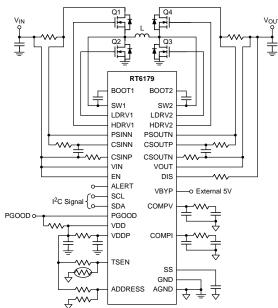
36V, 4-Switch Buck-Boost Controller with I²C Interface

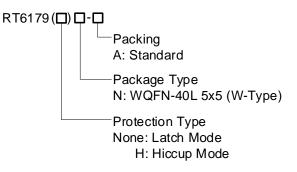
General Description

The RT6179 is a 4-switch Buck-Boost controller designed for USB power delivery (USB PD). It operates with wide input voltage range from 4.5V to 36V, and the output voltage can be programmable between 3V and 36V. The RT6179 implements peak current mode control mechanism with the programmable constant voltage (CV) and constant current (CC) output to support USB-PD 3.0 SPR mode and 28V of 3.1 EPR mode. With an I²C compatible interface, the RT6179 supports many programmable functions including CV/CC output, switching frequency, and cable voltage drop compensation. Moreover, the RT6179 integrates fully protection such as input UVLO, over/undervoltage protection, cycle-by-cycle current limit, short protection, and over-temperature protection. The RT6179 is available in a WQFN-40L 5x5 package.


Applications

- Monitor
- USB Power Delivery
- Power Bank

Features


- Support USB-PD 3.0 SPR Mode and 28V of 3.1 EPR Mode
- Integrated Buck-Boost Controller:
 - ▶ Wide Input Voltage Range: 4.5V to 36V
 - Wide Output Voltage Range: 3V to 36V
 - Peak Current Mode Control
 - Programmable Switching Frequency (250kHz to 1MHz)
 - Power Saving Mode Enables Higher Light Load Efficiency
- AnyPower[™] for Constant Voltage (12.5mV/step, Typ.) and Constant Current (in 9-Bit Resolution) Output Settings
- I²C Compatible Interface
- Adjustable Soft-Start Time
- Programmable Cable Voltage Drop Compensation
- Built-in Bleeders for Quick VOUT Discharge
- Power Good Indicator
- Fully Protection with UVLO, OVP, UVP, OCP, Cycle-by-Cycle Current Limit and OTP
- WQFN-40L 5x5 Package

Simplified Application Circuit

RICHTEK

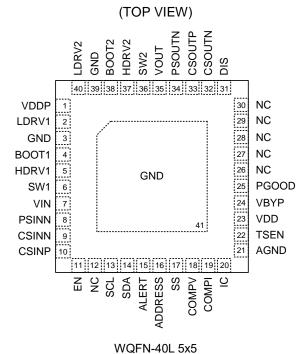
Ordering Information

Note:

Richtek products are Richtek Green Policy Compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.

Marking Information

RT6179N-A


RT6179 N YMDNN RT6179N: Product Code YMDNN: Date Code

RT6179HN-A

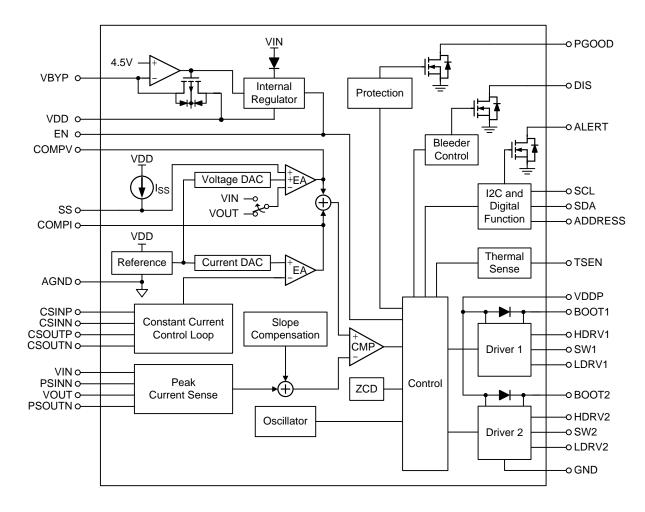
RT6179HN: Product Code YMDNN: Date Code

Pin Configuration

Copyright © 2023 Richtek Technology Corporation. All rights reserved. www.richtek.com

RICHTEK is a registered trademark of Richtek Technology Corporation.

