

Low Quiescent, High Efficiency 3A Buck-Boost Converter with I²C Interface

General Description

The RT6160C is a high-efficiency, single inductor, Advanced Constant On-Time (ACOT®) monolithic synchronous Buck-Boost converter that can deliver up to 3A output current from 2.2V to 5.5V and well regulate to the digitally programmable output voltage from 2.025V to 5.2V, which is suitable for wide input supply range applications, regardless of input voltage is lower, higher than or even equal to the output voltage. The ACOT® control architecture features outstanding line/load transient response, seamless transition between buck and boost modes, provides stable operation with small ceramic output capacitors and without complicated external compensation.

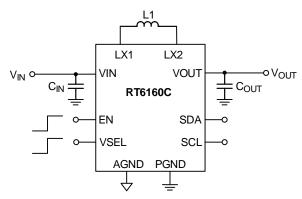
The RT6160C features I²C interface, which allows programmable output voltage, ultra-sonic mode control, soft-start slew-rate adjusted and device status monitoring. The target output voltage can also be switched through external VSEL pin to perform dynamically-voltage-scaling (DVS), and the ramp-up slew-rate and ramp mode of DVS can also be set by setting the related registers.

The RT6160C operates in automatic PFM and typical 2µA low quiescent current design that maintains high efficiency during light load operation. At higher loads, the device automatically switches to a 2.2MHz fixed frequency control, which is easily smoothed-out he switching ripple voltage by small package filtering elements. And the integrated low RDS(ON) power MOSFETs features excellent efficiency during heavy load conditions. In shutdown mode, the supply current is typically 0.1 µA, excellent in reducing power consumption. PFM mode can be disabled if fixed frequency is desired. The RT6160C is available in a small WL-CSP-15B 1.4x2.3 (BSC) package.

Features

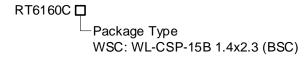
- Automatic Seamless Mode Transition with Real Buck, Buck-Boost and Boost Operation
- Input Voltage Range: 2.2V to 5.5V
- Output Voltage Range: 2.025V to 5.2V with Digitally Programmable (25mV/steps)
- Default Output Voltage Setting:
 - ▶ Vout = 3.2V at VSEL = L
 - ▶ Vout = 3.45V at VSEL = H
- Maximum Continuous Output Current:
 - Up to 2.5A for V_{IN} ≥ 2.5V, V_{OUT} = 3.3V
 - Up to 3A for V_{IN} ≥ 3V, V_{OUT} = 3.3V
 - ▶ Up to 2A for Vin ≥ 3V, Vout = 5V
- Up to 95% Efficiency (V_{IN} = 3.8V, V_{OUT} = 3.3V, $I_{LOAD} = 1A$
- 1µA Non-Switching Low Quiescent Current
- I²C Interface (Up to 1MHz)
- Allows Dynamically-Voltage-Scaling Control
- Automatic PFM Mode and Forced PWM Mode Selection
- Ultra-Sonic Mode Operation
- OCP, UVLO, OTP, OVP, UVP Protected Function for Robustness
- 15-Ball WL-CSP Package

Applications


- Smartphones and Tablets
- Portable Devices
- Wearable Devices
- System Pre-Regulators
- · Point-of-Load Regulators
- Wifi Module
- USB VCONN Supplies
- TWS Earbud Chargers

May 2023

DS6160C-02

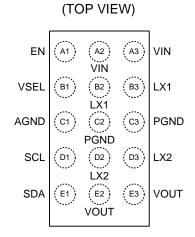


Simplified Application Circuit

Ordering Information

Pin Configuration

Note:

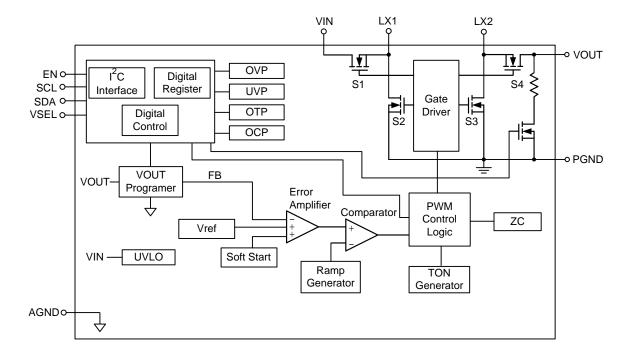

Richtek products are:

- ▶ RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- ▶ Suitable for use in SnPb or Pb-free soldering processes.

Marking Information

BE: Product Code W: Date Code

WL-CSP-15B 1.4x2.3 (BSC)


Functional Pin Description

Pin No.	Pin Name	Pin Function
A1	EN	Enable control input. A logic-high enables the converter; a logic-low forces the device into shutdown mode.
A2, A3	VIN	Power input. The input voltage range is from 2.2V to 5.5V after soft-start is finished. Connect input capacitors between this pin and PGND with minimal path. It is recommended to use a $10\mu\text{F}/6.3\text{V}/\text{X}5\text{R}/0402$ and a $0.1\mu\text{F}/6.3\text{V}/\text{X}5\text{R}/0201$ ceramic capacitors.
B1	VSEL	Voltage select pin. When this pin is tie to ground, VouT is set by the VOUT1 register; tie to logic-high, VouT is set by the VOUT2 register.
B2, B3	LX1	Switching node 1. Connect to the inductor.
C1	AGND	Analog ground. All signals are referenced to this pin. Avoid routing high dV/dt AC currents through this pin.
C2, C3	PGND	Power ground. The low-side MOSFET is referenced to this pin. C _{IN} and C _{OUT} should be returned with a minimal path to these pins.

Pin No.	Pin Name	Pin Function			
D1	SCL	I ² C serial interface clock. This pin requires a pull-up resistor to I ² C power supply.			
D2, D3	LX2	Switching node 2. Connect to the inductor.			
E1	SDA	I ² C serial interface data. This pin requires a pull-up resistor to I ² C power supply.			
E2, E3	VOUT	Output voltage sense through this pin. Connect to output capacitor. It is recommended to use two $22\mu F/10V/X5R/0603$ ceramic capacitors.			

Functional Block Diagram

Operation

The RT6160C is a high-efficiency, single inductor, Advanced Constant On-Time ACOT® mode control mechanism to achieve fast-transient response and good stability with low-ESR ceramic capacitors. The ACOT® control scheme uses a virtual inductor current ramp generated inside the IC. This internal ramp signal replaces the ESR ramp normally provided by the output capacitor's ESR. The ramp signal and other internal compensations are optimized for low-ESR ceramic output capacitors.

Buck Operation

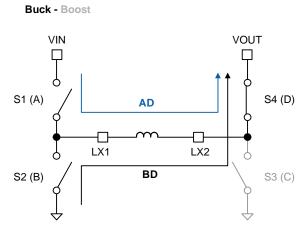


Figure 1. Buck Operation

When V_{IN} > V_{OUT}, the device switches like a buck converter. In steady-state buck-mode operation. The on-time one-shot turns on the high-side switch S1 (S4 keeps on) and the inductor current ramps up linearly. After the on-time, the high-side switch S1 is turned off and the synchronous rectifier switch S2 is turned on (S4 keeps on) and the inductor current ramps down linearly.

Boost Operation

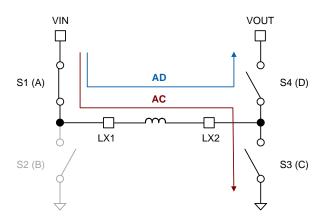


Figure 2. Boost Operation

When VIN < VOUT, the device switches like a boost converter. In boost mode at light load condition, the converter turns the S3 switch on (S1 keeps on) for a constant on-time as the one-shot is triggered, and the inductor current ramps up linearly. After the on-time, the S3 switch is turned off, and the synchronous rectifier switch S4 is turned on for a certain time (S1 keeps on) and the inductor current ramps down linearly. The S4 will turn off when inductor current drop zero. As the loading current increases and the device operates in continuous-conduction mode (CCM). When the feedback signal is less than the reference, the device turns switch S3 on (S1 keeps on) after the off-time oneshot is cleared and the inductor current ramps up linearly. Then the off-time one-shot turns S4 on (S1 keeps on) and the inductor current ramps down linearly.

