, and testing your product incorporating Richtek's product and ensure such product meets applicable standards and any safety, security, or other requirements.

19 Functional Register Description

Table 8. Vout Setting

Vout (V)	Value								
0.4	0x00	0.66	0x34	0.92	0x68	1.18	0x9C	1.58	0xD0
0.405	0x01	0.665	0x35	0.925	0x69	1.185	0x9D	1.59	0xD1
0.41	0x02	0.67	0x36	0.93	0x6A	1.19	0x9E	1.6	0xD2
0.415	0x03	0.675	0x37	0.935	0x6B	1.195	0x9F	1.61	0xD3
0.42	0x04	0.68	0x38	0.94	0x6C	1.2	0xA0	1.62	0xD4
0.425	0x05	0.685	0x39	0.945	0x6D	1.205	0xA1	1.63	0xD5
0.43	0x06	0.69	0x3A	0.95	0x6E	1.21	0xA2	1.64	0xD6
0.435	0x07	0.695	0x3B	0.955	0x6F	1.215	0xA3	1.65	0xD7
0.44	0x08	0.7	0x3C	0.96	0x70	1.22	0xA4	1.66	0xD8
0.445	0x09	0.705	0x3D	0.965	0x71	1.225	0xA5	1.67	0xD9
0.45	0x0A	0.71	0x3E	0.97	0x72	1.23	0xA6	1.68	0xDA
0.455	0x0B	0.715	0x3F	0.975	0x73	1.235	0xA7	1.69	0xDB
0.46	0x0C	0.72	0x40	0.98	0x74	1.24	0xA8	1.7	0xDC
0.465	0x0D	0.725	0x41	0.985	0x75	1.245	0xA9	1.71	0xDD
0.47	0x0E	0.73	0x42	0.99	0x76	1.25	0xAA	1.72	0xDE
0.475	0x0F	0.735	0x43	0.995	0x77	1.255	0xAB	1.73	0xDF
0.48	0x10	0.74	0x44	1	0x78	1.26	0xAC	1.74	0xE0
0.485	0x11	0.745	0x45	1.005	0x79	1.265	0xAD	1.75	0xE1
0.49	0x12	0.75	0x46	1.01	0x7A	1.27	0xAE	1.76	0xE2
0.495	0x13	0.755	0x47	1.015	0x7B	1.275	0xAF	1.77	0xE3
0.5	0x14	0.76	0x48	1.02	0x7C	1.28	0xB0	1.78	0xE4
0.505	0x15	0.765	0x49	1.025	0x7D	1.285	0xB1	1.79	0xE5
0.51	0x16	0.77	0x4A	1.03	0x7E	1.29	0xB2	1.8	0xE6
0.515	0x17	0.775	0x4B	1.035	0x7F	1.295	0xB3	1.81	0xE7
0.52	0x18	0.78	0x4C	1.04	0x80	1.3	0xB4	1.82	0xE8
0.525	0x19	0.785	0x4D	1.045	0x81	1.31	0xB5	1.83	0xE9
0.53	0x1A	0.79	0x4E	1.05	0x82	1.32	0xB6	1.84	0xEA
0.535	0x1B	0.795	0x4F	1.055	0x83	1.33	0xB7	1.85	0xEB
0.54	0x1C	0.8	0x50	1.06	0x84	1.34	0xB8	1.86	0xEC
0.545	0x1D	0.805	0x51	1.065	0x85	1.35	0xB9	1.87	0xED
0.55	0x1E	0.81	0x52	1.07	0x86	1.36	0xBA	1.88	0xEE
0.555	0x1F	0.815	0x53	1.075	0x87	1.37	0xBB	1.89	0xEF

RT5801

RICHTEK

Vout (V)	Value								
0.56	0x20	0.82	0x54	1.08	0x88	1.38	0xBC	1.9	0xF0
0.565	0x21	0.825	0x55	1.085	0x89	1.39	0xBD	1.91	0xF1
0.57	0x22	0.83	0x56	1.09	0x8A	1.4	0xBE	1.92	0xF2
0.575	0x23	0.835	0x57	1.095	0x8B	1.41	0xBF	1.93	0xF3
0.58	0x24	0.84	0x58	1.1	0x8C	1.42	0xC0	1.94	0xF4
0.585	0x25	0.845	0x59	1.105	0x8D	1.43	0xC1	1.95	0xF5
0.59	0x26	0.85	0x5A	1.11	0x8E	1.44	0xC2	1.96	0xF6
0.595	0x27	0.855	0x5B	1.115	0x8F	1.45	0xC3	1.97	0xF7
0.6	0x28	0.86	0x5C	1.12	0x90	1.46	0xC4	1.98	0xF8
0.605	0x29	0.865	0x5D	1.125	0x91	1.47	0xC5	1.99	0xF9
0.61	0x2A	0.87	0x5E	1.13	0x92	1.48	0xC6	2	0xFA
0.615	0x2B	0.875	0x5F	1.135	0x93	1.49	0xC7	2.01	0xFB
0.62	0x2C	0.88	0x60	1.14	0x94	1.5	0xC8	2.02	0xFC
0.625	0x2D	0.885	0x61	1.145	0x95	1.51	0xC9	2.03	0xFD
0.63	0x2E	0.89	0x62	1.15	0x96	1.52	0xCA	2.04	0xFE
0.635	0x2F	0.895	0x63	1.155	0x97	1.53	0xCB	2.05	0xFF
0.64	0x30	0.9	0x64	1.16	0x98	1.54	0xCC		
0.645	0x31	0.905	0x65	1.165	0x99	1.55	0xCD		
0.65	0x32	0.91	0x66	1.17	0x9A	1.56	0xCE		
0.655	0x33	0.915	0x67	1.175	0x9B	1.57	0xCF		

Table 9. Register List

Address	Register Name	Default	Type	Note
0x01	VENDOR ID	0x18	RO	All Devices
0x0F	IO_SOFTRESET	0x00	RW	All Devices
0x13	FLT_RECORDTEMP	0x00	RC	All Devices
0x14	FLT_RECORDBUCK1	0x00	RO, RC	All Devices
0x15	FLT_RECORDBUCK2	0x00	RO, RC	RT5801A/B/C/E
0x16	FLT_RECORDBUCK3	0x00	RO, RC	RT5801A/B
0x17	FLT_RECORDBUCK4	0x00	RO, RC	RT5801B
0x22	IO_I2CCFG		RO	All Devices Factory Setting
0x23	IO_INTCFG	80x0	RW	All Devices
0x25	IO_RSTDVS	0xF0	RW	All Devices
0x32	FLT_MASKTEMP	0x00	RW	All Devices
0x33	FLT_MASKBUCK1	0x00	RW	All Devices
0x34	FLT_MASKBUCK2	0x00	RW	RT5801A/B/C/E
0x35	FLT_MASKBUCK3	0x00	RW	RT5801A/B
0x36	FLT_MASKBUCK4	0x00	RW	RT5801B
0x37	FLT_BUCK1_CTRL	0x0C	RW	All Devices
0x38	FLT_BUCK2_CTRL	0x0C	RW	RT5801A/B/C/E
0x39	FLT_BUCK3_CTRL	0x0C	RW	RT5801A/B
0x3A	FLT_BUCK4_CTRL	0x0C	RW	RT5801B
0x3E	BUCK1_RAMP	0x44	RW	All Devices
0x48	BUCK1_DVS0CFG1	0x78	RW	All Devices
0x49	BUCK1_DVS0CFG0	0x20	RW	All Devices
0x4A	BUCK1_DVS1CFG1	0x78	RW	All Devices
0x4B	BUCK1_DVS1CFG0	0x20	RW	All Devices
0x52	BUCK1_DVSCFG	0x00	RW	All Devices
0x54	BUCK1_RSPCFG	0x14	RW	All Devices
0x55	BUCK1_SLEWCTRL	0x00	RW	All Devices
0x56	BUCK1_EN_DLY	0x00	RW	All Devices
0x57	BUCK1_SHUTDN_DLY	0x00	RW	All Devices
0x5B	BUCK2_RAMP	0x44	RW	RT5801A/B/C/E
0x62	BUCK2_DVS0CFG1	0x78	RW	RT5801A/B/C/E
0x63	BUCK2_DVS0CFG0	0x20	RW	RT5801A/B/C/E
0x64	BUCK2_DVS1CFG1	0x78	RW	RT5801A/B/C/E

