Design

Tools

RTQ6056

Bi-Directional Current and Power Monitor with 16 Bit ADC and Alert for High-Side or Low-Side Measurement

Technical

1 General Description

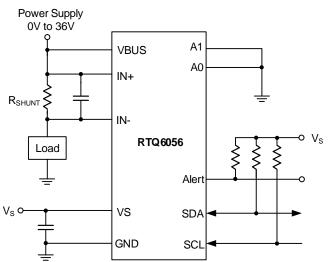
The RTQ6056 is a high accuracy current-sense monitor with an I^2C and SMBus interface, and the device provides full information for the system by reading the load current and power.

The device monitors both of the drops across the sense resistor and the BUS voltage, converts them into the current in amperes, and power in watts through internal analog-to-digital converter ADC. The programmable calibration, adjustable conversion time, and averaging function are also built in for more design flexibility.

The RTQ6056 provides a wide operating temperature range from -40° C to 125° C and operates with an input voltage from 2.7V to 5.5V. The device senses the current on common-mode bus voltages with 0V to 36V.

The RTQ6056 also provides an alert function with an open-drain output, and it provides the full protection by giving warnings to the host in overcurrent, overvoltage, and over-power situations.

The RTQ6056 is available in a small MSOP-10 package.


2 Features

- I²C and SMBus Compatible Interface
- Bi-Direction Current Sensing, Available for High-Side or Low-Side Sensing
- 2.7V to 5.5V Operation Supply Voltage Range
- Monitor Bus Voltage from 0V to 36V
- High Accuracy, Maximum 0.12% Gain Error
- Low Offset Voltage, Maximum 10μV Offset
- Current, Bus Voltage, and System Power Reporting
- Programmable Warning Threshold
- Overcurrent, Overvoltage, and Over-Power Alert
- MSOP-10 Package

3 Applications

- Servers, Storage, and Network Equipment
- Portable, Battery-Powered Systems
- Point of Load (POL) Power Modules
- Notebook Computers
- High End Digital TV

4 Simplified Application Circuit

5 Ordering Information

RTQ6056 🗖 🗖 🗖 Package Type⁽¹⁾ F: MSOP-10 Lead Plating System G: Richtek Green Policy Compliant⁽²⁾ Default: I²C Option 1⁽³⁾ & Unidirectional OC Alert A: I²C Option 1⁽³⁾ & Bidirectional OC Alert B: I²C Option 2⁽⁴⁾ & Unidirectional OC Alert

Note 1.

- Marked with ⁽¹⁾ indicated: Compatible with the current requirements of IPC/JEDEC J-STD-020.
- Marked with ⁽²⁾ indicated: Richtek products are Richtek Green Policy compliant.
- Marked with ⁽³⁾ indicates: I²C Option 1: V_{IH} = 1.2V, V_{IL} = 0.6V
- Marked with ⁽⁴⁾ indicates: I²C Option 2: $V_{IH} = 0.7 \times V_S$, $V_{IL} = 0.3 \times V_S$

6 Marking Information

RTQ6056GF

0F=: Product Code YMDAN: Date Code

RTQ6056AGF

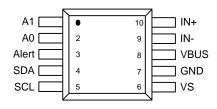
0K=: Product Code YMDAN: Date Code

RTQ6056BGF

0M=: Product Code YMDAN: Date Code

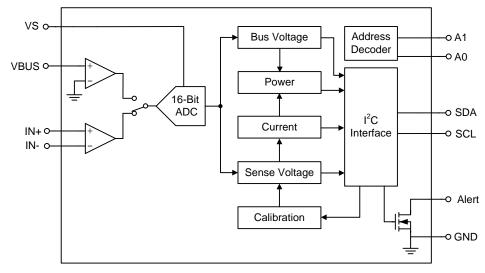
Table of Contents

1 2	General Description1 Features1					
3		ations 1				
4		ied Application Circuit1				
5	Orderin	ng Information2				
6	Markin	g Information2				
7		nfiguration 4				
8		onal Pin Description4				
9		onal Block Diagram 4				
10		te Maximum Ratings 5				
11		mended Operating Conditions 5				
12		cal Characteristics6				
13	Typical	Application Circuit8				
	13.1	High-Side Sensing Circuit Application 8				
	13.2	Low-Side Sensing Circuit Application 8				
14		Operating Characteristics9				
15	Operat	ion11				
	15.1	Mode Configuration11				
	15.2	Conversion Time and Averaging11				
	15.3	Calibration and Current Calculation12				
	15.4	Power Calculation12				
	15.5	Programing Example12				
	15.6	Alert Indicator13				
	15.7	Conversion Ready Indicator14				
	15.8	Digital Interface14				
	15.9	Serial Bus Address15				
	15.10	Write Protocol16				
	15.11	Read Protocol17				


	15.12	SMBus Alert Response	17
16	Applic	ation Information	18
	16.1	Power Up	18
	16.2	Choosing the Sense Resistor	18
	16.3	Filtering and Input Considerations	18
	16.4	Total Error Analysis	
	16.5	Max Output Error Estimation	19
	16.6	Sense Voltage Gain Error	19
	16.7	PSRR Error	
	16.8	CMRR Error	20
	16.9	Input Bias Current Error	20
	16.10	Nonlinearity Error	20
	16.11	Total Error	
	16.12	Layout Guidelines	20
17	Functi	onal Register Description	22
	17.1	Register Maps	22
18		e Dimension	
19		rint Information	
20	Packir	ng Information	
	20.1	Tape and Reel Data	31
	20.2	Tape and Reel Packing	32
	20.3	Packing Material Anti-ESD Property -	
21	Datas	heet Revision History	

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation

7 Pin Configuration



MSOP-10

8 Functional Pin Description

Pin No.	Pin Name	I/O	Pin Function
1	A1	Digital Input	Address pin. Connect to GND, SCL, SDA, or VS.
2	A0	Digital Input	Address pin. Connect to GND, SCL, SDA, or VS.
3	Alert	Digital Output	Multi-functional alert, open-drain output.
4	SDA	Digital IN/OUT	Bi-directional serial data interface.
5	SCL	Digital Input	Serial clock interface.
6	VS POWAr		Power supply, 2.7 V to 5.5 V. Connect a $0.1 \mu F$ capacitor as close to the VS pin as possible.
7	GND	Ground	Ground.
8	VBUS	Analog Input	Bus voltage input.
9	IN-	Analog Input	Negative Current-Sensing Input. The load side connects to an external sense resistor.
10	IN+	Analog Input	Positive Current-Sensing Input. The power side connects to an external sense resistor.