Functional Pin Description


Pin No.	Pin Name	Pin Function
1	VDDP	Bias voltage input pin for internal gate drivers. It is recommended to connect an external $4.7\mu F$ capacitor from this pin to GND.
2	LDRV1	Buck mode low-side gate driver output for Q2. Connect to gate of low-side N-MOSFET Q2.
3, 39, 41 (Exposed Pad)	GND	Ground. Exposed pad. The exposed pad must be soldered to a large PCB copper area for maximum power dissipation.
4	BOOT1	Buck mode bootstrap supply for high-side N-MOSFET Q1. It is recommended to connect a 0.1μ F capacitor from this pin to SW1 pin. The bootstrap diode is integrated internally between VDDP pin and this pin.
5	HDRV1	Buck mode high-side gate driver output for Q1. Connect to gate of high-side N-MOSFET Q1.
6	SW1	Buck mode switch node. Connect to power inductor.
7	VIN	Supply voltage input. Input peak current sense positive input. Connect to the current sense resistor R29 for input peak current sense.
8	PSINN	Input peak current sense negative input. Connect to the current sense resistor R29 for input peak current sense.
9	CSINN	Current sense negative input for input constant current control. Connect to the current sense resistor R29 directly. It is recommended to use $10m\Omega$ for the current sense resistor R29.
10	CSINP	Current sense positive input for input constant current control. Connect to the current sense resistor R29 directly. It is recommended to use $10m\Omega$ for the current sense resistor R29.
11	EN	Enable control input. A logic-high enables the converter; a logic-low forces the device into shutdown mode. "Do Not" leave this pin floating.
12, 26, 27, 28, 29, 30	NC	No internal connection. Please keep these pins floating.
13	SCL	Clock input for I^2C interface. Connect this pin to AGND if I^2C interface is not used. "Do Not" leave this pin floating.
14	SDA	Data line for I ² C interface. Connect this pin to AGND if I ² C interface is not used. "Do Not" leave this pin floating.
15	ALERT	Active low open-drain output. Connect this pin to 1.8V or 3.3V for normal operation. It will be pulled low if this chip is under the conditions of protection, EN shutdown, or after soft-start end.
16	ADDRESS	I ² C slave address selection pin. Connect this pin to VDD selects 0x2D, and connect this pin to AGND selects 0x2C.
17	SS	Soft-start time control pin. Connect a capacitor between this pin and AGND to set the soft-start time.
18	COMPV	Constant voltage (CV) loop compensation. Connect an external RC network from this pin to AGND for CV loop compensation. "Do Not" leave this pin floating.
19	COMPI	Constant current (CC) loop compensation. Connect an external RC network from this pin to AGND for CC loop compensation. "Do Not" leave this pin floating.
20	IC	Internal connection. Connect this pin to AGND.
21	AGND	Analog ground.

RICHTEK

Pin No.	Pin Name	Pin Function
22	TSEN	Thermal sense input. This pin is used for external over-temperature protection via an external NTC network circuit. Connect this pin to VDD if thermal sense function is not used. "Do Not" leave this pin floating.
23	VDD	Internal LDO output. It is recommended to connect an external $4.7\mu F$ capacitor from this pin to GND. This pin is also used for internal analog circuit.
24	VBYP	Optional supply input from external 5V. Connect to external 5V voltage for VDD to increase converter efficiency.
25	PGOOD	Power good indicator open-drain output. This pin is pulled high when the output voltage is within the target range. It will be pulled to ground if this chip is under the conditions of protection, EN shutdown, or during soft-start.
31	DIS	Input pin for output discharge. Connect an external resistor between this pin and converter output to discharge energy of output capacitors through internal pull-low N-MOSFET.
32	CSOUTN	Current sense negative input for output constant current control. Connect to the current sense resistor R30 directly. It is recommended to use $10m\Omega$ for the current sense resistor R30.
33	CSOUTP	Current sense positive input for output constant current control. Connect to the current sense resistor R30 directly. It is recommended to use $10m\Omega$ for the current sense resistor R30.
34	PSOUTN	Voltage sense input for internal constant current control loop.
35	VOUT	Voltage sense input for monitoring VOUT OVP and UVP.
36	SW2	Boost mode switch node. Connect to power inductor.
37	HDRV2	Boost mode high-side gate driver output for Q4. Connect to gate of high-side N-MOSFET Q4.
38	BOOT2	Boost mode bootstrap supply for high-side N-MOSFET Q4. It is recommended to connect a 0.1μ F capacitor from this pin to SW2 pin. The bootstrap diode is integrated internally between VDDP pin and this pin.
40	LDRV2	Boost mode low-side gate driver output for Q3. Connect to gate of low-side N-MOSFET Q3.