Buck-Boost Operation

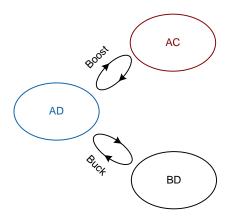


Figure 3. Buck-Boost Operation

When V_{IN} ≈ V_{OUT}, all four transistors switch continuously, the device operates in buck-boost mode. In buck-boost mode at light-load condition, the device turns switches S1 and S3 on, and the inductor current increases linearly before reaching target peak-current level. When inductor current reaches peak-current level, the S1 and S4 are turned on for a constant time and the inductor current decreases linearly, and then the S2 and S4 switches are turned on to make sure the inductor will decrease to zero level. At light-load condition, the frequency increases as the loading increases. After the loading current is large enough, the converter will escape boundary-conduction mode and enter continuous-conduction mode. Furthermore, when VIN is close to Vout in CCM, the switching frequency will decrease to half of the nominal switching frequency and the device will keep output voltage well-tracking as the target Vout.

Absolute Maximum Ratings (Note 1)	
Input Voltage, VIN	-0.3V to 6V
Output Voltage, VOUT	-0.3V to 6.2V
Switch Node Voltage, LX1, LX2	-0.3V to 6V
<50ns	-5V to 8.5V
Other I/O Pins Voltages (EN, VSEL, SCL, SDA)	-0.3V to 6V
 Power Dissipation, PD @ TA = 25°C 	
WL-CSP-15B 1.4x2.3 (BSC)	1.88W
Package Thermal Resistance (Note 2)	
WL-CSP-15B 1.4x2.3 (BSC), θJA	53°C/W
Junction Temperature	150°C
Lead Temperature (Soldering, 10 sec.)	260°C
Storage Temperature Range	–65°C to 150°C
• ESD Susceptibility (Note 3)	
HBM (Human Body Model)	2kV
Recommended Operating Conditions (Note 4)	
• Input Voltage, V _{IN}	- 2.2V to 5.5V
Output Voltage, Vout	- 2.025V to 5.2V
Output Current, Iout	- 0A to 3A
Input Capacitance, CIN (Note 5)	- 5μF (Min.)
Output Capacitance, Cout (Note 5)	- 16μF (Min.)
• Inductance, L	- 0.39μH to 0.56μH
Ambient Temperature Range	- −40°C to 85°C
Junction Temperature Range	- −40°C to 125°C

Electrical Characteristics

 $(V_{IN} = 3.6V, V_{OUT} = 3.3V, T_A = T_J = 25^{\circ}C, unless otherwise specified)$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Operating Voltage	VIN		2.2		5.5	V
Positive-Going UVLO Threshold Voltage	VUVLO(POS)	VIN rising	2.11	2.14	2.19	V
Negative-Going UVLO Threshold Voltage	Vuvlo(neg)		2.02	2.05	2.08	V
UVLO Threshold Voltage Hysteresis	VUVLO(HYS)			90		mV
	IQ_SW	VEN = VIN = 3.6V, IOUT = 0A		2	4	
Quiescent Current	IQ_NON-SW	VEN = VIN = 3.6V, IOUT = 0A, not switching		1	2	μА
Shutdown Current	ISHDN	VEN = 0V, VIN = 3.6V		0.1	1	μΑ

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
High-Level Input Current	Іін	VSCL = VSDA = VSEL = 1.8V, no pull-up resistor			0.1	μΑ	
Low-Level Input Current	lıL	VSCL = VSDA = VSEL = 0V, no pull-up resistor			0.1	μΑ	
Input Bias Current	IIB	VEN = 0 to 5.5V			0.1	μΑ	
High-Side Switch Leakage Current	IHS_LK	$V_{EN} = 0V$, $V_{SW} = 0V$		1		μΑ	
High-Side Switch On-Resistance	RDS(ON)_H			25		mΩ	
Low-Side Switch On-Resistance	RDS(ON)_L			38		mΩ	
Output Discharge Resistor	R_DIS_OUT	VEN = 0V		5		Ω	
Enable Input High Threshold	VENH	VIN = 2.2V to 5.5V	1.2			V	
Enable Input Low Threshold	VENL	VIN = 2.2V to 5.5V			0.4	V	
(SCL, SDA, VSEL) Input High Threshold	VIH		1.2				
(SCL, SDA, VSEL) Input Low Threshold	VIL				0.4	V	
Output Voltage Range	Vout		2.025		5.2	V	
	VSEL_L	V _{SEL} = low		3.2			
Default Output Voltage	VSEL_H	VsEL = high		3.45		V	
	ACC_Forced	Forced PWM operation	-1		1		
Output Voltage Accuracy	ACC_AUTO	Auto PFM operation	-1		3	%	
	ACC_USC	Ultra-Sonic operation	-1		3		
Line Regulation	VOUT_LINE_ REG	(Note 6)		0.5	-	%	
Load Regulation	VOUT_LOAD_ REG	(Note 6)		0.5		%	
Maximum Continuous Output	louz my	$\label{eq:Vin} \begin{array}{l} \mbox{Vin} \geq 2.5\mbox{V, Vout} = 3.3\mbox{V,} \\ \mbox{L} = 0.47\mbox{\mu}\mbox{H, Cin} = 10\mbox{\mu}\mbox{F,} \\ \mbox{Cout} = 44\mbox{\mu}\mbox{F} & (\mbox{Note 7}) \end{array}$	2.5				
Current	lout_max	$\label{eq:Vin} \begin{split} &V\text{IN} \geq 3\text{V}, \ \text{Vout} = 3.3\text{V}, \\ &L = 0.47\mu\text{H}, \ \text{Cin} = 10\mu\text{F}, \\ &\text{Cout} = 44\mu\text{F} \qquad \text{(Note 7)} \end{split}$	3			- A	
High-Side MOSFET Peak Current Limit	ILIM_P	V _{IN} = 3.6V, V _{OUT} = 3.3V	4.5	5	5.5	Α	
Low-Side MOSFET Valley Current Limit	ILIM_V	VIN = 3.6V, VOUT = 3.3V	4	4.5	5	Α	
PFM to PWM Threshold Inductor Current	IL_T_PFM	$V_{IN} = 3.6V, V_{OUT} = 3.3V, L = 0.47 \mu H, C_{IN} = 10 \mu F, C_{OUT} = 44 \mu F$		0.3		Α	