RT5801

Address	Register Name	Default	Type	Note
0x65	BUCK2_DVS1CFG0	0x20	RW	RT5801A/B/C/E
0x6C	BUCK2_DVSCFG	0x00	RW	RT5801A/B/C/E
0x6E	BUCK2_RSPCFG	0x14	RW	RT5801A/B/C/E
0x6F	BUCK2_SLEWCTRL	0x00	RW	RT5801A/B/C/E
0x70	BUCK2_EN_DLY	0x00	RW	RT5801A/B/C/E
0x71	BUCK2_SHUTDN_DLY	0x00	RW	RT5801A/B/C/E
0x75	Buck3_RAMP	0x44	RW	RT5801A/B
0x7C	Buck3_DVS0CFG1	0x78	RW	RT5801A/B
0x7D	Buck3_DVS0CFG0	0x20	RW	RT5801A/B
0x7E	Buck3_DVS1CFG1	0x78	RW	RT5801A/B
0x7F	Buck3_DVS1CFG0	0x20	RW	RT5801A/B
0x86	Buck3_DVSCFG	0x00	RW	RT5801A/B
0x88	Buck3_RSPCFG	0x14	RW	RT5801A/B
0x89	Buck3_SLEWCTRL	0x00	RW	RT5801A/B
0x8A	BUCK3_EN_DLY	0x00	RW	RT5801A/B
0x8B	BUCK3_SHUTDN_DLY	0x00	RW	RT5801A/B
0x8F	Buck4_RAMP	0x44	RW	RT5801B
0x96	Buck4_DVS0CFG1	0x78	RW	RT5801B
0x97	Buck4_DVS0CFG0	0x20	RW	RT5801B
0x98	Buck4_DVS1CFG1	0x78	RW	RT5801B
0x99	Buck4_DVS1CFG0	0x20	RW	RT5801B
0xA0	Buck4_DVSCFG	0x00	RW	RT5801B
0xA2	Buck4_RSPCFG	0x14	RW	RT5801B
0xA3	Buck4_SLEWCTRL	0x00	RW	RT5801B
0xA4	BUCK4_EN_DLY	0x00	RW	RT5801B
0xA5	BUCK4_SHUTDN_DLY	0x00	RW	RT5801B

Table 10. VENDOR ID

Address: 0x01									
Bit	7	7 6 5 4 3 2 1 0							
Field		VENDOR ID							
Default	0	0 0 0 1 1 0 0							
Туре		RO							

Bit	Name	Description
7:0	VENDOR ID	VENDOR ID

Table 11. IO_SOFTRESET

Address: 0	Address: 0x0F								
Bit	7 6 5 4 3 2 1					0			
Field		Reserved IO_SOFTRESE							
Default	0	0	0	0 0 0 0				0	
Туре		RV RW							

Bit	Name	Description
7:1	Reserved	Reserved bits
0	IO_SOFTRESET	Reset all digital functions to their default settings. 0: Not changed 1: Reset and bit cleared

Table 12. FLT_RECORDTEMP

Address: 0x13									
Bit	7	6	5	4	3	2	1	0	
Field	FLT_UVLO		Reserved				FLT_TEMPSDR	Reserved	
Default	0	0	0	0	0	0	0	0	
Туре	RC		RV			RC	RC	RV	

Bit	Name	Description
7	FLT_UVLO	Boot interrupt indicator. 0: Boot process has not occurred. AVIN is less than the UVLO rising threshold. 1: Boot process has occurred. AVIN is greater than the UVLO rising threshold (except for the first trigger) or less than the UVLO falling threshold.
6:3	Reserved	Reserved bits
2	FLT_HOTDIE	Hot die interrupt indicator. 0: The temperature of the die is lower than the threshold. 1: Die is hot. The temperature is above the threshold.
1	FLT_TEMPSDR	OT interrupt indicator. Read only and cleared when read. 0: No Fault. The temperature is below the threshold. 1: Fault. The temperature is above the threshold or has recovered after dropping below the threshold.
0	Reserved	Reserved bits

Table 13. FLT_RECORDBUCK1

Address: 0	Address: 0x14							
Bit	7	6	5	4	3	2	1	0
Field	BUCK1_PG	FLT_BUCK1 _OC	FLT_BUCK1 _OV	FLT_BUCK1_ UV		Reserved		Reserved
Default	0	0	0	0	0	0	0	0
Туре	RO	RC	RC	RC		RV		RV

Bit	Name	Description
7	BUCK1_PG	Power-good status indicator. 0: VOUT > 110% of the set VOUT or VOUT < 90% of the set VOUT 1: VOUT < 110% of the set VOUT and VOUT > 90% of the set VOUT
6	FLT_BUCK1_OC	OC interrupt indicator. Read only and cleared when read. 0: No Fault. Current is below the threshold. 1: Fault. Current is above the threshold.
5	FLT_BUCK1_OV	OV interrupt indicator. 0: No Fault. Voltage is below the threshold. 1: Fault. Voltage is above the threshold.
4	FLT_BUCK1_UV	UV interrupt indicator. 0: No Fault. Voltage is above the threshold. 1: Fault. Voltage is below the threshold or has recovered after being higher than the threshold.
3:0	Reserved	Reserved bits

Table 14. FLT_RECORDBUCK2

Address: 0x15								
Bit	7	6	5	4	3	2	1	0
Field	BUCK2_PG	FLT_BUCK2 _OC	FLT_BUCK2 _OV	FLT_BUCK2_ UV		Reserved		Reserved
Default	0	0	0	0	0	0	0	0
Туре	RO	RC	RC	RC		RV		RV

Bit	Name	Description
7	BUCK2_PG	Power good status indicator. 0: VOUT > 110% of the set VOUT or VOUT < 90% of the set VOUT 1: VOUT < 110% of the set VOUT and VOUT > 90% of the set VOUT
6	FLT_BUCK2_OC	OC interrupt indicator. Read only and cleared when read. 0: No Fault. Current is below the threshold. 1: Fault. Current is above the threshold.
5	FLT_BUCK2_OV	OV interrupt indicator. 0: No Fault. Voltage is below the threshold. 1: Fault. Voltage is above the threshold.
4	FLT_BUCK2_UV	UV interrupt indicator. 0: No Fault. Voltage is above the threshold. 1: Fault. Voltage is below the threshold or has recovered after being higher than threshold.
3:0	Reserved	Reserved bits

Table 15. FLT_RECORDBUCK3

Address: 0x16								
Bit	7	6	5	4	3	2	1	0
Field	BUCK3_PG	FLT_BUCK3 _OC	FLT_BUCK3 _OV	FLT_BUCK3_ UV		Reserved		Reserved
Default	0	0	0	0	0	0	0	0
Туре	RO	RC	RC	RC		RV		RV

Bit	Name	Description
7	BUCK3_PG	Power-good status indicator. 0: VOUT > 110% of the set VOUT or VOUT < 90% of the set VOUT 1: VOUT < 110% of the set VOUT and VOUT > 90% of the set VOUT
6	FLT_BUCK3_OC	OC interrupt indicator. Read only and cleared when read. 0: No Fault. Current is below the threshold. 1: Fault. Current is above the threshold.
5	FLT_BUCK3_OV	OV interrupt indicator. 0: No Fault. Voltage is below the threshold. 1: Fault. Voltage is above the threshold.
4	FLT_BUCK3_UV	UV interrupt indicator. 0: No Fault. Voltage is above the threshold. 1: Fault. Voltage is below the threshold or has recovered after being higher than threshold.
3:0	Reserved	Reserved bits

Table 16. FLT_RECORDBUCK4

Address: 0x17								
Bit	7	6	5	4	3	2	1	0
Field	BUCK4_PG	FLT_BUCK4 _OC	FLT_BUCK4 _OV	FLT_BUCK4_ UV		Reserved		Reserved
Default	0	0	0	0	0	0	0	0
Туре	RO	RC	RC	RC		RV		RV