9 Functional Block Diagram

10 Absolute Maximum Ratings

(<u>Note 2</u>)

Supply Input Voltage, Vs	-0.3V to 6V
• Power Sensing Pins, Common Mode (VIN+ + VIN-)/2, VCM	-0.3V to 40V
• Power Sensing Pins, Different Mode (VIN+ - VIN-), VSENSE (Note 3)	-40V to 40V
• Bus Voltage, VBUS	-0.3V to 40V
Other Pins,	–0.3 to 6V
Input Current into Any Pin, IIN	5mA
Open-Drain Digital Output Current, IOUT	10mA
 Power Dissipation, PD @ TA = 25°C 	
MSOP-10	0.51W
Package Thermal Resistance (<u>Note 4</u>)	
MSOP-10, θJA	195°C/W
MSOP-10, θJC	64°C/W
Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	$-65^{\circ}C$ to $150^{\circ}C$
• ESD Susceptibility (<u>Note 5</u>)	
HBM (Human Body Model)	2kV

Note 2. Stresses listed as the above under "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.

Note 3. The voltage at $V_{\text{IN}+}$ and $V_{\text{IN}-}$ pins must not exceed the range -0.3V to 40V.

Note 4. θ_{JA} is measured in the natural convection at $T_A = 25^{\circ}C$ on a low effective thermal conductivity test board.

Note 5. Devices are ESD sensitive. Handling precautions are recommended.

11 Recommended Operating Conditions

(<u>Note 6</u>)

• Common-Mode Input Voltage, VCM	12V
Operating Supply Voltage, Vs	3.3V
Junction Temperature Range	–40°C to 125°C

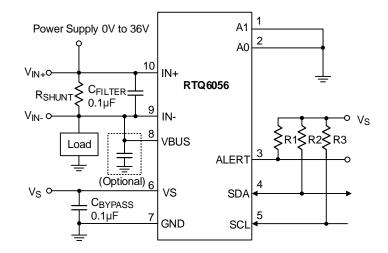
Note 6. The device is not guaranteed to function outside its operating conditions.

12 Electrical Characteristics

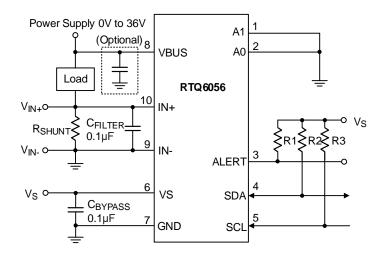
(V_S = 3.3V, V_{IN+} = 12V, V_{SENSE} = (V_{IN+} - V_{IN-}) = 0mV and V_{BUS} = 12V, T_A = 25°C, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Power Supply	·	·	·	<u>. </u>		•
Operating Supply Range	Vs		2.7		5.5	V
	IQ			550	650	μA
Quiescent Current	IQ_SD	Power-down (shutdown) mode		3.5	6	μA
Power-On Reset Threshold	Vpor			2		V
Input		·				
Sense Voltage Input Range	VSENSE		-81.92		81.92	mV
Bus Voltage Input Range	VBUS		0		36	V
Common-Mode Rejection (Note 8)	CMRR	0 V ≤ V _{IN+} ≤ 36 V	126	140		dB
Sense Offset Voltage, RTI				±2.5	±10	μV
Sense Offset Voltage, RTI vs Temperature	Vs_os	–40°C ≤ T _A ≤ 125°C		0.02	0.1	μV/°C
Sense Offset Voltage, RTI vs Power Supply	PSRR	2.7 V ≤ Vs ≤ 5.5 V		2.5		μV/V
Bus Offset Voltage, RTI				±1.25	±7.5	mV
Bus Offset Voltage, RTI vs Temperature	VB_OS	–40°C ≤ T _A ≤ 125°C		10	40	μV/°C
Bus Offset Voltage, RTI vs Power Supply (<u>Note 8</u>)	PSRR	2.7 V ≤ Vs ≤ 5.5 V		0.5		mV/V
Input Bias Current (I _{IN+} or I _{IN-} Pins)	IB			35		μΑ
VBUS Input Impedance				830		kΩ
Input Leakage		(IN+ pin) + (IN– pin), power- down mode		0.1	0.5	μΑ
DC Accuracy		·				
ADC Native Resolution				16		Bits
1 LSB Step Size		Sense voltage		2.5		μV
		Bus voltage		1.25		mV
Sense Voltage Gain Error				0.02	0.12	%
Sense Voltage Gain Error vs Temperature		–40°C ≤ TA ≤ 125°C		10	50	ppm/°C
Sense Voltage Nonlinearity				0.05		%
Bus Voltage Gain Error				0.02	0.4	%
Bus Voltage Gain Error vs Temperature		–40°C ≤ T _A ≤ 125°C		10	72	ppm/°C
Bus Voltage Nonlinearity (<u>Note 8</u>)				0.05		%

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
		bit = 000		139		μS
		bit = 001		203		μS
		bit = 010		269		μS
ADC Conversion Time,	tCT1	bit = 011		525		μS
Continuous Mode		bit = 100		1037		μS
		bit = 101		2061		μS
		bit = 110		4109		μS
		bit = 111		8205		μS
I ² C/SMBus						
Timeout				37		ms
Digital Input/Output				-		
Input Capacitance				5		pF
Leakage Input Current	ILEAK	0 ≤ Input Pin Voltage ≤ Vs		0.1		μA
		I ² C Option 1	1.2			V
High-Level Input Voltage	Viн	I ² C Option 2	0.7 x Vs			V
		I ² C Option 1			0.6	V
Low-Level Input Voltage	VIL	I ² C Option 2			0.3 x Vs	V
Low-Level Output Voltage, SDA, Alert	Vol	Iol = 3mA			0.4	V

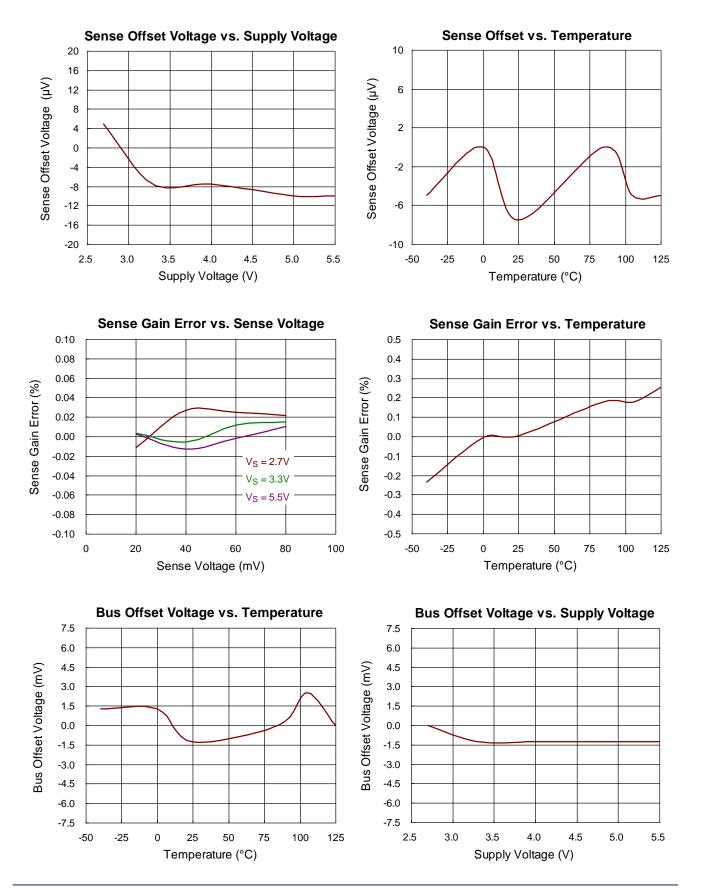

Note 7. RTI = Referred to input.