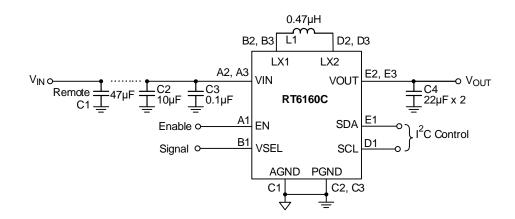
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
		$\label{eq:VIN} \begin{array}{l} \text{VIN} = 3.3\text{V}, \ \text{VOUT} = 3.3\text{V}, \\ \text{IOUT} = 0.1\text{A}, \ \text{L} = 0.47\mu\text{H}, \\ \text{CIN} = 10\mu\text{F}, \ \text{COUT} = 44\mu\text{F}, \\ \text{Auto PFM operation} \end{array}$		95	1		
Efficiency	Eff	$\begin{aligned} \text{Vin} &= 3.3 \text{V}, \ \text{Vout} &= 3.3 \text{V}, \\ \text{Iout} &= 1 \text{A}, \ \text{L} &= 0.47 \mu \text{H}, \\ \text{Cin} &= 10 \mu \text{F}, \ \text{Cout} &= 44 \mu \text{F}, \\ \text{Forced PWM operation} \end{aligned}$		94	I	%	
Efficiency		$\begin{aligned} \text{Vin} &= 3.8 \text{V}, \text{Vout} = 3.3 \text{V}, \\ \text{Iout} &= 0.1 \text{A}, \text{L} = 0.47 \mu \text{H}, \\ \text{Cin} &= 10 \mu \text{F}, \text{Cout} = 44 \mu \text{F}, \\ \text{Auto PFM operation} \end{aligned}$		94	ı		
		$\begin{array}{l} \text{Vin} = 3.8\text{V}, \ \text{Vout} = 3.3\text{V}, \\ \text{Iout} = 1\text{A}, \ \text{L} = 0.47\mu\text{H}, \\ \text{Cin} = 10\mu\text{F}, \ \text{Cout} = 44\mu\text{F}, \\ \text{Forced PWM operation} \end{array}$		95	I		
		$\begin{aligned} \text{Vin} &= 3.3 \text{V}, \ \text{Vout} = 3.3 \text{V}, \\ \text{Iout} &= 0.1 \text{A}, \ \text{L} = 0.47 \mu \text{H}, \\ \text{Cin} &= 10 \mu \text{F}, \ \text{Cout} = 44 \mu \text{F}, \\ \text{Auto PFM operation} \\ \text{(Note 6)} \end{aligned}$		50	1		
	VOUT_RIPPLE	$\begin{aligned} &\text{V}_{\text{IN}} = 3.3\text{V}, \ &\text{V}_{\text{OUT}} = 3.3\text{V}, \\ &\text{I}_{\text{OUT}} = 1\text{A}, \ L = 0.47\mu\text{H}, \\ &\text{C}_{\text{IN}} = 10\mu\text{F}, \ \text{C}_{\text{OUT}} = 44\mu\text{F}, \\ &\text{Forced PWM operation} \\ &\text{(Note 6)} \end{aligned}$		20		m) /	
Output Ripple Voltage		VOUT_RIPPLE	$\begin{aligned} &\text{V}_{\text{IN}} = 3.8 \text{V}, \ &\text{V}_{\text{OUT}} = 3.3 \text{V}, \\ &\text{I}_{\text{OUT}} = 0.1 \text{A}, \ &\text{L} = 0.47 \mu \text{H}, \\ &\text{C}_{\text{IN}} = 10 \mu \text{F}, \ &\text{C}_{\text{OUT}} = 44 \mu \text{F}, \\ &\text{Auto PFM operation} \\ &\text{(Note 6)} \end{aligned}$		25		mV
		$\begin{aligned} &\text{Vin} = 3.8 \text{V}, \text{Vout} = 3.3 \text{V}, \\ &\text{Iout} = 1 \text{A}, \text{L} = 0.47 \mu \text{H}, \\ &\text{Cin} = 10 \mu \text{F}, \text{Cout} = 44 \mu \text{F}, \\ &\text{Forced PWM operation} \\ &\text{(Note 6)} \end{aligned}$		10			
Load Transient Response	Vout_load_	$\begin{aligned} &\text{V}_{\text{IN}} = 3.8 \text{V}, \ &\text{V}_{\text{OUT}} = 3.3 \text{V}, \\ &\text{I}_{\text{OUT}} = 0.05 \text{A to 1A, t}_{\text{R}} = \text{t}_{\text{F}} = \\ &\text{1}_{\text{\mu}\text{S}} \qquad \text{(Note 6)} \end{aligned}$	-100		100	mV	
Load Transient Response	TRANSIENT	$\begin{aligned} &\text{Vin} = 3.8 \text{V, Vout} = 3.3 \text{V,} \\ &\text{Iout} = 0.05 \text{A to 0.5A, tr} = \text{tf} \\ &= 1 \mu \text{s} \qquad \text{(Note 6)} \end{aligned}$	-50	1	50	IIIV	
Line Transient Response	VOUT_LINE_ TRANSIENT	IOUT = 1A, VIN = 3V to 3.6V to 3V, tR = tF = 10μ s (Note 6)	-50	1	50	mV	
Switching Frequency	fsw	Boost or Buck operation		2.2		MHz	
Switching Frequency Range	fsw_range	Forced PWM operation, IOUT = 100mA	0.5		3	MHz	
Switching Frequency at Ultra- Sonic Mode	fsw_usc	IOUT = 1mA	30			kHz	

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Minimum On-Time	ton_min		20		60	ns	
Minimum Off-Time	toff_MIN		20		60	ns	
Output Voltage Rising Time	tR(SS)	Output voltage ramp to output voltage 95%, L = $0.47\mu\text{H}$, CIN = $10\mu\text{F}$, COUT = $44\mu\text{F}$	1	300	1000	μs	
Enable Delay Time	tD(EN)	Enable pin logic-high to output voltage ramp, L = $0.47\mu\text{H}$, CIN = $10\mu\text{F}$, COUT = $44\mu\text{F}$	1	220	300	μs	
VSEL Delay Time	tD(VSEL)	Delay between rising edge of VSEL and start of DVS ramp		30		μS	
Positive-Going Undervoltage Threshold Voltage	UVP+			95		%	
Negative-Going Undervoltage Threshold Voltage	UVP-			90		%	
		0x01, bit[1:0] = 00b	8.0	1	1.2		
Output Voltage Dynamic Voltage	DVC CD	0x01, bit[1:0] = 01b	2	2.5	3	V/ma	
Scaling Slew Rate	DVS_SR	0x01, bit[1:0] = 10b	4	5	6	V/ms	
		0x01, bit[1:0] = 11b	8	10	12		
Thermal Shutdown	TsD	(Note 6)	140	150	160	°C	
Thermal Shutdown Hysteresis	ΔTsD	(Note 6)		20		°C	

I²C Characteristics

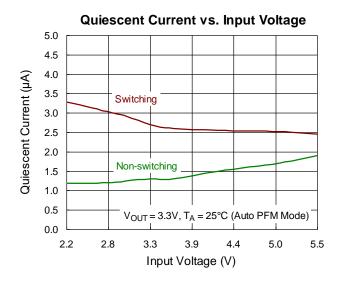
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Logic Output Threshold Voltage (SCL, SDA, VSEL)	Vi ² col				0.4	>	
I ² C Work Voltage	VI ² Cint			1.8		V	
Input Current Each IO Pin	IIN_I ² C		-10		10	μА	
Data Set-Up Time	t _{DS_I} ² c		70			ns	
	fclk	Standard mode			100		
SCL Clock Frequency		Fast mode			400	kHz	
		Fast mode plus			1000		
	tBUF	Standard mode	4.7				
Bus Free Time between Stop and Start Condition		Fast mode	1.3			μS	
and Start Condition		Fast mode plus	0.5				
		Standard mode	4.7				
Hold Time (Repeated) START Condition	thd;sta	Fast mode	0.6			μS	
on a croomandon		Fast mode plus	0.26				

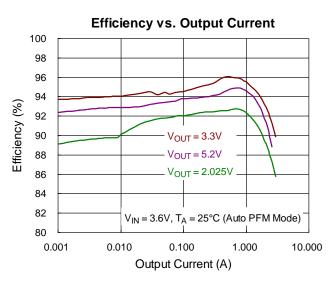


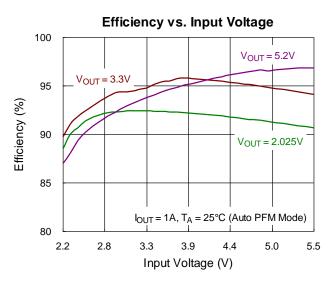
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
		Standard mode	4.7				
Set-Up Time for a Repeated START Condition	tsu;sta	Fast mode	0.6			μS	
OTATA CONTRIBUTI		Fast mode plus	0.26				
		Standard mode	0.1				
Data Hold Time	thd;dat	Fast mode	0.1			ns	
		Fast mode plus	0.1				
		Standard mode	4				
Set-Up Time for STOP Condition	tsu;sto	Fast mode	0.6			μS	
Condition		Fast mode plus	0.26				
	tvd;ack	Standard mode			3.45	μS	
Data Valid Acknowledge Time		Fast mode			0.9		
Timo		Fast mode plus			0.45		
		Standard mode	250				
SDA Set-Up Time	tsu;dat	Fast mode	100			ns	
		Fast mode plus	50				
		Standard mode	4.7				
Low Period of the SCL Clock	tLOW	Fast mode	1.3			μS	
		Fast mode plus	0.5				
		Standard mode	4				
High Period of the SCL Clock	tHIGH	Fast mode	0.6			μS	
		Fast mode plus	0.26				