Bit	Name	Description
7	BUCK4_PG	Power-good status indicator. 0: VOUT > 110% of the set VOUT or VOUT < 90% of the set VOUT 1: VOUT < 110% of the set VOUT and VOUT > 90% of the set VOUT
6	FLT_BUCK4_OC	OC interrupt indicator. Read only and cleared when read. 0: No Fault. Current is below the threshold. 1: Fault. Current is above the threshold.
5	FLT_BUCK4_OV	OV interrupt indicator. 0: No Fault. Voltage is below the threshold. 1: Fault. Voltage is above the threshold.
4	FLT_BUCK4_UV	UV interrupt indicator. 0: No Fault. Voltage is above the threshold. 1: Fault. Voltage is below the threshold or has recovered after being higher than threshold.
3:0	Reserved	Reserved bits

Table 17. IO_I2CCFG

Address: 0x22								
Bit	7	6	5	4	3	2	1	0
Field	Reserved		IO_I2CADDR					
Default	0	0	0	1	1	1	1	0
Туре	RV				RO			

Bit	Name	Description
7	Reserved	Reserved bits
6:0	IO_I2CADDR	The I ² C slave ID for the RT5801 series is factory-set and ranges from 0x18 to 0x1F.

Table 18. IO_INTCFG

Address: 0x23								
Bit	7	6	5	4	3	2	1	0
Field	Reserved		IO_IRQ_CMOS	IO_IRQ_INVERT	Reserved F		Reserved	
Default	0 0 0		0	1	0	0	0	
Туре	RV		RW	RW	R	V	RV	

Bit	Name	Description
7:5	Reserved	Reserved bits
4	IO_IRQ_CMOS	INT pin output 0: Open-drain 1: Push-pull
3	IO_IRQ_INVERT	INT pin polarity 0: Active high 1: Active low
2:0	Reserved	Reserved bits

Table 19. IO_RSTDVS

Address: 0	Address: 0x25								
Bit	7	6	5	4	3	2	1	0	
Field	IO_RSTDVS	IO_RSTDVS	IO_RSTDVS	IO_RSTDVS	Reserved	IO_W	DOG_TIM	EOUT	
Default	1	1	1	1	0	0	0	0	
Туре	RW	RW	RW	RW	RV		RW		

Bit	Name	Description					
7	IO_RSTDVS	Enable or disable the Buck4 watchdog reset function to the default voltage setting when the WDOG_RST pin is pulled low. 0: Disable 1: Enable					
6	IO_RSTDVS	Enable or disable the Buck3 watchdog reset function to the defaul voltage setting when the WDOG_RST pin is pulled low. 0: Disable 1: Enable					
5	IO_RSTDVS	Enable or disable the Buck2 watchdog reset function to the defaul voltage setting when the WDOG_RST pin is pulled low. 0: Disable 1: Enable					
4	IO_RSTDVS	Enable or disable the Buck1 watchdog reset function to the default voltage setting when the WDOG_RST pin is pulled low. 0: Disable 1: Enable					
3	Reserved	Reserved bits					
2:0	IO_WDOG_TIMEOUT	Watchdog timeout setting. 000: 0ms (default) 100: 12.5ms 001: 1.56ms 101: 9ms 010: 3.125ms 110: 15.25ms 011: 6.25ms 111: 14.5ms The minimum watchdog debounce time is 100μs.					

Table 20. FLT_MASKTEMP

Address: 0x32									
Bit	7	6	5	4	3	2	1	0	
Field	FLT_MASKUVLO		Reserved			FLT_MASKHD	FLT_MASKTSDR	Reserved	
Default	0	0	0	0	0	0	0	0	
Туре	RW	RV				RW	RW	RV	

Bit	Name	Description			
7	FLT_MASKUVLO	Masking the UVLO detection signal. 0: Pass internal logic output to INT pin. 1: Mask internal logic output to INT pin.			
6:3	Reserved	Reserved bits			
2	FLT_MASKHD	Masking the hot die detection signal. 0: Pass internal logic output to INT pin. 1: Mask internal logic output to INT pin.			
1	FLT_MASKTSDR	Masking the thermal shutdown detection signal. 0: Pass internal logic output to INT pin. 1: Mask internal logic output to INT pin.			
0	Reserved	Reserved bits			

Table 21. FLT_MASKBUCK1

Address: 0x33									
Bit	7	6	5	4	3	2	1	0	
Field	FLT_BUCK1 MASKPG	FLT_BUCK1 MASKOC	FLT_BUCK1 MASKOV	FLT_BUCK1 MASKUV		Reserved		Reserved	
Default	0	0	0	0	0	0	0	0	
Туре	RW	RW	RW	RW		RV		RV	

Bit	Name	Description		
7	FLT_BUCK1MASKPG	Masking the Buck1 power good detection signal. 0: Pass the internal logic output to the INT pin. 1: Mask the internal logic output from the INT pin.		
6	FLT_BUCK1MASKOC	Masking the Buck1 overcurrent detection signal. 0: Pass the internal logic output to the INT pin. 1: Mask the internal logic output from the INT pin.		
5	FLT_BUCK1MASKOV	Masking the Buck1 overvoltage detection signal. 0: Pass the internal logic output to the INT pin. 1: Mask the internal logic output from the INT pin.		
4	FLT_BUCK1MASKUV	Masking the Buck1 undervoltage detection signal. 0: Pass the internal logic output to the INT pin. 1: Mask the internal logic output from the INT pin.		
3:0	Reserved	Reserved bits		

Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Table 22. FLT_MASKBUCK2

Address: 0x34									
Bit	7	6	5	4	3	2	1	0	
Field	FLT_BUCK2 MASKPG	FLT_BUCK2 MASKOC	FLT_BUCK2 MASKOV	FLT_BUCK2 MASKUV		Reserved		Reserved	
Default	0	0	0	0	0	0	0	0	
Туре	RW	RW	RW	RW		RV		RV	

Bit	Name	Description
7	FLT_BUCK2MASKPG	Masking the Buck2 power good detection signal. 0: Pass the internal logic output to the INT pin. 1: Mask the internal logic output from the INT pin.
6	FLT_BUCK2MASKOC	Masking the Buck2 overcurrent detection signal. 0: Pass the internal logic output to the INT pin. 1: Mask the internal logic output from the INT pin.
5	FLT_BUCK2MASKOV	Masking the Buck2 overvoltage detection signal. 0: Pass the internal logic output to the INT pin. 1: Mask the internal logic output from the INT pin.
4	FLT_BUCK2MASKUV	Masking the Buck2 undervoltage detection signal. 0: Pass the internal logic output to the INT pin. 1: Mask the internal logic output from the INT pin.
3:0	Reserved	Reserved bits

Table 23. FLT_MASKBUCK3

Address: 0x35									
Bit	7	6	5	4	3	2	1	0	
Field	FLT_BUCK3 MASKPG	FLT_BUCK3 MASKOC	FLT_BUCK3 MASKOV	FLT_BUCK3 MASKUV		Reserved		Reserved	
Default	0	0	0	0	0	0	0	0	
Туре	RW	RW	RW	RW		RV		RV	

Bit	Name	Description		
7	FLT_BUCK3MASKPG	Masking the Buck3 power good detection signal. 0: Pass the internal logic output to the INT pin. 1: Mask the internal logic output from the INT pin.		
6	FLT_BUCK3MASKOC	Masking the Buck3 overcurrent detection signal. 0: Pass the internal logic output to the INT pin. 1: Mask the internal logic output from the INT pin.		
5	FLT_BUCK3MASKOV	Masking the Buck3 overvoltage detection signal. 0: Pass the internal logic output to the INT pin. 1: Mask the internal logic output from the INT pin.		
4	FLT_BUCK3MASKUV	Masking the Buck3 undervoltage detection signal. 0: Pass the internal logic output to the INT pin. 1: Mask the internal logic output from the INT pin.		
3:0	Reserved	Reserved bits		