Note 8. Specifications are guaranteed by design, not production test.

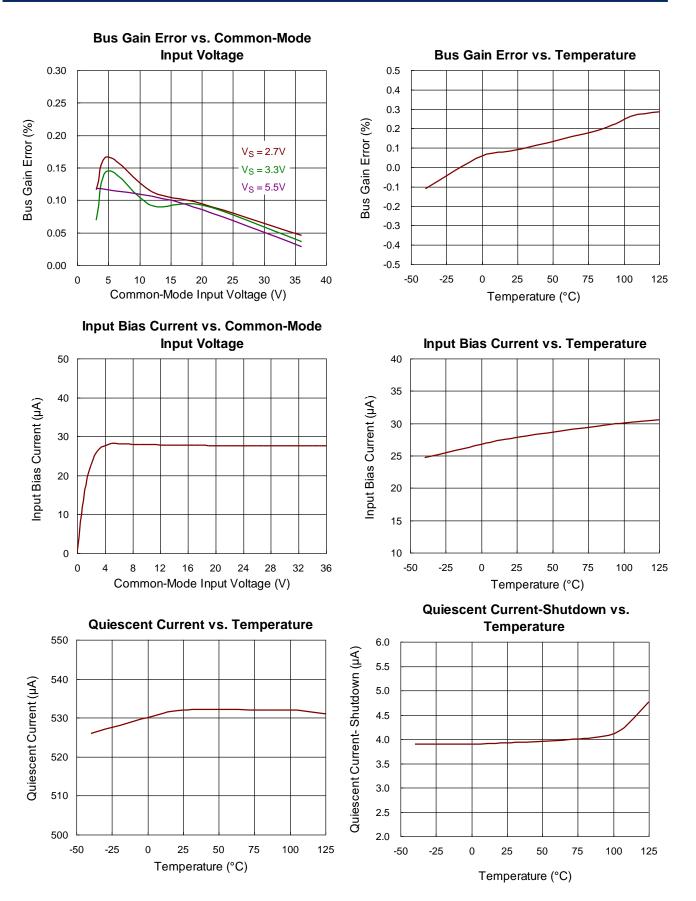


13 Typical Application Circuit

13.1 High-Side Sensing Circuit Application



13.2 Low-Side Sensing Circuit Application


Note 9. All the input and output capacitors are the suggested values, referring to the effective capacitances, subject to any derating effect, like a DC Bias.

14 Typical Operating Characteristics

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation
DSQ6056-03 August 2024 www.richtek.com

15 Operation

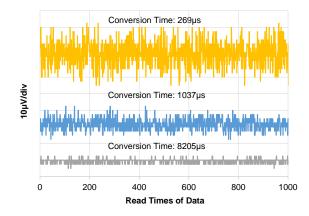
The RTQ6056 is a high-side/low-side current and power monitor with an integrated 16-bit ADC and an internal open-drain for alert indicator. The device is ideal for a variety of industrial and telecom equipment applications.

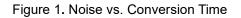
The RTQ6056 operates over a wide 0V to 36V input common-mode voltage range and an internal 16-bit integrating analog-to-digital converter (ADC) allows the user to read data such as voltage, current, and power. The full-scale voltage is from -81.9175mV and 81.92mV and the calibration function allows for a wide dynamic range current measurement and application flexibility in choosing sense resistor values.

15.1 Mode Configuration

The RTQ6056 provides the ADC configuration function through the Configuration Register (00h); the device includes all-register reset, ADC conversion times, averaging mode, and operating mode configuration.

The device has several operating modes for ADC operation, including continuous mode, trigger mode, and shutdown mode, when the device is in default operating mode (continuous mode), it continuously converts the sense voltage and bus voltage; after the voltage is read, the current is calculated by the value of calibration setting and further used to calculate the power.


When the device operates in trigger mode, the data in the registers remains; the ADC only executes data updating after the Configuration Register (00h) executes a new "WRITE" format.


The device also provides shutdown mode to reduce the input quiescent current; when the device operates in shutdown mode, the write and read are available for the register. The device keeps in shutdown mode until one of the continuous mode or triggered mode is selected.

15.2 Conversion Time and Averaging

The RTQ6056 provides configurable conversion time and averaging time through the Configuration Register (00h) allowing the user to optimize the design to meet specific accuracy and system-timing requirements. The conversion time setting for both sense voltage and bus voltage can be selected to range from 139µs to 8.205ms. A longer conversion time results in higher noise immunity but also requires more time for data updating. Figure 1 shows the relationship between noise performance and conversion time.

The averaging function also enhances the measurement accuracy by effectively filtering the signal. This approach allows the device to reduce noise in the measurement that may be caused by noise coupling into the signal. A higher number of averages enables the device to be more effective in reducing the noise component of the measurement.

15.3 **Calibration and Current Calculation**

The Calibration Register (05h) is calculated based on the shunt resistor value and the required current resolution. The equation is shown as follows:

Calibration Setting (dec) = $\frac{0.00512}{R_{SHUNT} \times I_{LSB}}$ where

0.00512 is an internal fixed value.

• I_{LSB} is the resolution of the measurement current.

The highest resolution for the Current Register (04h) can be obtained by using the smallest allowable Current_LSB based on the maximum output current. The equation is shown as follows:

Current resolution = $\frac{\text{Maximum Current}}{2^{15}}$

While the highest resolution is lower than the expected resolution, it is common to select a value for the Current_LSB to the nearest round number and above the highest resolution to simplify the conversion of the Current in amperes and power in watts, respectively.

After programming the Calibration Register (05h), the Current Register (04h) is calculated by multiplying the decimal value of the Sense Voltage Register (01h) contents by the decimal value of the Calibration Register and then dividing by 2048. The equation is shown as follows:

 $Current = \frac{Sense Voltage \times Calibration Setting}{2048}$

After the device is powered on, the Current Register (04h) and the Power Register (03h) remain at zero. The Current Register (04h) and the Power Register (03h) are updated based on the corresponding sense voltage and bus voltage.