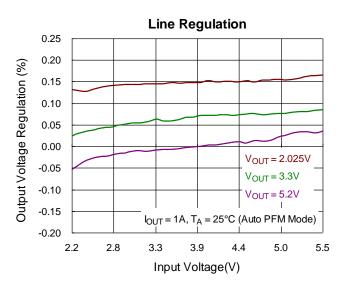
- Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 2. θ_{JA} is measured under natural convection (still air) at T_A = 25°C with the component mounted on a high effective-thermalconductivity four-layer test board on a JEDEC 51-7 thermal measurement standard.
- Note 3. Devices are ESD sensitive. Handling precautions are recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.
- Note 5. Effective capacitance after DC bias effects have been considered.
- Note 6. Guaranteed by design.
- Note 7. The device can sustain the maximum recommended output current, Users must verify that the thermal performance of the end application can support the maximum output current.

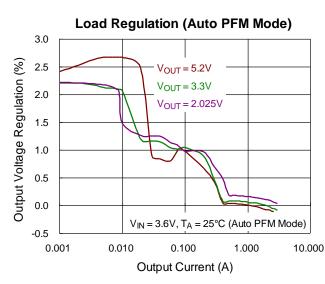
Typical Application Circuit

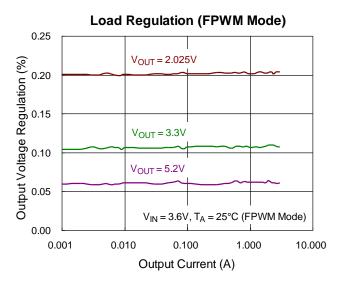

Table 1. Recommended Components Information (Note 8)

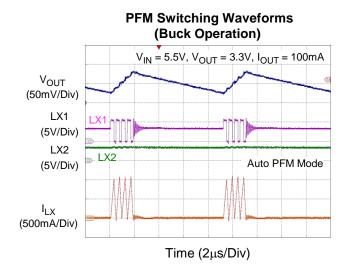

Reference	Part Number	Description	Package	Manufacturer
C1 (Note 9)	GRM32ER61C476KE15	47μF/16V/X5R	1210	Murata
C2	GRM155R60J106ME15	10μF/6.3V/X5R	0402	Murata
C3 (Note 10)	GRM033R60J104KE19D	0.1μF/6.3V/X5R	0201	Murata
C4	GRM188R61A226ME15D	22μF/10V/X5R	0603	Murata
L1	XFL4015-471MEC	0.47μΗ	4x4x1.5mm	Coilcraft

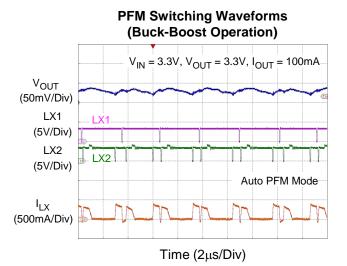

- Note 8. All the input and output capacitors are the suggested values, referring to the effective capacitances, subject to any derating effect, like a DC bias.
- Note 9. The decoupling capacitor C1 is Remote Cour capacitor. C1 is optional. The device is designed to operate with a DC supply voltage in the range 2.2V to 5.5V. If the input supply is more than a few centimeters from the device, we recommend you add some bulk capacitance to the ceramic bypass capacitors. A 47μF electrolytic capacitor is a typical selection for the bulk capacitance.
- The decoupling capacitor C3 is recommended to reduce any high frequency component on VIN bus. C3 is optional Note 10. and used to filter any high frequency component on VIN bus.

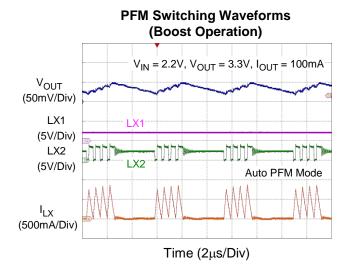


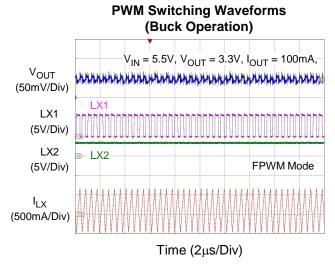

Typical Operating Characteristics

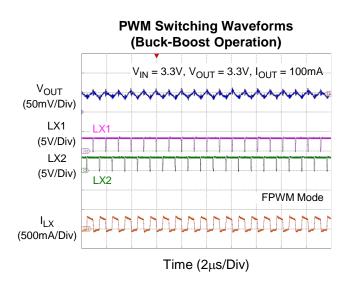


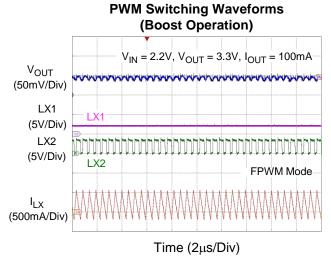

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

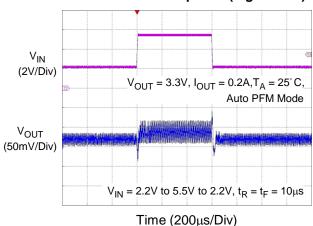

RICHTEK

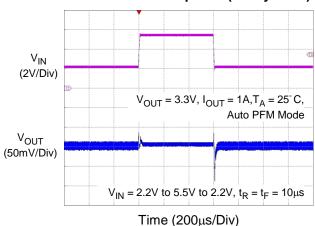

is a registered trademark of Richtek Technology Corporation.

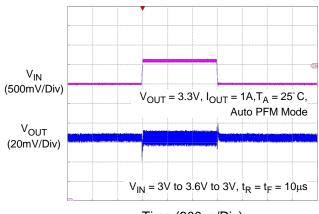

DS6160C-02 May 2023 www.richtek.com



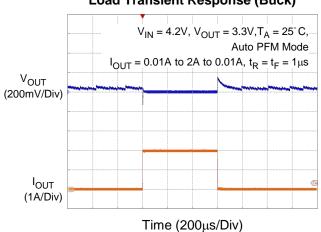




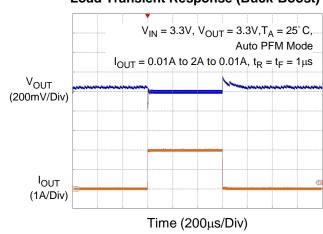



Line Transient Response (Light Load)

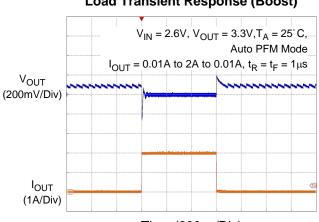
Line Transient Response (Heavy Load)



Line Transient Response (SPEC Condition)



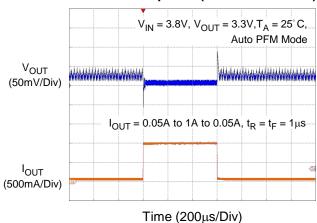
Time (200µs/Div)


Load Transient Response (Buck)

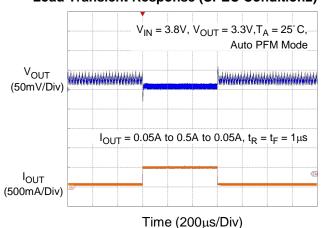
Load Transient Response (Buck-Boost)

Load Transient Response (Boost)

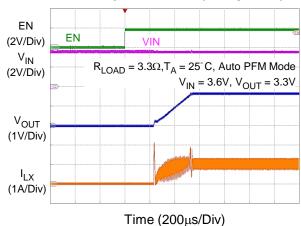
Time (200µs/Div)

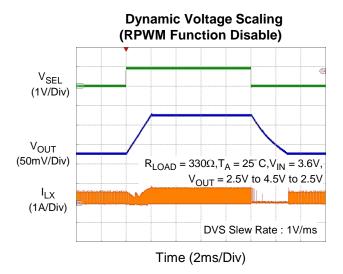

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

RICHTEK is a registered trademark of Richtek Technology Corporation.