Table 24. FLT_MASKBUCK4

Address: 0x36									
Bit	7	6	5	4	3	2	1	0	
Field	FLT_BUCK4 MASKPG	FLT_BUCK4 MASKOC	FLT_BUCK4 MASKOV	FLT_BUCK4 MASKUV		Reserved	l	Reserved	
Default	0	0	0	0	0	0	0	0	
Туре	RW	RW	RW	RW		RV		RV	

Bit	Name	Description
7	FLT_BUCK4MASKPG	Masking the Buck4 power good detection signal. 0: Pass the internal logic output to the INT pin. 1: Mask the internal logic output from the INT pin.
6	FLT_BUCK4MASKOC	Masking the Buck4 overcurrent detection signal. 0: Pass the internal logic output to the INT pin. 1: Mask the internal logic output from the INT pin.
5	FLT_BUCK4MASKOV	Masking the Buck4 overvoltage detection signal. 0: Pass the internal logic output to the INT pin. 1: Mask the internal logic output from the INT pin.
4	FLT_BUCK4MASKUV	Masking the Buck4 undervoltage detection signal. 0: Pass the internal logic output to the INT pin. 1: Mask the internal logic output from the INT pin.
3:0	Reserved	Reserved bits

Table 25. FLT_BUCK1_CTRL

Address: 0	x37							
Bit	7	6	5	4	3	2	1	0
Field		Rese	erved		FLT_BUCK1_CTRLUV	Rese	erved	Reserved
Default	0	0	0	0	1	1	0	0
Туре		R	V		RW	R	V	RV

Bit	Name	Description		
7:4	Reserved	Reserved bits		
3	FLT_BUCK1_CTRLUV	Latch or hiccup protection behavior when the Buck1 suffers UV detection. 0: UV Shutdown 1: UV Hiccup		
2:0	Reserved	Reserved bits		

Table 26. FLT_BUCK2_CTRL

Address: 0x38									
Bit	7	6	5	4	3	2	1	0	
Field	Reserved				FLT_BUCK2_CTRLUV	Reserved		Reserved	
Default	0	0	0	0	1	1	0	0	
Туре		R	:V		RW	R	:V	RV	

Bit	Name	Description
7:4	Reserved	Reserved bits
3	FLT_BUCK2_CTRLUV	Latch or hiccup protection behavior when the Buck2 suffers UV detection. 0: UV Shutdown 1: UV Hiccup
2:0	Reserved	Reserved bits

Table 27. FLT_BUCK3_CTRL

Address: 0x39									
Bit	7	6	5	4	3	2	1	0	
Field	Reserved				FLT_BUCK3_CTRLUV	Rese	erved	Reserved	
Default	0	0	0	0	1	1	0	0	
Туре	RV				RW	R	.V	RV	

Bit	Name	Description
7:4	Reserved	Reserved bits
3	FLT_BUCK3_CTRLUV	Latch or hiccup protection behavior when the Buck3 suffers UV detection. 0: UV Shutdown 1: UV Hiccup
2:0	Reserved	Reserved bits

Table 28. FLT_BUCK4_CTRL

Address: 0x3A									
Bit	7	6	5	4	3	2	1	0	
Field	Reserved				FLT_BUCK4_CTRLUV	Rese	erved	Reserved	
Default	0	0	0 0		1	1	0	0	
Туре	RV				RW	R	XV	RV	

Bit	Name	Description
7:4	Reserved	Reserved bits
3	FLT_BUCK4_CTRLUV	Latch or hiccup protection behavior when the Buck4 suffers UV detection. 0: UV Shutdown 1: UV Hiccup
2:0	Reserved	Reserved bits

Table 29. BUCK1_RAMP

Address: 0x3E								
Bit	7	6	5	4	3	2	1	0
Field	Reserved	BUCK1_DVS_UP	Reserved		ed	BUCK1_DVS_DOWN	Reserved	Reserved
Default	0	1	0	0	0	1	0	0
Туре	RV	RW	RV			RW	RV	RV

Bit	Name	Description			
7	Reserved	Reserved bits			
6	BUCK1_DVS_UP	The operation mode when Buck1 ramps up. 0: Auto Mode 1: FCCM			
5:3	Reserved	Reserved bits			
2	BUCK1_DVS_DOWN	The operation mode when Buck1 ramps down. 0: Decay Mode 1: FCCM			
1:0	Reserved	Reserved bits			

Table 30. BUCK1_DVS0CFG1

Address: 0x48									
Bit	7	6	5	4	3	2	1	0	
Field		BUCK1_DVS0							
Default	0	1	1	1	1	0	0	0	
Туре				R	W				

Bit	Name	Description
		Buck1 DVS0 output voltage setting. SEL[7:0] = 11111111: VOUT = 2.05V
7:0	BUCK1_DVS0	SEL[7:0] = 10110100: VOUT = 1.3V
	_	 SEL[7:0] = 0000000: 0.4V For 0.4V to 1.3V, VOUT = 0.4V + SEL[7:0](decimal) x 5mV For 1.3V to 2.05V, VOUT = 1.3V + {SEL[7:0](decimal) - 180 } x 10mV

Table 31. BUCK1_DVS0CFG0

Address: 0x49								
Bit	7	6	5	4	3	2	1	0
Field	Reserved		BUCK1_DVS0MODE	Reserved			BUCK1_ENDVS0	
Default	0	0	1	0	0	0	0	0
Туре	R	V	RW		R	:V		RW

Bit	Name	Description		
7:6	Reserved	Reserved bits		
5	BUCK1_DVS0MODE	Buck1 DVS0 operation mode setting. 0: Auto Mode 1: FCCM		
4:1	Reserved	Reserved bits		
0	BUCK1_ENDVS0	Enable or disable Buck1 DVS0. 0: Disable 1: Enable		

Table 32. BUCK1_DVS1CFG1

Address: 0	x4A							
Bit	7	6	5	4	3	2	1	0
Field		BUCK1_DVS1						
Default	0	1	1	1	1	0	0	0
Туре				R	W			

Bit	Name	Description
		Buck1 DVS1 output voltage setting. SEL[7:0] = 11111111: VOUT = 2.05V
7:0	BUCK1_DVS1	SEL[7:0] = 10110100: VOUT = 1.3V
		SEL[7:0] = 0000000: 0.4V For 0.4V to 1.3V, VOUT = 0.4V + SEL[7:0] (decimal) x 5mV For 1.3V to 2.05V, VOUT = 1.3V + {SEL[7:0] (decimal) - 180 } x 10mV

Table 33. BUCK1_DVS1CFG0

Address: 0	x4B							
Bit	7	6	5	4	3	2	1	0
Field	Reserved		BUCK1_DVS1MODE		Rese	erved		BUCK1_ENDVS1
Default	0	0	1	0	0	0	0	0
Туре	R	V	RW	RV				RW

Bit	Name	Description
7:6	Reserved	Reserved bits
5	BUCK1_DVS1MODE	Buck1 DVS1 operation mode setting. 0: Auto Mode 1: FCCM
4:1	Reserved	Reserved bits
0	BUCK1_ENDVS1	Enable or disable Buck1 DVS1. 0: Disable 1: Enable

Table 34. BUCK1_DVSCFG

Address: 0	x52							
Bit	7	6	5	4	3	2	1	0
Field		Reserved				BUCK1_DVSPIN_ POL	BUCK1_D	VS_CTRL
Default	0	0 0 0 0 0		0	0	0		
Туре		RV				RW	R	W

Bit	Name	Description
7:3	Reserved	Reserved bits
2	BUCK1_DVSPIN_ POL	When the Buck1 DVS up and down operations are controlled by using the external VSEL1 pin, this bit defines the polarity for VSEL1. 0: when VSEL1 = 1, use the DVS0 setting when VSEL1 = 0, use the DVS1 setting 1: when VSEL1 = 1, use the DVS1 setting when VSEL1 = 0, use the DVS0 setting
1:0	BUCK1_DVS_CTRL	The Buck1 DVS up and down operations are controlled by software or an external pin. 00: Use the DVS0 setting 01: Use the DVS1 setting 10: Controlled by the VSEL1 pin