Functional Block Diagram

Copyright © 2023 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Absolute Maximum Ratings (Note 1)

• VIN, PSINN, CSINP, CSINN, VOUT, PSOUTN, CSOUTP, CSOUTN to GND	0.3V to 40V
• VIN to PSINN, CSINP to CSINN, VOUT to PSOUTN, CSOUTP to CSOUTN	5V to 5V
• EN, DIS to GND	0.3V to 40V
BOOT1 to SW1, BOOT2 to SW2	0.3V to 6V
DC	0.3V to 6V
< 100ns	5V to 7.5V
HDRV1 to SW1, HDRV2 to SW2	
DC	0.3V to 6V
< 100ns	5V to 7.5V
SW1, SW2 to GND	
DC	0.3V to 40V
< 100ns	5V to 45V
LDRV1, LDRV2 to GND	
DC	0.3V to 6V
< 100ns	2.5V to 7.5V
Other Pins	0.3V to 6V
Lead Temperature (Soldering, 10 sec.)	- 260°C
Junction Temperature	- 150°C
Storage Temperature Range	- −65°C to 150°C
ESD Botingo	

ESD Ratings

 ESD Susceptibility 	(Note 2)	
HBM (Human Body	Model)	2kV

Recommended Operating Conditions (Note 3)

Junction Temperature Range	–40°C to 125°C
VBYP Supply Voltage	4.5V to 5.5V
VDDP Supply Voltage	4.5V to 5.5V
Output Voltage	3V to 36V
Supply Input Voltage	4.5V to 36V

•	WQFN-40L 5x5, θJC(Top)	6°C/\	W

Electrical Characteristics

(V_{VIN} = 12V, V_{VDD} = V_{VDDP} = 5V, T_A = 25°C, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Input and Output	Voltage Range					•
Input Voltage Range	VINPUT	Vvin	4.5		36	V
Output Voltage Range	VOUTPUT	Vvout	3		36	V
Input UVLO Threshold	Vuvlo	Vvin	2.7	3	3.4	V
Input UVLO Hysteresis	Δνυνίο	Vvin		200		mV
VDD Supply Volta	ge and Enable					
VDD Output Voltage	Vvdd	I _{VDD} = 0 to 60mA, V _{VIN} = 12V	4.8	5	5.2	V
VDD Short-Circuit Current	IVDD_SC			120		mA
VDD UVLO Threshold	Vvdd_uvlo	V _{VDD} rising	2.7	3	3.4	V
VDD UVLO Hysteresis	ΔVvdd_ uvlo			200		mV
VDDP UVLO Threshold	VVDDP_UVLO	VVDDP rising	3.7	4	4.3	V
VDDP UVLO Hysteresis	ΔVvddp_ uvlo			200		mV
EN Threshold	Venh	EN rising	1.35		36	v
	VENL	EN falling			0.85	v
VBYP Switchover		VBYP rising		4.5		V
Threshold		VBYP falling		230		mV
VBYP Switchover On-Resistance				3		Ω
VIN Operating Cu	rrent					
Input Current in Normal Mode	IQ	EN = High. In PSM without switching.		3	5	mA
Input Current in Standby Mode	ISHDN	EN = Low.		15	30	μA

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Switching Freque	ncy	·				
			200	250	300	
			260	325	390	
			320	400	480	
Switching	form		400	500	600	
Frequency	fsw	Programmable by 0x0D[2:0]	492	615	738	kHz
			584	730	876	
			676	845	1014	
			768	960	1152	
Soft-Start						
Soft-Start Charge Current	lss		5	6	7	μA
Constant-Voltage	(CV) and Cons	tant-Current (CC) Output Levels				
CSOUTP and CSOUTN Operating Voltage Range			3		36	V
CV Regulated		11-bit DAC, VOUT Ratio = 0.08V/V, 12.5mV/step	3		25.6	V
Voltage Range at VOUT Pin	Vreg_vout	11-bit DAC, VOUT Ratio = 0.05V/V, 20mV/step	3		36	V
CV Regulated Voltage Accuracy at VOUT Pin		Vreg_vout = 5V/9V/12V/15V/20V	-1.5		1.5	%
CSOUTP to CSOUTN Built-in Offset Voltage				1.5		mV
CSINP to CSINN Built-in Offset Voltage				4.5		mV
Output CC Regulated Voltage Range	Vref_cc_out	VCSOUTP and VCSOUTN > 3V, with GAIN_OCS = 10x, ΔVREF_CC_OUT = 0.24mV/step, and R30 = 10mΩ for IREF_CC_OUT = 24mA/step	3		58	mV
Output CC Regulated Voltage Accuracy		Vcsoutp and Vcsoutn > 3V, VREF_cc_out = 10mV/30mV/50mV, GAIN_OCS = 10x, R30 = 10mΩ	-1		1	mV
Input CC Regulated Voltage Range	Vref_cc_in	VCSINP and VCSINN > 3V, with GAIN_ICS = 10x, ΔVREF_CC_IN = 0.24mV/step, and R29 = 10mΩ for IREF_CC_IN = 24mA/step	3		58	mV
Input CC Regulated Voltage Accuracy		VcsiNP and VcsiNN > 3V, VREF_cc_IN = 10mV/30mV/50mV, GAIN_ICS = 10x, R29 = 10mΩ	-3		3	mV