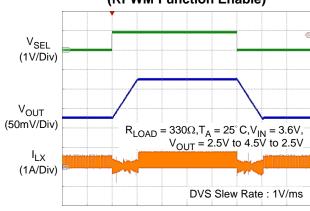

DS6160C-02 May 2023 www.richtek.com


Load Transient Response (SPEC Condition1)

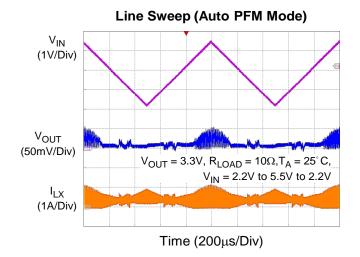

Load Transient Response (SPEC Condition2)

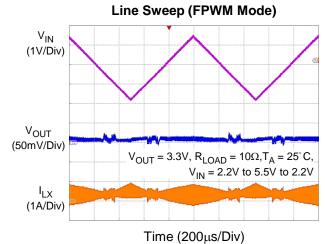


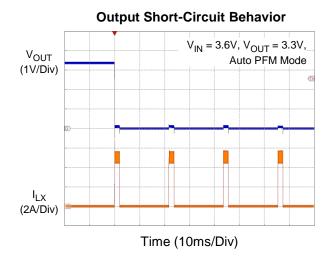
Start-Up Waveforms (Light Load)

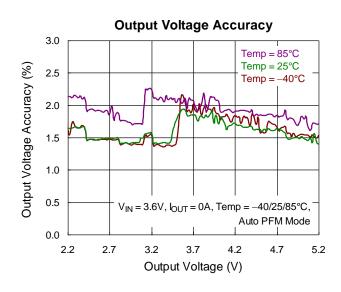


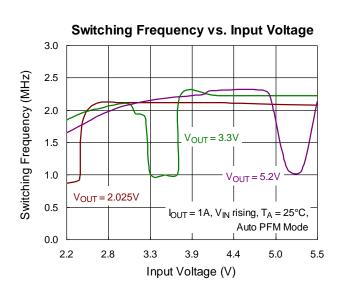
Start-Up Waveforms (Heavy Load)

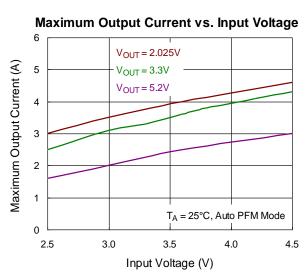



Dynamic Voltage Scaling (RPWM Function Enable)




Time (2ms/Div)





Copyright © 2023 Richtek Technology Corporation. All rights reserved.

RICHTEK

is a registered trademark of Richtek Technology Corporation.

DS6160C-02 May 2023 www.richtek.com

Application Information

Richtek's component specification does not include the following information in the Application Information section. Thereby no warranty is given regarding its validity and accuracy. Customers should take responsibility to verify their own designs and reserve suitable design margin to ensure the functional suitability of their components and systems.

The basic RT6160C application circuit is shown in Typical Application Circuit. External component selection is determined by the maximum load current and begins with the selection of the inductor value and operating frequency followed by CIN and COUT.

Soft-Start

An internal current source charges an internal capacitor to build the soft-start ramp voltage. During the soft-start period, device sets PG to "1" until VOUT reach 99% of its setting voltage.

The rise time of the output voltage changes with the application circuit and the operating conditions. The output voltage rise time increases if

- The load current is large
- The output capacitance is large

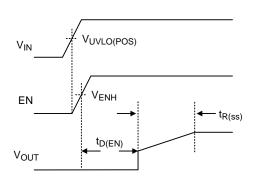


Figure 4. Soft-Start Sequence

Enable

The RT6160C provides an EN pin, as an external chip enable control, to enable or disable the device. If VEN is held below a logic-low threshold voltage (VENH - Δ VEN), switching is inhibited even if the VIN voltage is above VIN undervoltage lockout threshold (VUVLO). If VEN is held below 0.4V, the converter will enter into shutdown mode, that is, the converter is disabled and will reset all registers to default value. During shutdown mode, the supply current can be reduced to Ishdn (1μA or below).

It is recommend that the VIN voltage is higher than VUVLO first, then the EN voltage rises above the logichigh threshold voltage (VENH) the device will be turned on, that is, switching being enabled and soft-start sequence being initiated.

Note that, there is a 100 µs deglitch time for allowing I²C read/write when EN pin goes above logic-high threshold.

VSEL

VSEL = L output voltage default setting is 3.2V that can be programmed by Address 0x04[6:0] VOUT1.

VSEL = H output voltage default setting is 3.45V that can be programmed by Address 0x05[6:0] VOUT2.

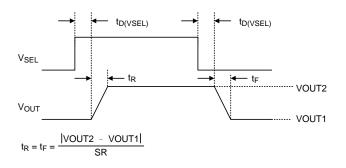


Figure 5. DVS Control the VSEL Pin

SR is the slew rate set by the (DVS Slew Rate) bits in the CONTROL register.

Auto PFM (Pulse Frequency Modulation) Mode

In order to save power and improve efficiency at low loads, the Buck/Boost operate in PFM (Pulse Frequency Modulation) mode as the inductor drops into DCM (Discontinuous Current Mode). The switching frequency is proportional to loading to reach output voltage regulation. When load increases and inductor current becomes continuous again, the Buck/Boost automatically goes back to PWM fixed frequency mode. Additionally, the RT6160C will enters DSLP (Deep Sleep) to reach input low quiescent current at no load. Auto PFM Mode is default mode.

FPWM (Forced Pulse Width Modulation) Mode

The switching frequency is forced into PWM mode operation. In this mode, the inductor current is in CCM (Continuous Current Mode) and the voltage is regulated by PWM.

To enable Forced-PWM operation, set the FPWM bit in the Control register to 1.

Ultra-Sonic Mode

To avoid acoustic noise problem when operation, the switching frequency is designed to be always higher than 30kHz even there is no load at output.

To enable Ultra-Sonic Mode operation, set the Ultra-Sonic Mode bit in the Control register to 1.

Ramp-PWM Function

If Ramp-PWM function is enabled, the device operates in forced-PWM when it ramps from one output voltage to another during dynamic voltage scaling. This function is useful if you want the device to operate in Auto PFM Mode but you want to make sure that dynamic voltage scaling ramps the output voltage up and down in a controlled way. If the device operates in Auto PFM Mode and Ramp-PWM is disabled, the devices cannot always control the ramp from a higher output voltage to a lower output voltage, because in Automatic PFM/PWM Mode the devices cannot sink current.

To enable Ramp-PWM function, set the RAMP bit in the control register to 1.

To disable Ramp-PWM function, clear the RAMP bit in the control register to 0.

Dynamically Voltage Scaling Control

The RT6160C supports programmable slew-rate control feature when increasing and decreasing the output voltage, as known as Dynamically Voltage Scaling (DVS). The ramp slew-rate can be set to 1V/ms, 2.5V/ms, 5V/ms or 10V/ms through bit1 and bit0 of control register. Moreover, the operation mode during DVS region can be adjusted through control register bit2. When the device operates in Auto PFM/PWM mode, if the bit2 is set to 1, the device will change to Forced PWM mode operation during DVS region and back to auto PFM/PWM mode after reaching target output

voltage. And the device will keep auto PFM/PWM mode during DVS region if the bit2 of control register is set to

Output Discharge

The device actively discharges the output when the EN pin is low.

Vour Selection

The RT6160C has programmable Vout from 2.025V to 5.2V with 25mV resolution.