Table 35. BUCK1_RSPCFG

Address: 0	x54							
Bit	7	6	5	4	3	2	1	0
Field	Reserved	В	BUCK1_RSPUP			В	UCK1_RSPD	N
Default	0	0	0 0 1			1	0	0
Туре	RV		RW				RW	

Bit	Name		Description
7	Reserved	Reserved bits	
6:4	BUCK1_RSPUP	Buck1 DVS slew rate setting 000: 16mV step/μs 001: 16mV step/μs(default) 010: 16mV step/μs 011: 8mV step/μs	for DVS Up. 100: 4mV step/μs 101 = 2mV step/μs 110 = 1mV step/μs 111 = 0.5mV step/μs
3	Reserved	Reserved bits	
2:0	BUCK1_RSPDN	Buck1 DVS slew rate setting 000: 16mV step/μs 001: 16mV step/μs 010: 16mV step/μs 011: 8mV step/μs	for DVS Down. 100: 4mV step/μs (default) 101 = 2mV step/μs 110 = 1mV step/μs 111 = 0.5mV step/μs

Table 36. BUCK1_SLEWCTRL

Address: 0	x 55							
Bit	7	6	5	4	3	2	1	0
Field	Rese	erved	BUCK1_S	BUCK1_SS_SLEW		Reserved		
Default	0	0	0	0	0	0	0	0
Туре	R	.V	R	W		RV		RV

Bit	Name	Description			
7:6	Reserved	Reserved bits			
5:4	BUCK1_SS_SLEW	Set the soft-start slew rate when Buck1 is turned on by software or an external enable pin. The default is fixed to $10\text{mV}/\mu\text{s}$ for Buck1 turned on by the external enable pin. 00: $10\text{mV}/\mu\text{s}$ (default) $10 = 2.5\text{mV}/\mu\text{s}$ $11 = 1.25\text{mV}/\mu\text{s}$			
3:0	Reserved	Reserved bits			

Table 37. BUCK1_EN_DLY

Address: 0	x56							
Bit	7	6	5	4	3	2	1	0
Field	Reserved BUCK1_EN_DLY							
Default	0	0	0 0 0 0 0				0	
Туре	R	:V			R'	W		

Bit	Name	Description
7:6	Reserved	Reserved bits
5:0	BUCK1_EN_DLY	Buck1 power on delay from the master chip enable pin. 000000: 0ms - 111111b = 63ms (steps of 1ms)

Table 38. BUCK1_SHUTDN_DLY

Address: 0	Address: 0x57									
Bit	7	6	5	4	3	2	1	0		
Field	Rese	erved		BUCK1_SHUTDN_DLY						
Default	0	0	0	0	0	0	0	0		
Туре	RV			RW						

Bit	Name	Description	
7:6	Reserved	Reserved bits	
5:0	BUCK1_SHUTDN_DLY	Buck1 power off delay from the master chip enable pin. 000000: 0ms - 111111b = 63ms (steps of 1ms)	

Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Table 39. BUCK2_RAMP

Address: 0x5B								
Bit	7	6	5	4	3	2	1	0
Field	Reserved	BUCK2_DVS_UP	Reserved			BUCK2_DVS_DOWN	Reserved	Reserved
Default	0	1	0	0 0 0		1	0	0
Туре	RV	RW	RV			RW	RV	RV

Bit	Name	Description	
7	Reserved	Reserved bits	
6	BUCK2_DVS_UP	The operation mode when Buck2 ramps up. 0: Auto Mode 1: FCCM	
5:3	Reserved	Reserved bits	
2	BUCK2_DVS_DOWN	The operation mode when Buck2 ramps down. 0: Decay Mode 1: FCCM	
1:0	Reserved	Reserved bits	

Table 40. BUCK2_DVS0CFG1

Address: 0	Address: 0x62								
Bit	7	6	5	4	3	2	1	0	
Field		BUCK2_DVS0							
Default	0	1	1	1	1	0	0	0	
Туре		RW							

Bit	Name	Description
		Buck2 DVS0 output voltage setting. SEL[7:0] = 11111111: VOUT = 2.05V
7:0	BUCK2_DVS0	SEL[7:0] = 10110100: VOUT = 1.3V
		SEL[7:0] = 0000000: 0.4V For 0.4V to 1.3V, VOUT = 0.4V + SEL[7:0] (decimal) x 5mV For 1.3V to 2.05V, VOUT = 1.3V + {SEL[7:0] (decimal) - 180 } x 10mV

Table 41. BUCK2_DVS0CFG0

Address: 0	Address: 0x63								
Bit	7 6		5	4 3		2	1	0	
Field	Reserved		BUCK2_DVS0MODE	Reserved			BUCK2_ENDVS0		
Default	0	0	1	0	0	0	0	0	
Туре	RV		RW	RV			RW		

Bit	Name	Description	
7:6	Reserved	Reserved bits	
5	BUCK2_DVS0MODE	Buck2 DVS0 operation mode setting. 0: Auto Mode 1: FCCM	
4:1	Reserved	Reserved bits	
0	BUCK2_ENDVS0	Enable or disable Buck2 DVS0. 0: Disable 1: Enable	

Table 42. BUCK2_DVS1CFG1

Address: 0	Address: 0x64								
Bit	7	6	5	4	3	2	1	0	
Field		BUCK2_DVS1							
Default	0	0 1 1 1 1 0 0							
Туре		RW							

Bit	Name	Description
		Buck2 DVS1 output voltage setting. SEL[7:0] = 111111111: VOUT = 2.05V
7:0	BUCK2 DVS1	SEL[7:0] = 10110100: VOUT = 1.3V
	_	 SEL[7:0] = 0000000: 0.4V For 0.4V to 1.3V, VOUT = 0.4V + SEL[7:0] (decimal) x 5mV For 1.3V to 2.05V, VOUT = 1.3V + {SEL[7:0] (decimal) - 180 } x 10mV

Table 43. BUCK2_DVS1CFG0

Address: 0	Address: 0x65									
Bit	7 6		5	4 3 2		2	1	0		
Field	Reserved		BUCK2_DVS1MODE	Reserved				BUCK2_ENDVS1		
Default	0 0		1	0 0 0		0	0			
Туре	RV		RW	RV			RW			

Bit	Name	Description			
7:6	Reserved	Reserved bits			
5	BUCK2_DVS1MODE	Buck2 DVS1 operation mode setting. 0: Auto Mode 1: FCCM			
4:1	Reserved	Reserved bits			
0	BUCK2_ENDVS1	Enable or disable Buck2 DVS1. 0: Disable 1: Enable			

Table 44. BUCK2_DVSCFG

Address: 0	Address: 0x6C							
Bit	7	6	5	4	3	2	1	0
Field		Reserved			BUCK2_DVSPIN_ POL	BUCK2_D	VS_CTRL	
Default	0	0	0	0	0	0	0	0
Туре	RV			RW	R'	W		

Bit	Name	Description
7:3	Reserved	Reserved bits
2	BUCK2_DVSPIN_ POL	When Buck2 DVS up and down operations are controlled by using the external VSEL2 pin, this bit defines the polarity for VSEL2. 0: VSEL2 = 1, use the DVS0 setting VSEL2 = 0, use the DVS1 setting 1: VSEL2 = 1, use the DVS1 setting VSEL2 = 0, use the DVS0 setting
1:0	BUCK2_DVS_CTRL	Buck2 DVS up and down operations are controlled by software or an external pin. 00: Use the DVS0 setting 01: Use the DVS1 setting 10: Controlled by the VSEL2 pin

Table 45. BUCK2_RSPCFG

Address: 0	Address: 0x6E							
Bit	7	6	5	4	3	2	1	0
Field	Reserved	В	UCK2_RSPL	IP	Reserved	В	UCK2_RSPD	N
Default	0	0	0	1	0	1	0	0
Туре	RV		RW		RV		RW	