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Minimum Regulated		6-bit DAC, VIN Ratio = 0.08V/V, 350mV/step	4.55		22.05	V
Voltage Range at VIN Pin	VREG_VIN	6-bit DAC, VIN Ratio = 0.05V/V, 560mV/step	7.28		35.28	v
Constant-Voltage	(CV) and Cons	tant-Current (CC) Error Amplifiers				
Trans- conductance of COMPV Error Amplifier	Gmv	ICOMPV = ±20μA	382	550	718	μA/V
Maximum Sink/Source Current of COMPV Error Amplifier				54		μΑ
Trans- conductance of COMPI Error Amplifier	Gmi	I _{СОМРI} = ±20µА	382	550	718	μA/V
Maximum Sink/Source Current of COMPI Error Amplifier				54		μΑ
On-Time Timer Co	ontrol and ZCD					
Minimum On- Time	ton_min			200	230	ns
Minimum Off- Time	toff_min			200	230	ns
Q4 ZCD Voltage Threshold	Vzcd			4		mV
ZC Mask Time	tZCD_Mask			250		ns
Gate Drivers						
HDRV1/2 Pull-Up Resistance	RHDRVx_SRC	VBOOT1/2 – VSW1/2 = 5V, VBOOT1/2 – VHDRV1/2 = 0.1V		1		Ω
HDRV1/2 Pull- Down Resistance	RHDRVx_SNK	VHDRV1/2 – VSW1/2 = 0.1V		0.7		Ω
LDRV1/2 Pull-Up Resistance	RLDRVx_SRC	VVDDP – VLDRV1/2 = 0.1V		2		Ω
LDRV1/2 Pull- Down Resistance	RLDRVx_SNK	VLDRV1/2 = 0.1V		0.4		Ω
				30		
Dead Time	tDT	Programmable by 0x0F[7:6]		50		ne
				70		ns
				90		

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
SW1/2 Pull-Down Period for Charging Bootstrap Capacitor				250		ns
Operating Frequency of Internal Charge Pump for BOOT1/2				10		MHz
Protections: Over (OVP, UVP, OCP, 0		rvoltage, Overcurrent and External Ove	er-Temper	ature Pro	tections	
Input OVP Trip Threshold	Vovp_input	0x0C[7] = 1		27		V
				115		
Output OVP Trip Threshold	Vovp	Programmable by 0x0B[1:0]		120		%
				125		
Output OVP Recovery Threshold	Vovp_r	Hiccup mode of protection type		500		mV
				96		
Output OVP Delay Time at	to up wit	Programmable by 0x0B[5:4]		192		
VOUT Pin	tovp_int			288		μs
				386		
				50		
Output UVP Trip		Brogrommoble by 0x0C[1:0]		60		%
Threshold	Vuvp	Programmable by 0x0C[1:0]		70		70
				80		
Output UVP Recovery Threshold	Vuvp_r	Hiccup mode of protection type		500		mV
				256		
Output UVP Delay Time at	tuvp_int	Programmable by 0x0C[5:4]		512		
VOUT Pin				768		μs
				1024		
Peak Current Protection	Іроср	R29 = 10mΩ, 0x0A = 24h		13.2		А
Thermal Shutdown	TSD			150		
Thermal Shutdown Hysteresis				25		°C
Power Good and	DIS					
Power Good	Vth_pg	VOUT rising for % of VOUT, PGOOD from low to high		90		0/_
Threshold	ΔV TH_PG	VOUT falling for % of VOUT, PGOOD from high to low		5		- %

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

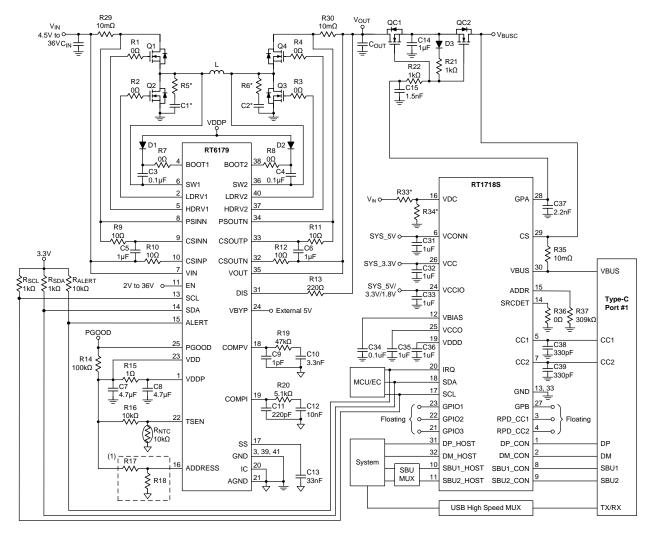
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Power Good Output Low Voltage	Vpg_l	ISINK = 1mA			0.4	v
Discharge Resistor at DIS Pin	Rdis	V _{DIS} = 0.5V		6		Ω
ADC Reporting					-	
Input Voltage Reporting		Vvin	-2.5		2.5	%
Output Voltage		V VOUT $\leq 5V$	-2.5		2.5	%
Reporting		VVOUT > 5 V	-2		2	70
TSEN Voltage Reporting			-30		30	mV
		VCSINP – VCSINN = 40mV, VCSOUTP – VCSOUTN = 40mV	-2.5		2.5	
Input and Output Current Reporting		VCSINP – VCSINN = 20mV, VCSOUTP – VCSOUTN = 20mV	-4		4	0/
		VCSINP – VCSINN = 10mV, VCSOUTP – VCSOUTN = 10mV	-7		7	%
		VCSINP – VCSINN = 5mV, VCSOUTP – VCSOUTN = 5mV	-15		15	
I ² C Interface (N	lote 6)					
SCL, SDA Input	Viн	Rising	1.2			
Voltage	VIL	Falling			0.4	V
		Fast mode		400		kHz
SCL Clock Rate	fscl	Fast plus mode		1		N411-
		High speed mode, load 100pF max.			3.4	MHz
Hold Time (Repeated) Start Condition.		Fast mode	0.6			
After this Period, the First Clock Pulse is Generated	thd;sta	Fast plus mode	0.26			μs
Low Period of the	t. 0.11	Fast mode	1.3			
SCL Clock	tLOW	Fast plus mode	0.5			μs
High Period of the	turou	Fast mode	0.6			
SCL Clock	tнigн	Fast plus mode	0.26			μs
Set-Up Time for a		Fast mode	0.6			
Repeated START Condition	ts∪;sta	Fast plus mode	0.26			μs
Data Hold Time	tup.p.t	Fast mode	0			
	thd;dat	Fast plus mode	0			μs