The output voltage can be set by VOUTx register bit and the output voltage is given by the following equation:

VOUT = 2.025V + VOUTx x 25mV

For example:

if VOUTx = 110011 (51 decimal), then

 $VOUT = 2.025V + 51 \times 25mV = 2.025V + 1.275V = 3.3V$.

The RT6160C also has external VSEL pin to select VOUT1(0X04) or VOUT2(0X05). Pulling VSEL to high is for VOUT2 and pulling VSEL to low is for VOUT1.

Upon POR, VOUT1 and VOUT2 are reset to their default voltages.

Power-Good Comparator

When a power-not-good condition occurs, the device sets the PG bit in the Status register to 1. The device clears the PG bit to 0 if you read the Status register when a power-good condition exists.

Auto-Zero Current Detector

The auto-zero current detector circuit senses the LX1 and LX2 waveform to adjust the zero current threshold voltage. When the current of low-side MOSFET decrease to the zero current threshold. The low-side MOSFET turns off to prevent negative inductor current. In this way, the zero current threshold can adjust for different condition to get better efficiency.

Load Disconnect

During device shutdown, the input is disconnected from the output. This prevents any current flow from the output to the input or from the input to the output.

PWM Frequency and Adaptive On-Time Control

The on-time can be roughly estimated by the equation:

$$t_{ON} = \frac{V_{OUT}}{V_{IN}} \times \frac{1}{f_{SW}}$$

where fsw is nominal 2.2MHz.

Inductor Selection

Inductor value choose will effect transient, ripple and other performance. The RT6160C recommended nominal inductance value is 0.47µH to achieve advantage performance.

The inductor value and operating frequency determine the ripple current according to a specific input and output voltage. The ripple current ΔI_{L} increases with higher VIN and decreases with higher inductance.

$$\Delta I_{L} = \left(\frac{V_{OUT}}{f_{SW} \times L}\right) \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

Having a lower ripple current reduces not only the ESR losses in the output capacitors but also the output voltage ripple. High frequency with small ripple current can achieve the highest efficiency operation. However, it requires a large inductor to achieve this goal.

For the ripple current selection, the value of ΔI_{\perp} which is IMAX multiplied by 0.3 will be a reasonable starting point.

The largest ripple current occurs at the highest VIN. To guarantee that the ripple current stays below the specified maximum, the inductor value should be chosen according to the following equation:

$$L = \left(\frac{V_{OUT}}{f_{SW} \times \Delta I_{L(MAX)}}\right) \times \left(1 - \frac{V_{OUT}}{V_{IN(MAX)}}\right)$$

The inductor's current rating (caused a 40°C temperature rising from 25°C ambient) should be greater than the maximum load current and its saturation current should be greater than the short circuit peak current limit.

Input Capacitor Selection

Steady state and transient response operation performance also depend on input voltage stability or not. The RT6160C at least a 10µF input capacitor is recommended to prevent input voltage instability with application operation. And that suggest placed as close as possible to the VIN and GND pins of the IC is recommended. If the input supply is more than a few centimeters from the device, we recommend you add some bulk capacitance to the ceramic bypass capacitors. A 47µF electrolytic capacitor is a typical selection for the bulk capacitance.

Output Capacitor Selection

The ripple voltage is an important index for choosing output capacitor. This portion consists of two parts. One is the product of ripple current with the ESR of the output capacitor, while the other part is formed by the charging and discharging process of the output capacitor.

Output capacitor is selected according to output ripple which is calculated as below equation.

$$\Delta V_{OUT} = \Delta V_{ESR} + \Delta V_{OUT_{CAP}}$$

$$\Delta V_{ESR} = I_{C_{RMS}} \times R_{C_{ESR}}$$

$$\Delta V_{OUT_{CAP}} = \frac{I_{OUT} \times Duty}{f_{SW} \times C_{MIN}}$$

User can use equation choose capacitor to meeting systems ripple specification. And at least 22µF x 2 capacitors is recommended to matching application with VOUT ripple request and stability performance.

Table 2. Protection Trigger Condition and Behavior

The RT6160C features some protections, such as OCP, OVP, UVLO, OTP and UVP. As the table shown, it is described the protection actions.

Protection Type	Threshold Refer to Electrical Spec.	Deglitch Time	Protection Method	Reset Method
OCP (Note 11)	IL > 5A	0	Turn off Boost LG or Turn off Buck UG	IL < 4.5A
UVLO	V _{IN} < 2.08V (max)	0	Turn off all	V _{IN} > 2.17V (max)
OTP	TEMP > 150°C	0	Turn off all	OTP Hysteresis = 20°C
OVP	Vout > 6V	0	Turn off all	Vout < 5.6V
UVP	Vout < 0.9 x Vout_Target	2ms	Turn off all	Vout > 0.95 x Vout_Target

Turn off all switches when OCP event occurs and is continuing for 2ms. Note 11.

Overcurrent Protection

The OCP function is implemented by UGATE and LGATE. When the inductor current reaches the UGATE current-limit threshold, the high-side MOSFET will be turned-off. The low-side MOSFET turns on to discharge the inductor current until the inductor current trips below the LGATE current-limit threshold. After UGATE current limit triggered, the max inductor current is decided by the inductor current rising rate and the response delay time of the internal network.

Input UVLO Protection

In addition to the EN pin, the RT6160C also provides enable control through the VIN pin. If VEN rises above VENH first, switching will still be inhibited until the VIN voltage rises above V_{UVLO}. It is to ensure that the internal regulator is ready so that operation with notfully-enhanced internal MOSFET switches can be prevented. After the device is powered up, if the VIN voltage goes below the UVLO falling threshold voltage (V_{UVLO} - ΔV_{UVLO}), this switching will be inhibited; if V_{IN} voltage rises above the UVLO rising threshold (V_{UVLO}), the device will resume switching.

Over-Temperature Protection

When the junction temperature exceeds the OTP threshold value, the IC will shut down the switching operation. Once the junction temperature cools down and is lower than the OTP lower threshold, the converter will automatically resume switching. When the device detects an over-temperature condition, it sets the TSD bit in the Status register to 1. The device clears the TSD bit to 0 if you read the Status register when the junction temperature of the device is less than 130°C.

Overvoltage Protection

When the VOUT pin is floating, the device will trigger the overvoltage protection to avoid the output voltage exceeding critical values for device. In case it reaches the OVP threshold, the device will regulate the output voltage to this value.

Undervoltage Protection

The RT6160C provides Hiccup Mode for Undervoltage Protection (UVP). When the VouT voltage drops below 90% of Target Vout, the UVP function will be triggered to shut down switching operation. If the UVP condition remains for a period, the RT6160C will retry to build up output voltage automatically. When the UVP condition is removed, the converter will soft-start to target voltage and resume normal operation.

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature T_J(MAX), listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

 $PD(MAX) = (TJ(MAX) - TA)/\theta JA$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125° C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a WL-CSP-15B 1.4x2.3 (BSC) package, the thermal resistance, θ_{JA} , is 53° C/W on a standard JEDEC 51-7 high effective-thermal conductivity four-layer test board. The maximum power dissipation at $T_A = 25^{\circ}$ C can be calculated as below:

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C)/(53^{\circ}C/W) = 1.88W$ for a WL-CSP-15B 1.4x2.3 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curves in Figure 6 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

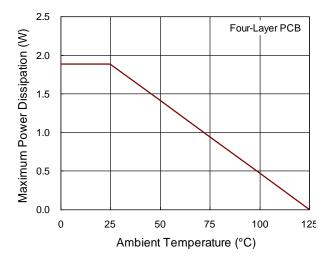


Figure 6. Derating Curve of Maximum Power

Dissipation

Layout Considerations

For best performance of the RT6160C, the following layout guidelines must be strictly followed.