Bit	Name		Description
7	Reserved	Reserved bits	
6:4	BUCK2_RSPUP	Buck2 DVS slew rate setting f 000: 16mV step/μs 001: 16mV step/μs (default) 010: 16mV step/μs 011: 8mV step/μs	for DVS Up. 100: 4mV step/μs 101 = 2mV step/μs 110 = 1mV step/μs 111 = 0.5mV step/μs
3	Reserved	Reserved bits	
2:0	BUCK2_RSPDN	Buck2 DVS slew rate setting t 000: 16mV step/μs 001: 16mV step/μs 010: 16mV step/μs 011: 8mV step/μs	for DVS Down. 100: 4mV step/μs (default) 101 = 2mV step/μs 110 = 1mV step/μs 111 = 0.5mV step/μs

Table 46. BUCK2_SLEWCTRL

Address: 0	Address: 0x6F							
Bit	7	6	5	4	3	2	1	0
Field	Rese	erved	BUCK2_S	SS_SLEW		Reserved		Reserved
Default	0	0	0	0	0	0	0	0
Туре	R	V	R	W		RV		RV

Bit	Name	Description				
7:6	Reserved	Reserved bits				
5:4	BUCK2_SS_SLEW	Set the soft-start slew rate when Buck2 is turned on by software or an external enable pin. The default is fixed to $10\text{mV}/\mu\text{s}$ for Buck2 turned on by the external enable pin. 00: $10\text{mV}/\mu\text{s}$ (default) $10 = 2.5\text{mV}/\mu\text{s}$ $11 = 1.25\text{mV}/\mu\text{s}$				
3:0	Reserved	Reserved bits				

Table 47. BUCK2_EN_DLY

Address: 0	Address: 0x70							
Bit	7	6	5	4	3	2	1	0
Field	Rese	erved	BUCK2_EN_DLY					
Default	0	0	0	0	0	0	0	0
Туре	R	.V		•	R	W		

Bit	Name	Description
7:6	Reserved	Reserved bits
5:0	BUCK2_EN_DLY	Buck2 power on delay from the master chip enable pin. 000000: 0ms - 111111b = 63ms (steps of 1ms)

Table 48. BUCK2_SHUTDN_DLY

Address: 0	Address: 0x71							
Bit	7	6	5	4	3	2	1	0
Field	Rese	erved	BUCK2_SHUTDN_DLY					
Default	0	0	0 0 0 0 0					
Туре	R	V	RW					

Bit	Name	Description
7:6	Reserved	Reserved bits
5:0	BUCK2_SHUTDN_DLY	Buck2 power off delay from the master chip enable pin. 000000: 0ms - 111111b = 63ms (steps of 1ms)

Table 49. Buck3_RAMP

Address: 0	Address: 0x75							
Bit	7	6	5	4	3	2	1	0
Field	Reserved	Buck3_DVS_UP	ı	Reserve	d	Buck3_DVS_DOWN	Reserved	Reserved
Default	0	1	0	0	0	1	0	0
Туре	RV	RW	RV			RW	RV	RV

Bit	Name	Description
7	Reserved	Reserved bits
6	Buck3_DVS_UP	The operation mode when Buck3 ramps up. 0: Auto Mode 1: FCCM
5:3	Reserved	Reserved bits
2	Buck3_DVS_DOWN	The operation mode when Buck3 ramps down. 0: Decay Mode 1: FCCM
1:0	Reserved	Reserved bits

Table 50. Buck3_DVS0CFG1

Address: 0	Address: 0x7C								
Bit	7	6	5	4	3	2	1	0	
Field		Buck3_DVS0							
Default	0	0 1 1 1 1 0 0							
Туре		RW							

Bit	Name	Description	
	7:0 Buck3 DVS0	Buck3 DVS0 output voltage setting. SEL[7:0] = 11111111: VOUT = 2.05V	
7:0		SEL[7:0] = 10110100: VOUT = 1.3V	
	_	SEL[7:0] = 0000000: 0.4V For 0.4V to 1.3V, VOUT = 0.4V + SEL[7:0] (decimal) x 5mV For 1.3V to 2.05V, VOUT = 1.3V + {SEL[7:0] (decimal) - 180 } x 10mV	

Table 51. Buck3_DVS0CFG0

Address: 0x7D									
Bit	7	6	5	4	3	2	1	0	
Field	Rese	erved	Buck3_DVS0MODE	DE Reserved				Buck3_ENDVS0	
Default	0	0	1	0	0	0	0	0	
Туре	R	V	RW		R	.V		RW	

Bit	Name	Description		
7:6	Reserved	Reserved bits		
5	Buck3_DVS0MODE	Buck3 DVS0 operation mode setting. 0: Auto Mode 1: FCCM		
4:1	Reserved	Reserved bits		
0	Buck3_ENDVS0	Enable or disable Buck3 DVS0. 0: Disable 1: Enable		

Table 52. Buck3_DVS1CFG1

Address: 0x7E									
Bit	7	6	5	4	3	2	1	0	
Field		Buck3_DVS1							
Default	0	1	1	1	1	0	0	0	
Туре		RW							

Bit	Name	Description	
7:0	Buck3_DVS1	Buck3 DVS1 output voltage setting. SEL[7:0] = 111111111: VOUT = 2.05V SEL[7:0] = 10110100: VOUT = 1.3V SEL[7:0] = 0000000: 0.4V For 0.4V to 1.3V, VOUT = 0.4V + SEL[7:0] (decimal) x 5mV For 1.3V to 2.05V, VOUT = 1.3V + {SEL[7:0] (decimal) - 180 } x 10mV	

Table 53. Buck3_DVS1CFG0

Address: 0	x7F							
Bit	7	6	5	4	3	2	1	0
Field	Rese	erved	Buck3_DVS1MODE		Rese	erved		Buck3_ENDVS1
Default	0	0	1	0	0	0	0	0
Туре	R	:V	RW		R	:V		RW

Bit	Name	Description	
7:6	Reserved	Reserved bits	
5	Buck3_DVS1MODE	Buck3 DVS1 operation mode setting. 0: Auto Mode 1: FCCM	
4:1	Reserved	Reserved bits	
0	Buck3_ENDVS1	Enable or disable Buck3 DVS1. 0: Disable 1: Enable	

Table 54. Buck3_DVSCFG

Address: 0	Address: 0x86									
Bit	7	6	5	4	3	2	1	0		
Field			Reserved			Buck3_DVSPIN_ POL	Buck3_D	VS_CTRL		
Default	0 0 0 0 0				0	0	0			
Туре	RV					RW	R	W		

Bit	Name	Description	
7:3	Reserved	Reserved bits	
2	Buck3_DVSPIN_ POL	When Buck3 DVS up and down operations are controlled by using the external VSEL3 pin, this bit defines the polarity for VSEL3. 0: VSEL3 = 1, use the DVS0 setting VSEL3 = 0, use the DVS1 setting 1: VSEL3 = 1, use the DVS1 setting VSEL3 = 0, use the DVS0 setting	
1:0	Buck3_DVS_CTRL	Buck3 DVS up and down operations are controlled by software or an external pin. 00: Use the DVS0 setting 01: Use the DVS1 setting 10: Controlled by the VSEL3 pin	

Table 55. Buck3_RSPCFG

Address: 0x88									
Bit	7	6	5	4	3	2	1	0	
Field	Reserved	В	Buck3_RSPUP			Buck3_RSPDN			
Default	0	0	0 0 1		0	1	0	0	
Туре	RV	RW			RV		RW		

Bit	Name		Description
7	Reserved	Reserved bits	
6:4	Buck3_RSPUP	Buck3 DVS slew rate setting 000: 16mV step/μs 001: 16mV step/μs(default) 010: 16mV step/μs 011: 8mV step/μs	for DVS Up. 100: 4mV step/μs 101 = 2mV step/μs 110 = 1mV step/μs 111 = 0.5mV step/μs
3	Reserved	Reserved bits	
2:0	Buck3_RSPDN	Buck3 DVS slew rate setting 000: 16mV step/μs 001: 16mV step/μs 010: 16mV step/μs 011: 8mV step/μs	for DVS Down. 100: 4mV step/μs (default) 101 = 2mV step/μs 110 = 1mV step/μs 111 = 0.5mV step/μs