15.4 **Power Calculation**

After the Current Register (04h) has been updated, the power is calculated by multiplying the decimal value of the Bus Voltage Register (02h) by the decimal value of the Current Register and then divided by 20000. The equation is shown as follows:

Power = $\frac{\text{Bus Voltage} \times \text{Current}}{\text{Current}}$ 20000

Programing Example 15.5

Table 1. shows an example for the register data in a real application.

Conditions: Vcm = VBUS = 12V, RSHUNT = $2m\Omega$, Load current = 10A						
Procedure	Register	Address	Data (Hex)	Data (Dec)	LSB	Value
Step 1	Configuration	00h	4127			
Step 2	Sense Voltage	01h	1F40	8000	2.5µV	20mV
Step 3	Bus Voltage	02h	2580	9600	1.25mV	12V
Step 4	Calibration	05h	A00	2560		

Table 1. Power Calculation Procedure

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation www.richtek.com DSQ6056-03 August 2024

RTQ6056)
---------	---

Step 5	Current	04h	2710	10000	1mA	10A
Step 6	Power	03h	12C0	4800	25mV	120W

15.6 Alert Indicator

The RTQ6056 provides a flexible response function that can be approached by the multi-functional indicator pin. The user can monitor five alert functions or conversion ready notification through the Mask/Enable register (06h), and the threshold can be programed in the Alert Limit Register (07h). From the Mask/Enable register (06h), one of the five alert events can be selected at a time. When the monitored event selected in the Mask/Enable register exceeds the values programing in the Alert Limit Register (07h), the open-drain output of the Alert pin is pulled low. The five alert functions are listed as follows:

- Sense Overvoltage Limit (SOVL)
- Sense Undervoltage Limit (SUVL)
- Bus Overvoltage Limit (BOVL)
- Bus Undervoltage Limit (BUVL)
- Over-Power Limit (OPL)

If multiple alert functions are enabled, the selected function in the highest significant bit position takes priority and responds to the Alert Limit Register value. For example, if the Sense Overvoltage Limit function and the Sense Undervoltage Limit function are selected at the same time, the Alert pin asserts when the Sense Voltage Register exceeds the value in the Alert Limit Register.

The RTQ6056 asserts a warning alert by comparing the "mathematics value". The sign bit is also considered, which means when the indicator is set to response Sense Overvoltage Limit (SOVL), the positive value is always higher than the negative value. The examples for Unidirectional OC Alert and Bidirectional OC Alert are shown in <u>Figure 2</u> and <u>Figure 3</u>, respectively.

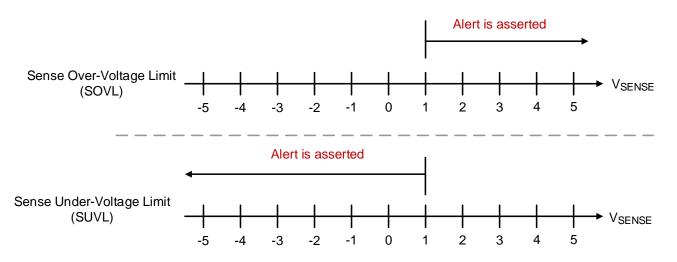


Figure 2. Alert Pin Response to SOVL and SUVL When Alert Limit Register (07h) is Set to 1 (Unidirectional OC Alert)

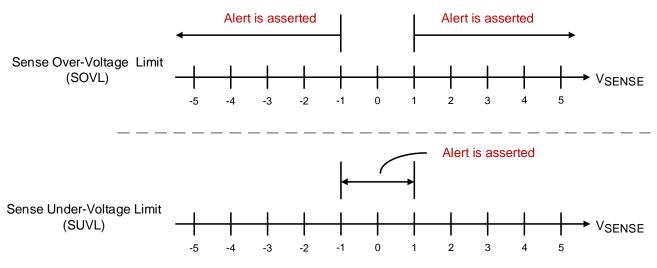


Figure 3. Alert Pin Response to SOVL and SUVL When Alert Limit Register (07h) is Set to 1 (Bidirectional OC Alert)

15.7 Conversion Ready Indicator

The Conversion Ready state of the device can also be monitored at the Alert pin to inform the user when the device has completed the previous conversion and is ready to begin a new conversion. Conversion Ready can be monitored at the Alert pin along with one of the alert functions. If an alert function and the Conversion Ready are both enabled to be monitored at the Alert pin, after the Alert pin is asserted, the Mask/Enable Register must be read following the alert to determine the source of the alert. By reading the Conversion Ready Flag (CVRF, bit 3), and the Alert Function Flag (AFF, bit 4) in the Mask/Enable Register, the source of the alert can be determined. If the Conversion Ready feature is not desired and the CNVR bit is not set, the Alert pin only responds to an exceeded alert limit based on the alert function enabled.

If the alert function is not used, the Alert pin can be left floating without impacting the operation of the device.

15.8 Digital Interface

The RTQ6056 supports a general-purpose serial interface to the I^2C bus and SMBus to control and monitor the configuration registers. The device supports the protocol in fast mode (1kHz to 400kHz) and high-speed mode (1kHz to 2940kHz).

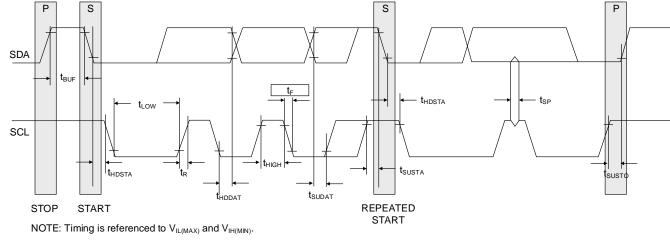


Table 2 shows the timing requirements for fast mode and high-speed mode.

Densmatter	O wash at	FAST I	MODE	HIGH-SPE	ED MODE	Unit
Parameter	Symbol	Min	Max	Min	Max	
SCL Clock Rate	fscl	1	400	1	2940	kHz
Hold Time (Repeated) Start Condition. After this Period, the First Clock is Generated.	tHDSTA	0.1		0.1		μs
Low Period of the SCL Clock	tLOW	1.3		0.2		μs
High Period of the SCL Clock	tнigн	0.6		0.06		μs
Set-Up Time for a Repeated START Condition	t SUSTA	0.1		0.1		μs
Data Hold Time	t HDDAT	10	900	10	100	ns
Data Set-Up Time	t SUDAT	100		20		ns
Set-Up Time for STOP Condition	tsusto	0.1		0.1		μS
Bus Free Time Between STOP and START Condition	tBUF	0.6		0.16		μS
Clock Fall Time	tF		300		80	ns
Data Fall Time	tF		300		40	ns
Clock Rise Time	tR		300		40	ns
Data Rise Time for $f_{SCL} \le 100 kHz$	tR		1000			ns

Table 2. Timing Requirements

15.9 Serial Bus Address

The system supports the configuration of 16 distinct slave addresses using two pins, A1 and A0, for address configuration. The system is able to control a maximum 16 RTQ6056 ICs on a single I^2 C bus. The device samples the state of the pins A0 and A1 during every bus communication. Configure the slave address before initiating any activity on the interface. <u>Table 3</u> lists the 16 addresses, determined by the combination of A1/A0 pins.