Copyright © 2023 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Data Sat Lin Tima	toupat	Fast mode	100			
Data Set-Op Time	ata Set-Up Time tsu;DAT	Fast plus mode	50			ns
Set-Up Time for	toutoro	Fast mode	0.6			
STOP Condition	tsu;sto	Fast plus mode	0.26			μs
Bus Free Time between a STOP	etween a STOP nd START	Fast mode	1.3			
and START Condition		Fast plus mode	0.5			μs
Rising Time of	4-	Fast mode	20		300	
both SDA and SCL Signals	tR	Fast plus mode			120	ns
Falling Time of	4-	Fast mode	20		300	
both SDA and tF SCL Signals	Fast plus mode			120	ns	
SDA Output Low Sink Current	IOL	SDA voltage = 0.4V	2			mA

Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Note 2. Devices are ESD sensitive. Handling precautions are recommended.


Note 3. The device is not guaranteed to function outside its operating conditions.

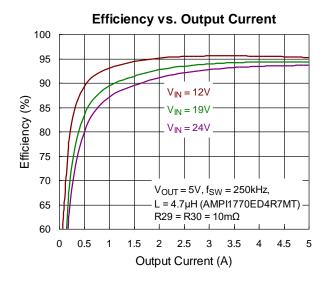
Note 4. For more information about thermal parameter, see the Application and Definition of Thermal Resistances report, AN061.

Note 5. Guaranteed by design.

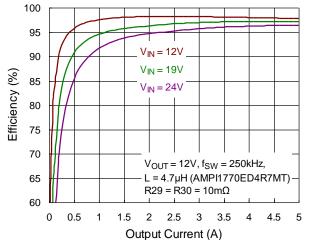
Typical Application Circuit

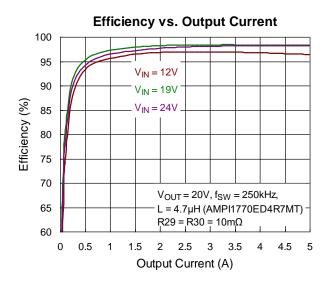
RT6179 + TCPC IC (RT1718S) for Monitor

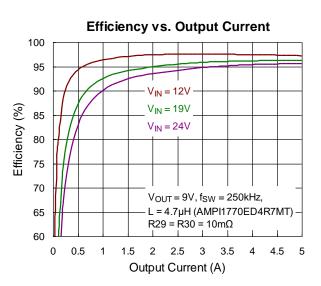
Note:

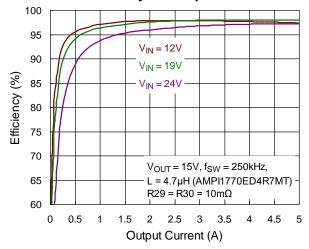

- (1) I^2C slave address is 0x2C when R17 = NC, R18 = 100k Ω . I^2C slave address is 0x2D when R17 = 100k Ω , R18 = NC.
- (2) *: Optional components
 - \checkmark R5, R6, C1 and C2 are used for Snubber.
 - ✓ Refer to RT1718S datasheet to set R33 and R34 for VDC pin.