Table 56. Buck3_SLEWCTRL

Address: 0x89								
Bit	7	6	5	4	3	2	1	0
Field	Rese	erved	Buck3_SS_SLEW		Reserved			Reserved
Default	0	0	0	0	0	0	0	0
Туре	R	V	R	W		RV		RV

Bit	Name	Description
7:6	Reserved	Reserved bits
5:4	Buck3_SS_SLEW	Set the soft-start slew rate when Buck3 is turned on by software or an external enable pin. The default is fixed to $10\text{mV}/\mu\text{s}$ for Buck3 turned on by the external enable pin. 00: $10\text{mV}/\mu\text{s}$ (default) $10 = 2.5\text{mV}/\mu\text{s}$ $01: 5\text{mV}/\mu\text{s}$ $11 = 1.25\text{mV}/\mu\text{s}$
3:0	Reserved	Reserved bits

Table 57. BUCK3_EN_DLY

Address: 0	Address: 0x8A								
Bit	7	6	5	4	3	2	1	0	
Field	Rese	erved		BUCK3_EN_DLY					
Default	0	0	0	0	0	0	0	0	
Туре	RV		RW						

Bit	Name	Description
7:6	Reserved	Reserved bits
5:0	BUCK3_EN_DLY	Buck3 power on delay from the master chip enable pin. 000000: 0ms - 111111b = 63ms (steps of 1ms)

Table 58. BUCK3_SHUTDN_DLY

Address: 0x8B								
Bit	7	6	5	4	3	2	1	0
Field	Rese	erved			BUCK3_SH	UTDN_DLY		
Default	0	0	0	0	0	0	0	0
Туре	RV		RW					

Bit	Name	Description
7:6	Reserved	Reserved bits
5:0	BUCK3_SHUTDN_DLY	Buck3 power off delay from the master chip enable pin. 000000: 0ms - 111111b = 63ms (steps of 1ms)

Table 59. Buck4_RAMP

Address: 0x8F								
Bit	7	6	5	4	3	2	1	0
Field	Reserved	Buck4_DVS_UP	F	Reserve	d	Buck4_DVS_DOWN	Reserved	Reserved
Default	0	1	0	0	0	1	0	0
Туре	RV	RW	RV			RW	RV	RV

Bit	Name	Description
7	Reserved	Reserved bits
6	Buck4_DVS_UP	The operation mode when Buck4 ramps up. 0: Auto Mode 1: FCCM
5:3	Reserved	Reserved bits
2	Buck4_DVS_DOWN	The operation mode when Buck4 ramps down. 0: Decay Mode 1: FCCM
1:0	Reserved	Reserved bits

Table 60. Buck4_DVS0CFG1

Address: 0	Address: 0x96							
Bit	7	6	5	4	3	2	1	0
Field		Buck4_DVS0						
Default	0	1	1	1	1	0	0	0
Туре				R	W			

Bit	Name	Description
		Buck4 DVS0 output voltage setting. SEL[7:0] = 111111111: VOUT = 2.05V
		SEL[7:0] = 10110100: VOUT = 1.3V
7:0	Buck4_DVS0	SEL[7:0] = 0000000: 0.4V For 0.4V to 1.3V, VOUT = 0.4V + SEL[7:0] (decimal) x 5mV
		For 1.3V to 2.05V, VOUT = 1.3V + {SEL[7:0] (decimal) - 180 } x 10mV

Table 61. Buck4_DVS0CFG0

Address: 0x97									
Bit	7	6	5	4	4 3 2 1				
Field	Reserved		Buck4_DVS0MODE		Rese	Buck4_ENDVS0			
Default	0	0	1	0	0	0	0	0	
Туре	R	.V	RW	RV				RW	

Bit	Name	Description		
7:6	Reserved	Reserved bits		
5	Buck4_DVS0MODE	Buck4 DVS0 operation mode setting. 0: Auto Mode 1: FCCM		
4:1	Reserved	Reserved bits		
0	Buck4_ENDVS0	Enable or disable Buck4 DVS0. 0: Disable 1: Enable		

Table 62. Buck4_DVS1CFG1

Address: 0x98								
Bit	7	6	5	4	3	2	1	0
Field		Buck4_DVS1						
Default	0	1	1	1	1	0	0	0
Туре				R	W			

Bit	Name	Description
7:0	Buck4 DVS1	Buck4 DVS1 output voltage setting. SEL[7:0] = 111111111: VOUT = 2.05V SEL[7:0] = 10110100: VOUT = 1.3V
	54411,_5461	 SEL[7:0] = 0000000: 0.4V For 0.4V to 1.3V, VOUT = 0.4V + SEL[7:0] (decimal) x 5mV For 1.3V to 2.05V, VOUT = 1.3V + {SEL[7:0] (decimal) - 180 } x 10mV

Table 63. Buck4_DVS1CFG0

Address: 0	Address: 0x99									
Bit	7	6	5	4 3		2	1	0		
Field	Reserved		Buck4_DVS1MODE	Reserved				Buck4_ENDVS1		
Default	0	0	1	0	0	0	0	0		
Туре	RV		RW	RV				RW		

Bit	Name	Description	
7:6	Reserved	Reserved bits	
5	Buck4_DVS1MODE	Buck4 DVS1 operation mode setting. 0: Auto Mode 1: FCCM	
4:1	Reserved	Reserved bits	
0	Buck4_ENDVS1	Enable or disable Buck4 DVS1. 0: Disable 1: Enable	

Table 64. Buck4_DVSCFG

Address: 0	Address: 0xA0									
Bit	7 6 5 4 3		2	1	0					
Field			Reserved		Buck4_DVSPIN_ POL	Buck4_D	VS_CTRL			
Default	0	0	0	0 0 0		0	0	0		
Туре			RV		RW	R	W			

Bit	Name	Description
7:3	Reserved	Reserved bits
2	Buck4_DVSPIN_ POL	When Buck4 DVS up and down operations are controlled by using the external VSEL4 pin, this bit defines the polarity for VSEL4. 0: VSEL4 = 1, use the DVS0 setting VSEL4 = 0, use the DVS1 setting 1: VSEL4 = 1, use the DVS1 setting VSEL4 = 0, use the DVS0 setting
1:0	Buck4_DVS_CTRL	Buck4 DVS up and down operations are controlled by software or an external pin. 00: Use the DVS0 setting 01: Use the DVS1 setting 10: Controlled by the VSEL4 pin

Table 65. Buck4_RSPCFG

Address: 0xA2								
Bit	7	6	5	4	3	2	1	0
Field	Reserved	Е	Buck4_RSPUP			Buck4_RSPDN		
Default	0	0	0	1	0	1	0	0
Туре	RV		RW				RW	

Bit	Name Description				
7	Reserved	Reserved bits			
6:4	Buck4_RSPUP	Buck4 DVS slew rate setting for DVS Up. 000: 16mV step/ μ s $100: 4\text{mV}$ step/ μ s $001: 16\text{mV}$ step/ μ s $101 = 2\text{mV}$ step/ μ s $110 = 1\text{mV}$ step/ μ s $111 = 0.5\text{mV}$ step/ μ s			
3	Reserved	Reserved bits			
2:0	Buck4_RSPDN	Buck4 DVS slew rate setting for DVS Down. 000: 16mV step/ μs 100: 4mV step/ μs (default) 001: 16mV step/ μs 101 = 2mV step/ μs 010: 16mV step/ μs 110 = 1mV step/ μs 011: 8mV step/ μs 111 = 0.5mV step/ μs			

Table 66. Buck4_SLEWCTRL

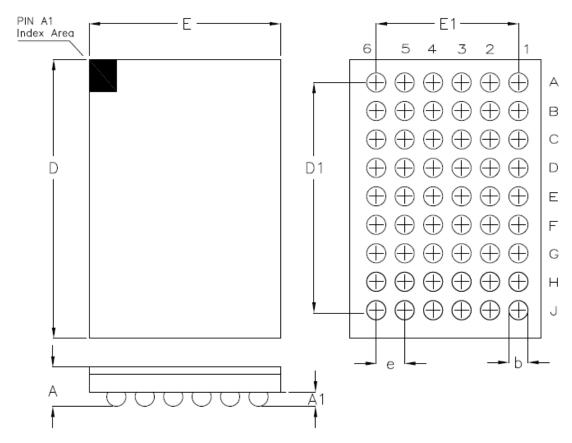
Address: 0xA3									
Bit	7	6	5	4	3	2	1	0	
Field	Rese	erved	Buck4_SS_SLEW		Reserved			Reserved	
Default	0	0	0	0	0	0	0	0	
Туре	R	V	R	W		RV		RV	