Table 3. Slave Addresses Selection							
A1	A0	Slave Address	Slave Address (Hex)				
GND	GND	1000000	40				
GND	VS	1000001	41				
GND	SDA	1000010	42				
GND	SCL	1000011	43				
VS	GND	1000100	44				
VS	VS	1000101	45				
VS	SDA	1000110	46				
VS	SCL	1000111	47				
SDA	GND	1001000	48				
SDA	VS	1001001	49				
SDA	SDA	1001010	4A				
SDA	SCL	1001011	4B				
SCL	GND	1001100	4C				
SCL	VS	1001101	4D				
SCL	SDA	1001110	4E				
SCL	SCL	1001111	4F				

15.10 Write Protocol

The master begins communication with a START condition, followed by the 7-bit slave address with the RW bit set to low. The RTQ6056 acknowledges the address and then the master sends a command byte indicates the address of the register. The RTQ6056 acknowledges the command byte and then updates the register pointer into the desired register. The master then delivers the next two data bytes to the register addressed by the register pointer, and the RTQ6056 acknowledges receipt of each data byte. The transmission is ended when the master sends a start or stop condition.

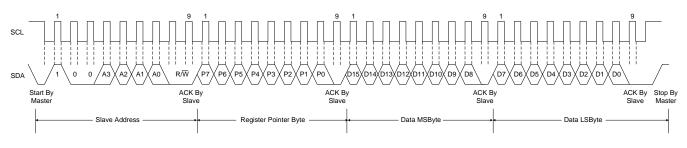


Figure 5. Timing Diagram for Write Word Format

15.11 Read Protocol

The master begins a read operation with a START condition, followed by the 7-bit slave address and the $R\overline{W}$ bit set to low. During a read operation, the last value stored in the register pointer by a write operation determines which register is read. To change the register pointer for a read operation, a new value must be written to the register pointer.

This write is accomplished by issuing a slave address byte with the $R\overline{W}$ bit set to low, followed by the register pointer byte. No additional data is required. The master then generates a start condition and sends the slave address byte with the $R\overline{W}$ bit set to high to initiate the read command. The next byte is transmitted by the slave and is the most significant byte of the register indicated by the register pointer. This byte is followed by an Acknowledge signal from the master. Subsequently, the slave transmits the least significant byte. The master acknowledges the receipt of the data byte. The master may terminate the data transfer by generating a Not-Acknowledge signal after receiving any data byte, or by generating a start or stop condition. If repeated reads from the same register are desired, it is not necessary to continuously send the register pointer bytes; the device retains the register pointer value until it is changed by the next write operation.

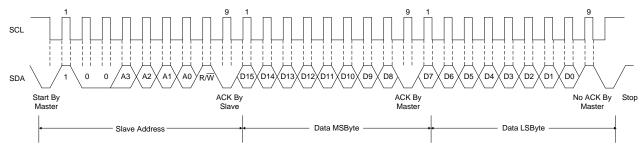
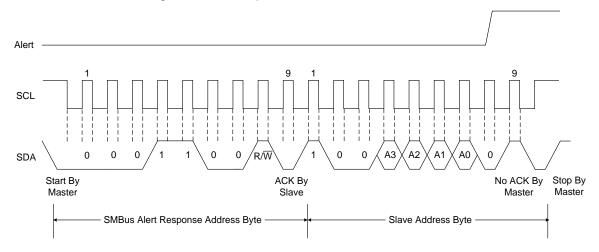



Figure 6. Timing Diagram for Read Word Format

15.12 SMBus Alert Response

The SMBus-alert feature provides a quick method to identify alarming devices on a shared interrupt. Upon receiving an interrupt signal, the master can broadcast a receive byte request to the alert-response slave address. Any slave device that generated an interrupt attempts to identify itself by putting its own address on the bus. The alert response can activate several different slave devices simultaneously. If more than one slave attempts to respond, bus arbitration rules apply, and the device with the lower address wins a consequence of the open-collector bus. The losing device does not generate an acknowledgement and continues to hold the Alert pin low until serviced. Successful reading of the alert response address de-asserts Alert indicator.

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation
DSQ6056-03 August 2024 www.richtek.com

16 Application Information

(Note 10)

16.1 Power Up

The VS pin must exceed the Power-On Reset threshold (VPOR) of 2V to prevent the RTQ6056 from entering power-on reset. A power-on reset will clear all data from the registers.

16.2 Choosing the Sense Resistor

A high RSHUNT value causes the power-source voltage to drop due to IR loss. To minimize voltage loss, use the lowest RSHUNT value. The full scale VSENSE should be less than the full code of -81.9175mV to 81.92mV. For best performance with a 3.3V supply voltage, select RSHUNT to provide approximately 40mV~60mV of sense voltage for the full-scale current in each application.

At low current levels, a high RSHUNT value allows more accurately measurement of lower currents, because offsets are less significant with a large sense voltage.

At high current levels, the I²R loss in R_{SHUNT} can be significant. Therefore, the resistor value and power dissipation rating should be carefully considered during selection. Also, the value of the sense resistor might drift if it experiences excessive heating. The precision V_{OS} 10μ V (max) and Gain Error 0.12% (max) of the RTQ6056 allows the use of small sense resistors to reduce power dissipation and reduce hot spots.

16.3 Filtering and Input Considerations

The RTQ6056 provides several methods to reduce the effect from the input noise. For example, conversion time and averaging mode can be flexibly chosen through the register (00h). However, in order to prevent device damaging from the load dumps, reverse battery protection, fast load-switching, and inductive kickback voltages, the input filter and input voltage clamping schemes are needed to protect the device during such conditions.

<u>Figure 7</u> shows the recommended schematic for input filtering. Filtering at the input means current noise is not amplified and the RTQ6056 can drive a cleaner signal into the ADC without an output filter loading down the ADC.

Figure 8. Input Filter

If the selected device specifies that the Absolute Maximum Common-Mode Voltage rating cannot exceed the system maximum expected voltage surge, then it needs input protection. Along with some passives, the current sensor needs transient voltage suppression (TVS) or Zener diodes at the inputs for protection. Figure 8 shows an example using the cost-optimized current sensor.