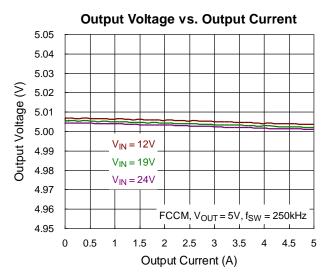
RICHTEK

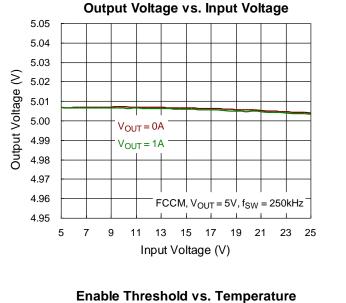

Table 1. Recommended BOM									
Reference	Qty	Part Number	Description	Package	Manufacture				
U1	1	RT6179	DC-DC Controller	WQFN-40L 5x5	RICHTEK				
	1	AMPI1770ED4R7MT	4.7μH	17.0 x 17.0 x 7.0	ARLITECH				
L1	1	7443551470	4.7µH	12.8 x 12.8 x 6.2	WÜRTH ELEKTRONIK				
	1	CMMB135T4R7MS	4.7μH	13.45 x 12.6 x 4.8	CYNTEC				
0	1	350ARHA101M08X8	100μF/35V/23mΩ	EC-2P_8_3-5MM	APAQ				
C _{IN}	4	GRM31CR61H106KA12	10μF/50V	C-1206	MURATA				
0	1	350ARHA101M08X8	100μF/35V/23mΩ	EC-2P_8_3-5MM	APAQ				
Соит	4	GRM31CR61H106KA12	10μF/50V	C-1206	MURATA				
R29, R30	2	RLM-1632-6F-R010-FNH	Current Sense Resistor	R-1206	CYNTEC				
01.01	2	SM4514NHKP	30V High-Side N-MOSFET for USB-PD 3.0 SPR Mode	DFN5x6-8	SINOPOWER				
Q1, Q4	2	SM4037NHKP	40V High-Side N-MOSFET for USB-PD 3.1 EPR Mode	DFN5x6-8	SINOPOWER				
00.00	2	SM4512NHKP	30V Low-Side N-MOSFET for USB-PD 3.0 SPR Mode	DFN5x6-8	SINOPOWER				
Q2, Q3	2	SM4035NHKP	40V Low-Side N-MOSFET for USB-PD 3.1 EPR Mode	DFN5x6-8	SINOPOWER				
001 000	2	SM3425NHQA	30V Power Path N-MOSFET for USB-PD 3.0 SPR Mode	DFN3.3x3.3-8	SINOPOWER				
QC1, QC2	2	SM3430NHQA	40V Power Path N-MOSFET for USB-PD 3.1 EPR Mode	DFN3.3x3.3-8	SINOPOWER				
D1, D2, D3	3	1N4148WS	Diode	SOD-323	PANJIT				