Bit	Name	Description				
7:6	Reserved	Reserved bits				
5:4	Buck4_SS_SLEW	Set the soft-start slew rate when Buck4 is turned on by software or external enable pin. The default is fixed to $10\text{mV}/\mu\text{s}$ for Buck4 turned on by an external enable pin. 00: $10\text{mV}/\mu\text{s}$ (default) $10 = 2.5\text{mV}/\mu\text{s}$ $11 = 1.25\text{mV}/\mu\text{s}$				
3:0	Reserved	Reserved bits				

Table 67. BUCK4_EN_DLY

Address: 0xA4									
Bit	7	6	5	4	3	2	1	0	
Field	Rese	erved		BUCK4_EN_DLY					
Default	0	0	0	0	0	0	0	0	
Туре	RV		RW						

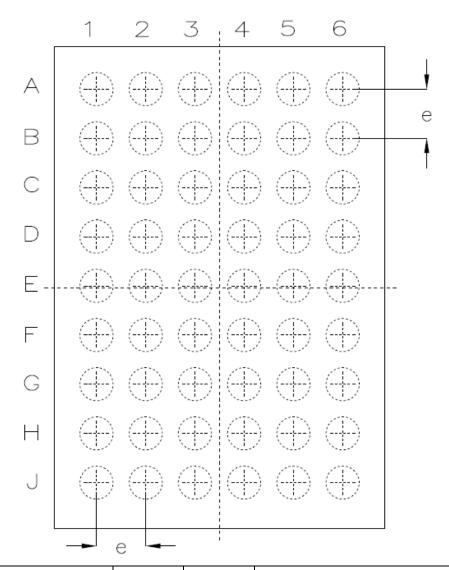
Bit	Name	Description
7:6	Reserved	Reserved bits
5:0	BUCK4_EN_DLY	Buck4 power on delay from the master chip enable pin. 000000: 0ms - 111111b = 63ms (steps of 1ms)


Table 68. BUCK4_SHUTDN_DLY

Address: 0	xA5								
Bit	7	6	5	4	3	2	1	0	
Field	Rese	erved	BUCK4_SHUTDN_DLY						
Default	0	0	0	0 0 0 0 0					
Туре	R	.V	RW						

Bit	Name	Description
7:6	Reserved	Reserved bits
5:0	BUCK4_SHUTDN_DLY	Buck4 power off delay from the master chip enable pin. 000000: 0ms - 111111b = 63ms (steps of 1ms)

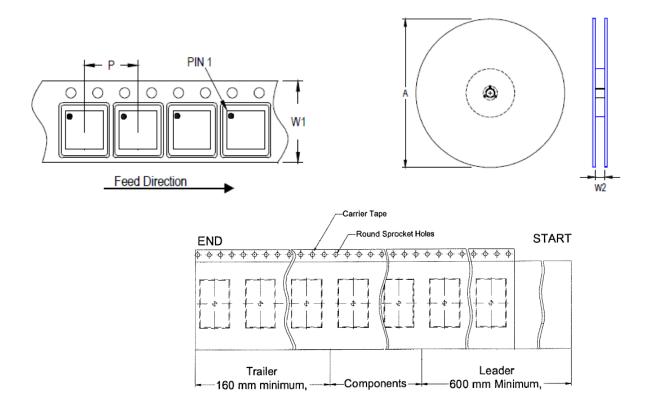
20 Outline Dimension



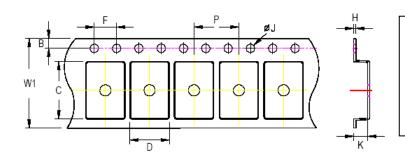
Symbol	Dimensions I	In Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
Α	0.500	0.600	0.020	0.024		
A1	0.170	0.230	0.007	0.009		
b	0.240	0.300	0.009	0.012		
D	3.880	3.960	0.153	0.156		
D1	3.2	200	0.1	26		
E	2.650	2.730	0.104	0.107		
E1	2.0	000	0.079			
е	0.4	100	0.016			

54B WL-CSP 2.69x3.92 Package (BSC)

21 Footprint Information



Dookaga	Number of	Typo	Footpri	Tolerance			
Package	Pin	Type	е	Α	В	TOIGIANCE	
\\\\\ CCD2.60*2.02.64/DCC\	ΕΛ	NSMD	0.400	0.240	0.340	10.025	
WL-CSP2.69*3.92-54(BSC)	54	SMD	0.400	0.270	0.240	±0.025	



22 Packing Information

22.1 **Tape and Reel Data**

Package Type	Tape Size (W1) (mm)	Pocket Pitch (P) (mm)	Reel Si	ze (A)	Units per Reel	Trailer (mm)	Leade r(mm)	Reel Width (W2) Min/Max (mm)
WL-CSP 2.69x3.92	12	8	180	7	1,500	160	600	12.4/14.4

C, D, and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 12mm carrier tape: 0.5mm max.

Tana Siza	W1	F)	E	3	F	=	Q	IJ	ŀ	(Н
Tape Size	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Max
12mm	12.3mm	7.9mm	8.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.7mm	0.8mm	0.6mm

22.2 Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1	Reel 7"	4	12 inner boxes per outer box
2	Packing by Anti-Static Bag	5	Outer box Carton A
3	3 reels per inner box Box A	6	

Container	Re	eel		Вох		Carton			
Package	Size	Units	Item	Reels	Units	Item	Boxes	Unit	
WL-CSP	7"	4.500	Box A	3	4,500	Carton A	12	54,000	
2.69x3.92	7" 1,500		Box E	1	1,500	For Combined or Partial Rec		Reel.	

22.3 **Packing Material Anti-ESD Property**

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω /cm ²	10 ⁴ to 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

23 Product Status

Product Number	Status ⁽¹⁾	Product Code ⁽²⁾	Slave ID	Power Rails	Defaults Output Voltage	Defaults Output Mode	Enable Delay Time	Disable Delay Time
				Vout1	No			
RT5801AWSC-00	Active	2R	0x1A	Vout2	output	FCCM	0ms	0ms
				Vout3	Output			
RT5801CWSC-00	Active	2T	0x1C	Vout1	No	FCCM	0ms	0ms
K13601CW3C-00	Active	21	0.10	Vout2	output	FCCIVI	UIIIS	01115
RT5801DWSC-00	Active	e 2P	0x1D	Vout1	No	FCCM	0ms	0ms
K13001DW3C-00				Vouli	output	1 CCIVI		UIIIS
RT5801EWSC-00	Active	2S	0x1E	Vout1	No	FCCM	0ms	0ms
K13001EVV3C-00	Active	23	UXIE	Vout2	output	FCCIVI	oms	UIIIS
				Vout1	0.8V		0ms	4ms
RT5801BWSC-02	Active	41	0x1E	Vout2	V8.0	ECCM	1ms	3ms
K13001DVV3C-02	Active	41	UXIE	Vout3	0.8V	FCCM	0ms	4ms
			Ī	Vout4	1.1V		4ms	0ms
RT5801CWSC-01	Activo	40	0v10	Vout1	0.85V	FCCM	0ms	0ms
K13001CV/SC-01	Active	40	0x18	Vout2	1.2V	FCCIVI	2ms	2ms

Note 14.

• Marked with ⁽¹⁾ indicated: The part status are defined as follows:

Active: Device is in production and is recommended for new designs.

NRND: Not recommended for new designs.

Last Time Buy: The device will be discontinued, and a lifetime-buy period is in effect.

EOL: Richtek has discontinued the production of the device.

• Marked with ⁽²⁾ indicated: The product code can be found on device marking.

ZZ: Product Code YMDNN: Date Code