- Input capacitor must be placed as close as possible to IC to minimize the power loop area. A typical 0.1μF decoupling capacitor is recommended to reduce power loop area and any high frequency component on VIN.
- ▶ Switching node (LX1 and LX2) are with high frequency voltage swing and should be kept at small area. Keep analog components away from the LX1 and LX2 node to prevent stray capacitive noise pickup.
- ▶ Keep every power trace connected to pin as wide as possible for improving thermal dissipation.
- ► The AGND pin is suggested to connect to 2nd GND plate through top to 2nd via.

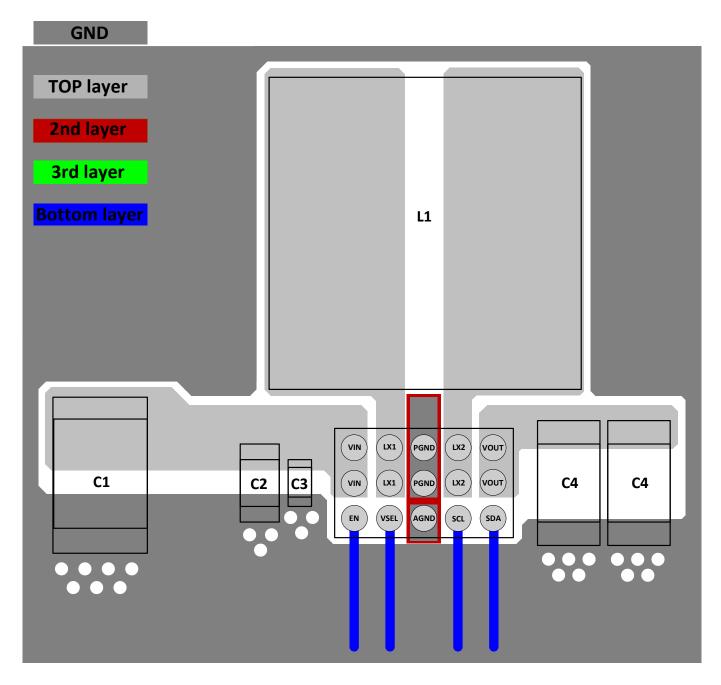
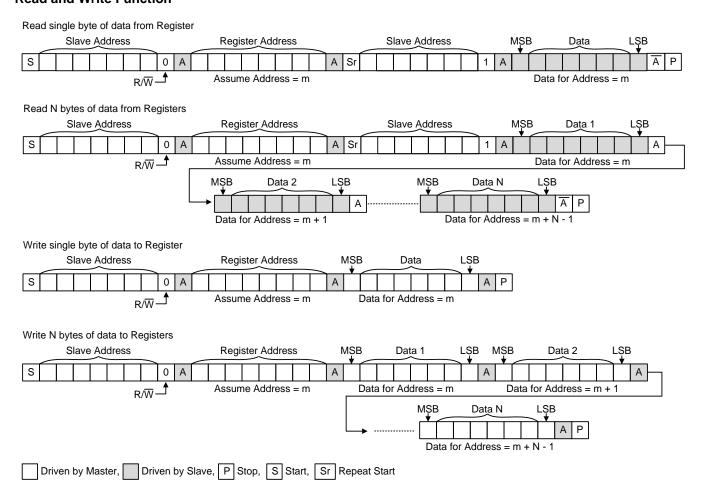


Figure 7. Layout Guide


I²C Interface

The following table shows the RT6160C slave address 0x77 (7bit).

RT6160C I ² C Slave Address (77H)						
MSB LSB R/W bit R/W						
111011	1	1/0	EF/EE			

The I²C interface bus must be connect a resistor $2.2k\Omega$ to power node and independent connection to processor, individually. The I²C timing diagrams are listed below.

Read and Write Function

I²C Waveform Information

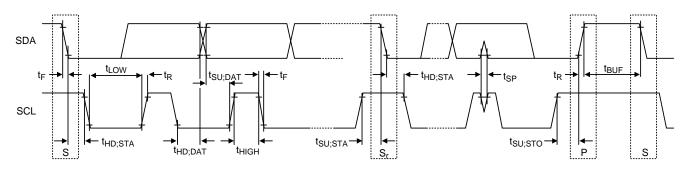


Figure 8. I²C Read and Write Stream and Timing Diagram

Register Table Lists

Name	Address	Description
CONTROL	0x01	Output pull-down slew rate control MODE function control DVS slew rate function control
STATUS	0x02	Read IC status
DEVID	0x03	Device Identity
VOUT1	0x04	Output Voltage 1 when the VSEL pin is low
VOUT2	0x05	Output Voltage 2 when the VSEL pin is High

Register Description

 I^2C Slave address = 1110111 (77H)

I²C Register Map

R: Read Only

RW: Read and Write

Address 0x01				CON	TROL					
Bits	7	6	5	4	3	2	1	0		
Name	Reserved	I ² C_SD	A_SLEW	Ultra-Sonic Mode	Forced PWM	Ramp PWM	DVS SI	DVS Slew Rate		
Reset	0	0	0	0	0	0	0	0		
Туре	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address 0x02				STA	TUS					
Bits	7	6	5	4	3	2	1	0		
Name		Reserved		HD	UV	ОС	TSD	PG		
Reset	0	0	0	0	0	0	0	0		
Туре	R	R	R	R	R	R	R	R		
Address 0x03		DEVID								
Bits	7	6	5	4	3	2	1	0		
Name		Manu	facturer	Major			Minor			
Reset	1	0	1	0	1	0	0	0		
Туре	R	R	R	R	R	R	R	R		
Address 0x04				VOI	UT1					
Bits	7	6	5	4	3	2	1	0		
Name	Reserved				VOUT1					
Reset	0	0	1	0	1	1	1	1		
Туре	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address 0x05				VOI	JT2					
Bits	7	6	5	4	3	2	1	0		
Name	Reserved				VOUT2					
Reset	0	0	1	1	0	0	1	1		
Туре	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

Address	Register Name	Bit	Bit Name	Default	Туре	Description
		7	Reserved	0	R	Reserved
		6:5	I ² C_SDA_SLEW	00	R/W	SDA pin output pull-down slew rate 00: High (default) 01: Medium 10: Low 11: Very low
		4	Ultra-Sonic Mode	0	R/W	This bit controls the ultra-sonic mode function. 0: Ultra-Sonic mode disabled (default) 1: Ultra-Sonic mode enabled
0x01	CONTROL	3	Forced PWM	0	R/W	This bit controls the forced-PWM mode function. 0: Forced PWM operation disabled (default) 1: Forced PWM operation enabled
		2	Ramp PWM	0	R/W	This bit controls the ramp-PWM function. 0: Ramp-PWM operation disabled (default) 1: Ramp-PWM operation enabled
		1:0	DVS Slew Rate	00	R/W	These bits control the slew rate of the DVS function. 00: 1.0V/ms (default) 01: 2.5V/ms 10: 5.0V/ms 11: 10.0V/ms
Address	Register Name	Bit	Bit Name	me Default		Description
		7:5	Reserved	000	R	Reserved
		4	HD	0	R	This bit shows the status of the hot-die function. 0: Normal operation (default) 1: An hot-die event was detected
		3	υV	0	R	This bit shows the status of the undervoltage function. 0: Normal operation (default) 1: An undervoltage event was detected
0x02	STATUS	2	00	0	R	This bit shows the status of the overcurrent function. 0: Normal operation (default) 1: An overcurrent event was detected
		1	TSD	0	R	This bit shows the status of the thermal shutdown function. 0: Temperature good (default) 1: An over-temperature event was detected
		0	PG	0	R	This bit shows the status of the power-good comparator. 0: Power-good(default) 1: A power-not-good was detected