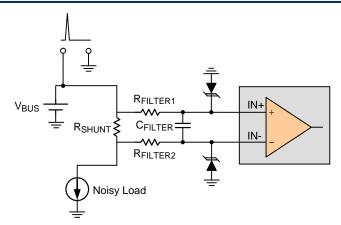


Figure 9. Input Protection in the RTQ6056

16.4 Total Error Analysis

In order to optimize the design, the first step is to analyze the contribution of each error. The main influences of sense voltage errors can be identified as follows:

- The tolerance of the shunt resistor (RSHUNT)
- Sense offset voltage, Vs_os. When the sense voltage is low, especially at low load currents and with small shunt resistances, the error is dominated by the input offset error.
- Gain Error, GE%
- Power supply rejection ratio (PSRR) of offset voltage, PSRR
- Common mode rejection ratio, CMRR
- The offset voltage caused by input bias current
- Nonlinearity Error, NLIN%

16.5 Maximum Output Error Estimation

The section provides an example to estimate the maximum output voltage error. With a system bus voltage IN+ = 36V, a supply voltage Vs = 5V, a shunt resistor with 1% accuracy and $2m\Omega$ resistance, and the load current is 25A. The design goals can be set by calculating the maximum output voltage errors as follows:

$$V_{OS_err} = \frac{V_{OS(MAX)}}{V_{SENSE}} \times 100\% = \frac{10\mu V}{2m\Omega \times 25A} \times 100\% = 0.02\%$$

where

Input offset voltage error:

The rate of the offset error to the total error can be estimated directly From the Electrical Characteristics table. The input offset voltage is 10μ V at TA = 25°C.

16.6 Sense Voltage Gain Error

From the electrical characteristics, the maximum gain error is 1%.

16.7 PSRR Error

The Power Supply Rejection Ratio (PSRR) error is to estimate the error caused by different supply voltages. The RTQ6056 device specification provides that the specified power supply voltage for the input offset voltage is Vs = 3.3V. If the system supply voltage is not exactly 3.3V, it may result in an additional error. The RTQ6056 device specifies the maximum PSRR of 2.5μ V/V. Calculate the PSRR error using the equation below:

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation

$$PSRR_err = \frac{|VS_DS - VS_SYS \times PSRR|}{VSENSE} \times 100\%$$
$$= \frac{|3.3 - 5| \times 2.5 \frac{\mu V}{V}}{2m\Omega \times 25A} \times 100\% = 0.0085\%$$

16.8 CMRR Error

The CMRR error indicates that the input offset error is affected by variations in the common-mode voltage. In real scenarios, calculate the maximum input offset by determining the actual common-mode voltage applied to the RTQ6056. According to the device specifications for the RTQ6056, the minimum common-mode rejection ratio is 126dB (0.501μ V/V). The offset voltage is specified with a common-mode voltage of 12V. To calculate the actual common-mode error at the system bus voltage, use the following equation:

126dB can be converted to $\mu V/V = \frac{1}{10^{\left(\frac{126dB}{20}\right)}} \times 10^6 \times \frac{\mu V}{V} = 0.501 \frac{\mu V}{V}$

 $CMRR_err = \frac{|V_{CM_DS} - V_{CM_SYS}| \times CMRR}{V_{SENSE}} \times 100\% = \frac{|12 - 36| \times 0.501 \frac{\mu V}{V}}{2m\Omega \times 25A} \times 100\% = 0.024\%$

16.9 Input Bias Current Error

The input bias current flows into a shunt resistor to cause an additional offset. This error is calculated with respect to the ideal voltage across the sense voltage.

$$I_{B_err} = \frac{I_B \times R_{SHUNT}}{V_{SENSE}} \times 100\% = \frac{35 \mu A \times 2m\Omega}{2m\Omega \times 25A} \times 100\% = 0.0001\%$$

16.10 Nonlinearity Error

For ideal cases, the voltage gain is constant over the full sense range. However, in real-world applications, the voltage gain is not exactly constant, and the nonlinearity gain may cause some additional errors. In the specifications, the RTQ6056 gives the nonlinearity error of 0.1% over a sense voltage from 20mV to 80mV.

16.11 Total Error

The equation below can be used to calculate the worst case of total error.

$$Total_err = \sqrt{(GE\%)^2 + (R\%)^2 + (V_{OS_err})^2 + (PSR_err)^2 + (CMR_err)^2 + (I_{B_err})^2 + (NLIN\%)^2}$$
$$= \sqrt{(0.12\%)^2 + (1\%)^2 + (0.05\%)^2 + (0.021\%)^2 + (0.06\%)^2 + (0.00035\%)^2 + (0.045\%)^2}$$
$$= 1.01\%$$

16.12 Layout Guidelines

- A Kelvin sense arrangement is required for the optimal performance. Connect the input pins (IN+ and IN-) to the sensing resistor using a 4-wire connection.
- PCB trace resistance from the sense resistor to the IN+ and IN- pins can affect the power measurement accuracy. Place the sense resistors as close as possible to the RTQ6056 and avoid using minimum-width PCB traces.

• Place the power-supply bypass capacitor as close as possible to the supply and ground pins.

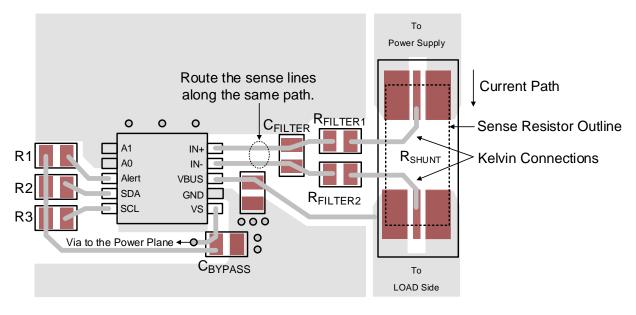


Figure 10. PCB Layout Guide

Note 10. The information provided in this section is for reference only. The customer is solely responsible for the designing, validating, and testing your product incorporating Richtek's product and ensure such product meets applicable standards and any safety, security, or other requirements.

Copyright © 2024 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation

17 Functional Register Description

17.1 Register Maps

Table 4 shows the summary of the RTQ6056 registers. These registers are two bytes with the I²C interface.

CMD CODE	COMMAND Name	Access	Command Description	Default Value
00h	Configuration	R/W	Operating mode configuration, conversion times and averaging setting	4127h
01h	Sense Voltage	R	Sense voltage measurement data.	0000h
02h	Bus Voltage	R	Bus voltage measurement data.	0000h
03h	Power	R	Calculated power data	0000h
04h	Current	R	Calculated current data	0000h
05h	Calibration	R/W	Current Calibration	0000h
06h	Mask/Enable	R/W	Alert configuration	0000h
07h	Alert Limit	R/W	Limit threshold setting	0000h
FEh	Manufacturer ID	R	Manufacturer identification number.	1214h
FFh	Die ID	R	Die identification number.	2260h

Table 4. The Summary of the RTQ6056 Registers

Configuration Register (00h)

Description: The Configuration Register settings control the operating modes for the device. This register controls the conversion time settings for both the sense and bus voltage measurements as well as the averaging mode used. The operating mode that controls what signals are selected to be measured is also programmed in the Configuration Register.