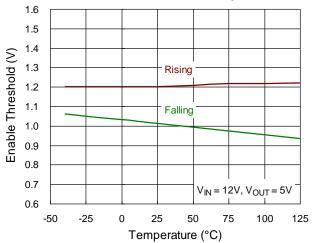

Copyright © 2023 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

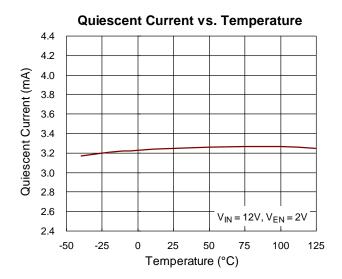

Typical Operating Characteristics

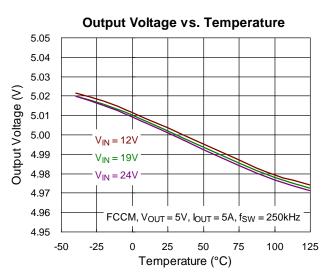

Efficiency vs. Output Current

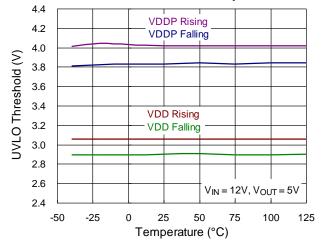


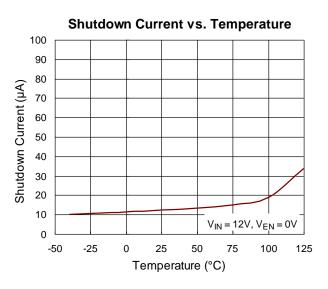


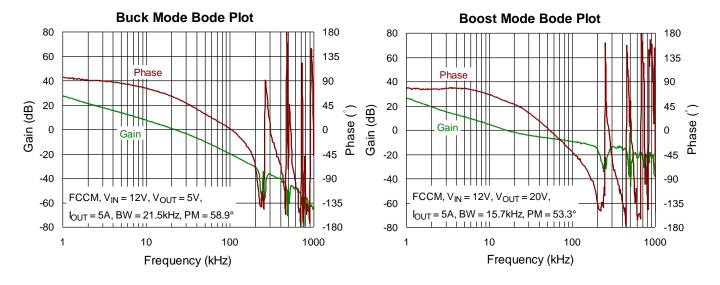

Efficiency vs. Output Current



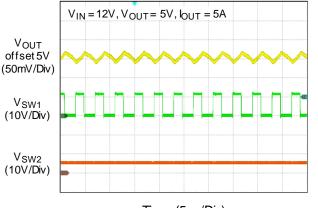


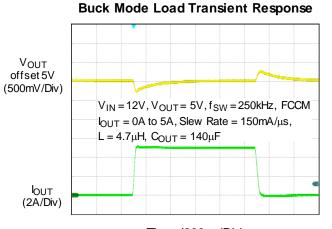




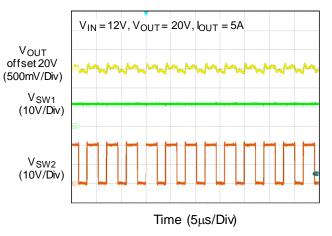


UVLO Threshold vs. Temperature

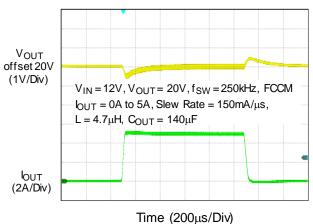



Copyright © 2023 Richtek Technology Corporation. All rights reserved.

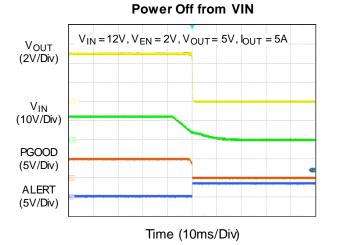
Buck Mode Output Ripple Voltage

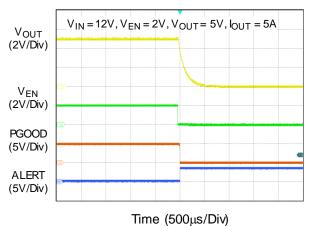


Time (5µs/Div)

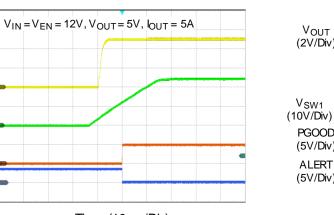


Time (200µs/Div)

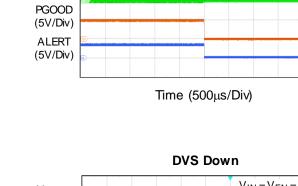

Boost Mode Output Ripple Voltage

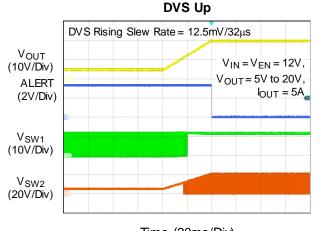


Power Off from EN

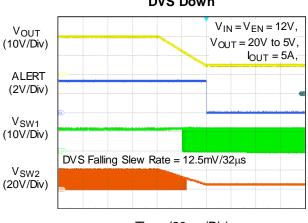


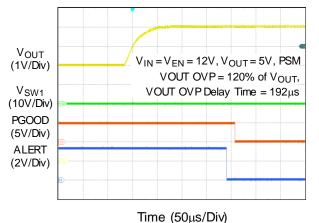
Power Off from I2C

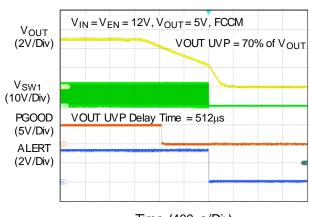

 $V_{IN} = V_{EN} = 12V, V_{OUT} = 5V, I_{OUT} = 5A$


VOUT (2V/Div)

Power On from I2C $V_{IN} = V_{EN} = 12V, V_{OUT} = 5V, I_{OUT} = 5A$ VOUT (2V/Div) SS (2V/Div) PGOOD (5V/Div) ALERT (5V/Div)



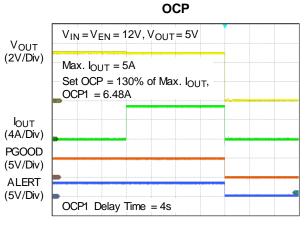


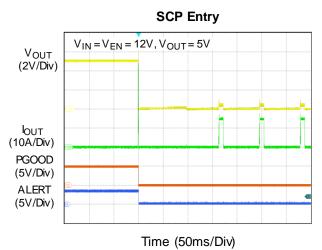


Time (20ms/Div)

Copyright © 2023 Richtek Technology Corporation. All rights reserved.	RICHTEK	is a registered trademark of Richtek Technology Corporation.				
www.richtek.com		DS6179-00	July	20		