Address	Register Name	Bit	Bit Name	Default	Туре	Description
	7:4		Manufacturer	1010	R	These bits identify the device manufacturer. 1010: Richtek (default)
0x03 DEVID	DEVID	3:2	Major	10	R	These bits identify the major silicon revision. 00: A (initial silicon) 01: B (first major revision) 10: C (second major revision) (default) 11: D (third major revision)
	1:		Minor	00	R	These bits identify the minor silicon revision. 00: 0 (initial silicon) (default) 01: 1 (first minor revision) 10: 2 (second minor revision) 11: 3 (third minor revision)
Address	Register Name	Bit	Bit Name	Default	Туре	Description
		7	Reserved	0	R	Reserved
0x04	0x04 VOUT1		6:0 VOUT1		R/W	These bits set the output voltage when the VSEL pin is low. 0000000: Vout = 2.025V 0000001: Vout = 2.05V 0000010: Vout = 2.075V 0101111: Vout = 3.2V (default) 111101: Vout = 5.15V 1111110: Vout = 5.175V 1111111: Vout = 5.2V
Address	Register Name	Bit	Bit Name	Default	Туре	Description
		7	Reserved	0	R	Reserved
0x05	0x05 VOUT2		VOUT2	0111001	R/W	These bits set the output voltage when the VSEL pin is High. 0000000: Vout = 2.025V 0000001: Vout = 2.05V 0000010: Vout = 2.075V 0111001: Vout = 3.45V (default) 1111101: Vout = 5.15V 1111111: Vout = 5.175V 1111111: Vout = 5.2V

Table 3. Register VOUT1/VOUT2[6:0] vs. Output Voltage

VOUT1 Address = 0x04, Output Voltage 1 when the VSEL pin is low.

VOUT2 Address = 0x05, Output Voltage 2 when the VSEL p

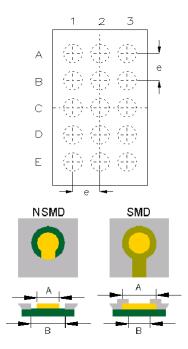
Register VOUT[6:0]	Output Voltage (V)
0000000	2.025
0000001	2.05
0000010	2.075
0000011	2.1
0000100	2.125
0000101	2.15
0000110	2.175
0000111	2.2
0001000	2.225
0001001	2.25
0001010	2.275
0001011	2.3
0001100	2.325
0001101	2.35
0001110	2.375
0001111	2.4
0010000	2.425
0010001	2.45
0010010	2.475
0010011	2.5
0010100	2.525
0010101	2.55
0010110	2.575
0010111	2.6
0011000	2.625
0011001	2.65
0011010	2.675
0011011	2.7
0011100	2.725
0011101	2.75
0011110	2.775
0011111	2.8


Register VOUT[6:0]	Output Voltage (V)
0100000	2.825
0100001	2.85
0100010	2.875
0100011	2.9
0100100	2.925
0100101	2.95
0100110	2.975
0100111	3
0101000	3.025
0101001	3.05
0101010	3.075
0101011	3.1
0101100	3.125
0101101	3.15
0101110	3.175
0101111	3.2
0110000	3.225
0110001	3.25
0110010	3.275
0110011	3.3
0110100	3.325
0110101	3.35
0110110	3.375
0110111	3.4
0111000	3.425
0111001	3.45
0111010	3.475
0111011	3.5
0111100	3.525
0111101	3.55
0111110	3.575
0111111	3.6

JIII IS IUW.	
oin is high.	
Register VOUT[6:0]	Output Voltage (V)
1000000	3.625
1000001	3.65
1000010	3.675
1000011	3.7
1000100	3.725
1000101	3.75
1000110	3.775
1000111	3.8
1001000	3.825
1001001	3.85
1001010	3.875
1001011	3.9
1001100	3.925
1001101	3.95
1001110	3.975
1001111	4
1010000	4.025
1010001	4.05
1010010	4.075
1010011	4.1
1010100	4.125
1010101	4.15
1010110	4.175
1010111	4.2
1011000	4.225
1011001	4.25
1011010	4.275
1011011	4.3
1011100	4.325
1011101	4.35
1011110	4.375
1011111	4.4

	T
Register VOUT[6:0]	Output Voltage (V)
1100000	4.425
1100001	4.45
1100010	4.475
1100011	4.5
1100100	4.525
1100101	4.55
1100110	4.575
1100111	4.6
1101000	4.625
1101001	4.65
1101010	4.675
1101011	4.7
1101100	4.725
1101101	4.75
1101110	4.775
1101111	4.8
1110000	4.825
1110001	4.85
1110010	4.875
1110011	4.9
1110100	4.925
1110101	4.95
1110110	4.975
1110111	5
1111000	5.025
1111001	5.05
1111010	5.075
1111011	5.1
1111100	5.125
1111101	5.15
1111110	5.175
1111111	5.2

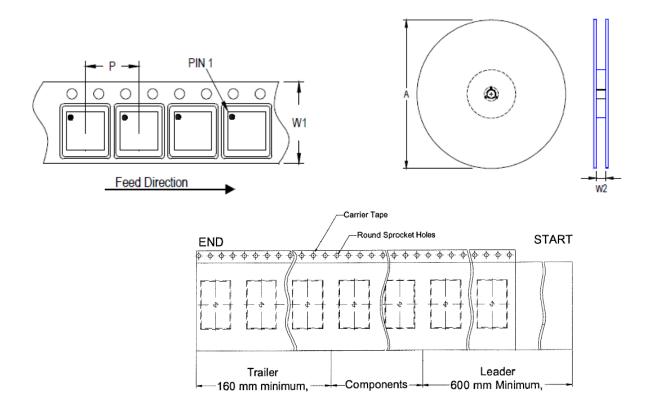
Outline Dimension



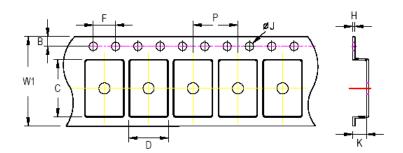
Sumbal	Dimensions I	In Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
А	0.500	0.600	0.020	0.024		
A1	0.170 0.230 0.007		0.007	0.009		
b	0.240	0.300	0.009	0.012		
D	2.260	2.340	0.089	0.092		
D1	1.6	600	0.063			
E	1.360	1.440	0.054	0.057		
E1	0.8	300	0.031			
е	0.4	100	0.016			

15B WL-CSP 1.4x2.3 Package (BSC)

Footprint Information



Dookogo	Number of Type		Footpri	Tolerance			
Package	Pin	Type	е	Α	В	rolerance	
WL-CSP1.4x2.3-15(BSC)	15	NSMD	0.400	0.240	0.340	±0.025	
WL-C3P 1.4x2.3-13(B3C)	15	SMD	0.400	0.270	0.240		



Packing Information

Tape and Reel Data

Package Type	Tape Size (W1) (mm)	Pocket Pitch (P) (mm)	Reel Size (A) (mm) (in)		Units per Reel	Trailer (mm)	Leader (mm)	Reel Width (W2) Min./Max. (mm)
WL-CSP 1.4x2.3	8	4	180	7	3,000	160	600	8.4/9.9

- C, D and K are determined by component size. The clearance between the components and the cavity is as follows:
- For 8mm carrier tape: 0.5mm max.

Tape Size	W1	W1 P		В		F		Ø٦		Н
Tape Size	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
8mm	8.3mm	3.9mm	4.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

RICHTEK is a registered trademark of Richtek Technology Corporation.

www.richtek.com DS6160C-02 May 2023

Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1	Reel 7"	4	12 inner boxes per outer box
2	Packing by Anti-Static Bag	5	Outer box Carton A
3	3 reels per inner box Box A	6	

Container	Reel		Вох			Carton						
Package	Size	Units	Item	Size(cm)	Reels	Units	Item	Size(cm)	Boxes	Unit		
WL-CSP	7"	0.000	Box A	18.3*18.3*8.0	3	9,000	Carton A	38.3*27.2*38.3	12	108,000		
1.4x2.3	7"	/"	/"	3,000	Box E	18.6*18.6*3.5	1	3,000		For Combined or Pa	artial Reel.	

Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω /cm 2	10 ⁴ to 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

RICHTEK is a registered trademark of Richtek Technology Corporation.

Datasheet Revision History

Version	Date	Description	Item
00	2023/2/1	Final	
01	2023/4/24	Modify	I ² C Interface on P22
02	2023/5/29	Modify	Electrical Characteristics on P5 Application Information on P16