The Configuration Register can be read from at any time without impacting or affecting the device settings or a conversion in progress. Writing to the Configuration Register halts any conversion in progress until the write sequence is completed resulting in a new conversion starting based on the new contents of the Configuration Register (00h). This halt prevents any uncertainty in the conditions used for the next completed conversion.

Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Function	RST	х	х	х	AVG2	AVG1	AVG0	VBUSCT2	VBUSCT1	VBUSCT0	VSENCT2	VSHNCT1	VSENCT0	MODE3	MODE2	MODE1
Value	0	1	0	0	0	0	0	1	0	0	1	0	0	1	1	1

Bits	Name	Description
15	Reset Bit (RST)	Set this bit to '1' to reset all registers as the default value. This bit self-clears.

RTQ6056

Bits	Name	Description									
		Determines the number of sam all the AVG bit settings and rela Table 5. AVG		verages for each	bit setting.						
		Averaging	AVG2	AVG1	AVG0						
	Averaging	1 (default)	0	0	0						
11:9	Mode	4	0	0	1						
	(AVG)	16	0	1	0						
		64	0	1	1						
		128 256	1	0	0						
		512	1	1	0						
		1024	1	1	1						
		Sets the conversion time for to VBUSCT bit options and related Table 6. VBUSC	d conversion time CT Bit Settings [es for each bit se 8:6] Combinatio	etting.						
	Bus Voltage Conversion Time	139	0	0	0						
		203	0	0	1						
8:6		269	0	1	0						
	(VBUSCT)	525	0	1	1						
		1037 (default)	1	0	0						
		2061	1	0	1						
		4109	1								
		8205	1	1	1						
			d conversion time CT Bit Settings [es for each bit se 8:6] Combinatio	etting. ons						
		Conversion Time (μs	-		VSENCT0						
	Sense Voltage	139	0	0	0						
5:3	Conversion	203	0	0	1						
0.0		269	0	1	0						
	(VSENCT)	525	0	1	1						
		1037 (default)	1	0	0						
		2061	1	0	1						
		4109	1	1	0						
		8205	1	1	1						

RICHTEK

Bits	Name	Description				
		Selects continuous, triggered, or power-down mod to continuous sense and bus measurement mode. <u>Table 8</u> . Table 8. Mode Settings [2:0] C	The mode	e settings		
		Mode Setting	MODE3	MODE2	MODE1	
	Operating	Shutdown Mode	0	0	0	
2:0	Mode	Sense Voltage, Triggered	0	0	1	
	(MODE)	Bus Voltage, Triggered	0	1	0	
		Sense and Bus Voltage, Triggered	0	1	1	
		Shutdown Mode	1	0	0	
		Sense Voltage, Continuous	1	0	1	
		Bus Voltage, Continuous	1	1	0	
		Sense and Bus Voltage, Continuous (default)	1	1	1	

Sense Voltage Register (01h)

Description: The Sense Voltage Register stores the current sense voltage reading, VSENSE. Negative numbers are represented in two's complement format. Generate the two's complement of a negative number by complementing the absolute value binary number and adding 1. An MSB = '1' denotes a negative number.

Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Function	SIGN	Bit 14	Bit 13	Bit 12	Bit	Bit	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
					11	10										
Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15	Sign Bit (SIGN)	SIGN Bit 0: Positive value 1: Negative value
14:0	Sense Voltage	Example : For a value of VSENSE = -80 mV:1. Take the absolute value: 80 mV2. Translate this number to a whole decimal number (80 mV $\div 2.5\mu$ V) = 32000 3. Convert this number to binary = 0111 1101 0000 00004. Complement the binary result = $1000 \ 0010 \ 1111 \ 1111$ 5. Add '1' to the complement to create the two's complement result = $1000 \ 0011 \ 0000 \ 0000 \ = 8300$ hIf averaging is enabled, this register displays the averaged value.Full-scale range = 81.92 mV (decimal = 32767); LSB: 2.5μ V.

	Bus Voltage Register (02h)															
-	Description: The Bus Voltage Register stores the most recent bus voltage reading, VBUS. If averaging is enabled, this register displays the averaged value.															
Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Function	х	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:0	Bus Voltage	Full-scale range = 40.96V (decimal = 32767); LSB: 1.25mV. Note. Bit 15 is always zero because bus voltage can only be positive.

Power	Register	(03h)	

Description: If averaging is enabled, this register displays the averaged value. The Power Register LSB is internally programmed to equal 25 times the programmed value of the Current_LSB. The Power Register records power in watts by multiplying the decimal values of the Current Register with the decimal value of the Bus Voltage Register.

Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Function	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:0	Power	The power is always positive value.

Current Register (04h)

Description: If averaging is enabled, this register displays the averaged value. The value of the Current Register is calculated by multiplying the decimal value in the Sense Voltage Register with the decimal value of the Calibration Register.

Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Function	SIGN	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15	Sign Bit (SIGN)	SIGN Bit 0: Positive value 1: Negative value
14:0	Current	The current value

Calibration Register (05h)

Description: This register provides the device with the value of the sense resistor that was present to create the measured differential voltage. It also sets the resolution of the Current Register. Programming this register sets the Current_LSB and the Power_LSB. This register is also suitable for use in overall system calibration. See the Programming the Calibration Register for additional information on programming the Calibration Register.

Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Function	х	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:0	Calibration	Bit 15 is always zero.

Mask/Enable (06h)

Description: The Mask/Enable Register selects the function that is enabled to control the Alert pin as well as how that pin functions. If multiple functions are enabled, the highest significant bit position the Alert Function (Bit 15-Bit 11) takes priority and responds to the Alert Limit Register.

Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Function	SOVL	SUVL	BOVL	BUVL	OPL	CNVR	х	х	х	х	х	AFF	CNRF	OVF	APO	ALE
Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15	Sense Overvoltage Limit (SOVL)	Setting this bit high configures the Alert pin to be asserted if the sense voltage measurement following a conversion exceeds the value programmed in the Alert Limit Register.
14	Sense Undervoltage Limit (SUVL)	Setting this bit high configures the Alert pin to be asserted if the sense voltage measurement following a conversion drops below the value programmed in the Alert Limit Register.
13	Bus Overvoltage Limit (BOVL)	Setting this bit high configures the Alert pin to be asserted if the bus voltage measurement following a conversion exceeds the value programmed in the Alert Limit Register.
12	Bus Undervoltage Limit (BUVL)	Setting this bit high configures the Alert pin to be asserted if the bus voltage measurement following a conversion drops below the value programmed in the Alert Limit Register.
11	Over-Power Limit (OPL)	Setting this bit high configures the Alert pin to be asserted if the Power calculation made following a bus voltage measurement exceeds the value programmed in the Alert Limit Register.
10	Conversion Ready (CNVR)	Setting this bit high configures the Alert pin to be asserted when the Conversion Ready Flag, Bit 3, is asserted indicating that the device is ready for the next conversion.

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation

Bits	Name	Description
4	Alert Function Flag (AFF)	While only one Alert Function can be monitored at the Alert pin at a time, the Conversion Ready can also be enabled to assert the Alert pin. Reading the Alert Function Flag following an alert allows the user to determine if the Alert Function was the source of the Alert. When the Alert Latch Enable bit is set to Latch mode, the Alert Function Flag bit clears only when the Mask/Enable Register is read. When the Alert Latch Enable bit is set to Transparent mode, the Alert Function Flag bit is cleared following the next conversion that does not result in an Alert condition.
3	Conversion Ready Flag (CNRF)	 Although the device can be read at any time, and the data from the last conversion is available, the Conversion Ready Flag bit is provided to help coordinate one-shot or triggered conversions. The Conversion Ready Flag bit is set after all conversions, averaging, and multiplications are complete. Conversion Ready Flag bit clears under the following conditions: 1.) Writing to the Configuration Register (except for Power-Down selection) 2.) Reading the Mask/Enable Register
2	Math Overflow Flag (OVF)	This bit is set to '1' if an arithmetic operation resulted in an overflow error. It indicates that the current and power data may be invalid.
1	Alert Polarity bit (APO)	1 = Inverted (active-high open collector) 0 = Normal (active-low open collector) (default)
0	Alert Latch Enable (ALE)	 1 = Latch enabled 0 = Transparent (default) When the Alert Latch Enable bit is set to Transparent mode, the Alert pin and the Flag bit resets to the idle states when the fault has been cleared. When the Alert Latch Enable bit is set to Latch mode, the Alert pin and the Alert Flag bit remains active following a fault until the Mask/Enable Register has been read.

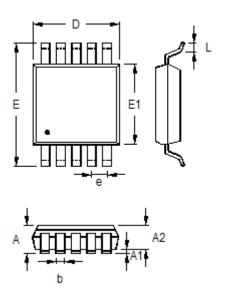
	Alert Limit Register (07h)															
-	Description: The Alert Limit Register contains the value used to compare to the register selected in the Mask/Enable Register to determine if a limit has been exceeded.															
Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Function	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
15:0	Alert Limit	Stores the alert limit values.

RICHTEK

	Manufacturer ID Register (FEh)															
Descrip	tion: ⊺	he Ma	nufact	urer ID) Regi	ster sto	res a i	uniqu	e idei	ntifica	ation nu	umber fo	or the r	manufa	cturer.	
Bit .	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Function	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Value	0	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0

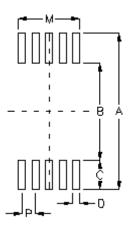
Bits	Name	Description
15:0	Manufacturer ID	Stores the manufacturer identification bits


	Die ID Register (FFh)															
Descrip	Description: The Die ID Register stores a unique identification number and the revision ID for the die.															
Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Function	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Value	0	0	1	0	0	0	1	0	0	1	1	0	0	0	0	0

Bits	Name	Description			
15:4	Die ID	Stores the device identification bits			
3:0	Die Revision ID	Stores the device revision identification bits			

Copyright © 2024 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation www.richtek.com

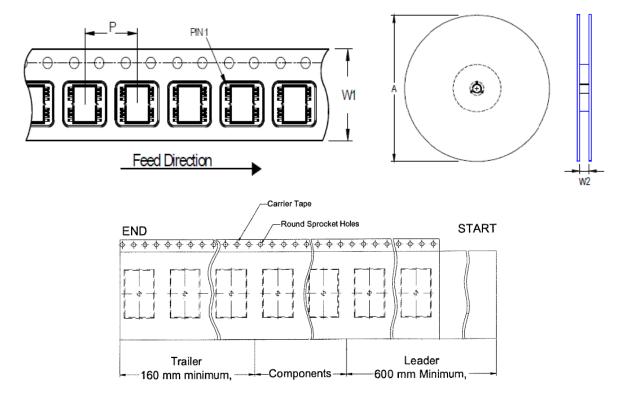
18 Outline Dimension



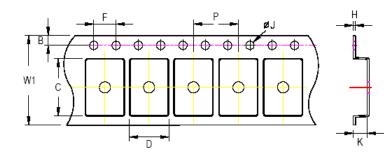
Cumhal	Dimensions I	In Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
А	0.810	1.100	0.032	0.043		
A1	0.000	0.150	0.000	0.006		
A2	0.750	0.950	0.030	0.037		
b	0.170	0.270	0.007	0.011		
D	2.900	3.100	0.114	0.122		
е	0.5	500	0.0	020		
E	4.800	5.000	0.189	0.197		
E1	2.900	3.100	0.114	0.122		
L	0.400	0.800	0.016	0.031		

10-Lead MSOP Plastic Package

19 Footprint Information



Deekege	Number of			Tolerance				
Package	Pin	Ρ	А	В	С	D	М	TOIETATICE
MSOP-10	10	0.50	5.80	3.60	1.10	0.25	2.25	±0.10



20 Packing Information

20.1 Tape and Reel Data

De alva na Truz a	Tape Size	Pocket Pitch	Reel Si	Reel Size (A)		Trailer	Leader	Reel Width (W2)	
Package Type	(W1) (mm)	(P) (mm)	(mm)	(in)	per Reel	(mm)	(mm)	Min./Max. (mm)	
MSOP-10	12	8	330	13	2,500	160	600	12.4/14.4	

C, D, and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 12mm carrier tape: 1.0mm max.

Tape Size	W1	Р		В		F		ØJ		Н
Tape Size —	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
12mm	12.3mm	7.9mm	8.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

20.2 Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1	Peel 12"	4	1 rool por inper box Pay C
	Reel 13"		1 reel per inner box Box G
2		5	
	HIC & Desiccant (2 Unit) inside		6 inner boxes per outer box
3		6	
	Caution label is on backside of Al bag		Outer box Carton A

Container	Reel		Box			Carton		
Package	Size	Units	Item	Reels	Units	Item	Boxes	Units
MSOP-10	13"	2,500	Box G	1	2,500	Carton A	6	15,000

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

20.3 Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω/cm^2	10 ⁴ to 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation

21 Datasheet Revision History

Version	Date	Description	Item
01	2024/2/17	Modify	Electrical Characteristics on page 12 Application Information on page 24
02	2024/9/25	Modify	Title on page 1 General Description on page 1 Ordering Information on page 2 Operation on page 6 Typical Application Circuit on page 13 Application Information on page 24, 25, 26
03	2024/8/2	Modify	Merge RTQ6056/RTQ6056A/RTQ6056B Features on page 1 Ordering Information on page 2 Marking Information on page 2 Electrical Characteristics on page 7 Operation on page 12, 13, 14 Application Information on page 22, 24, 25 Packing Information on page 31, 32, 33

Copyright © 2024 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation Www.richtek.com DSQ6056-03 August 2024