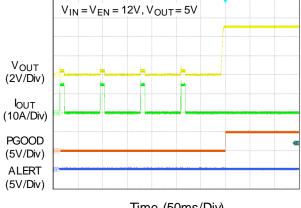
VOUT OVP




Time (400µs/Div)

Timer1 and Watchdog

VOUT UVP



Time (4s/Div)

Time (50ms/Div)

 $V_{IN} = V_{EN} = 12V, V_{OUT} = 5V,$

IOUT = 0A, Timeout = 8s

Copyright © 2023 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

V_{OUT} (2V/Div)

SDA (2V/Div)

PGOOD

(5V/Div)

ALERT

(2V/Div)

Operation

The RT6179 is a 4-switch Buck-Boost controller to support USB-PD 3.0 SPR mode and 28V of 3.1 EPR mode. The input voltage range is from 4.5V to 36V, and the output range is from 3V to 36V. The RT6179 utilizes peak current mode control to obtain fixed switching frequency from 250kHz to 1MHz. This control topology is also used for constant voltage (AnyVoltTM) regulation and constant current (AnyCurrentTM) regulation. The RT6179 also provides DVS function to set the output voltage dynamically with different rising and falling slew rate. By status change detected function, the host can quickly and easily understand what a warning or fault events have occurred from external ALERT pin of RT6179. With the cable voltage drop compensated function, the output voltage can be adjusted in heavy load condition for different equivalent series resistance (ESR) of USB cables.

The RT6179 implements fully protection including input undervoltage lockout (UVLO), input and output over/undervoltage protection (OVP/UVP), output overcurrent protection (OCP), input cycle-by-cycle peak/average current limit and OTP. It is recommended to use $10m\Omega/1206$ with 1W power dissipation as current sense resister for overcurrent condition.

UVLO, Enable Control and Soft-Start

The RT6179 implements undervoltage lockout (UVLO) protection to prevent insufficient input voltage by monitoring VIN, VDD and VDDP pins. When the input voltage of these pins are lower than UVLO threshold, IC stops switching and resets all digital functions.

The RT6179 provides an EN pin to enable or disable the device externally. When EN pin voltage falls below a logic-low threshold voltage (VENL), the RT6179 will enter to shutdown mode and reset all digital functions even if the input voltage of relative pins are above each UVLO threshold (VUVLO). In shutdown mode, the supply current can be reduced to ISHDN (typically 15 μ A). Once the EN pin voltage rises above a logic-high threshold voltage (VENH) and VIN is higher than its UVLO threshold, the VDD pin voltage will be regulated at 5V for internal digital circuits and VDDP for internal MOSFET gate drivers. After VDD and VDDP are higher

up with $50\mu s$ (typ.) delay time.

The RT6179 provides adjustable soft-start function by connecting a capacitor from SS pin to AGND to prevent large inrush current during start-up. The soft-start time can be calculated as below equation:

$$t_{SS}(ms) = \frac{C_{SS}(nF) \times 0.9V}{I_{SS}(\mu A)}$$

Figure 1 shows the start-up sequence with enable control by software. When VIN is above UVLO threshold voltage and EN is higher than a logic-high threshold voltage, internal digital circuit will be enabled after VDD and VDDP rise above each UVLO threshold. If software EN (0x0E[7]) changes to "1", the VOUT starts to ramp up when SS voltage is higher than 0.7V. After SS voltage reaches to 2.3V, PGOOD will change to high level with 512 μ s (typ.) delay time.

For power-off condition, RT6179 can be disabled by internal software EN (0x0E[7]) and external EN pin. When RT6179 is disabled by software, the discharge resistor can be controlled to on or off by register 0x0E[4]. Once the RT6179 is disabled by external EN pin, the output voltage will ramp down with default discharge resistor on. In both software and hardware disabled operation, PGOOD will go low after 16 μ s (typ.) delay time after SS pin voltage is pulled low by internal discharging current. The power-off sequence is shown in Figure 2 and Figure 3.

than UVLO threshold voltage, the VOUT starts to ramp

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

is a registered trademark of Richtek Technology Corporation.

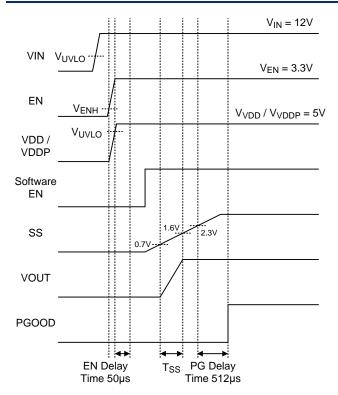
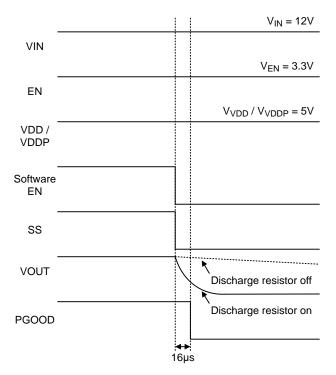
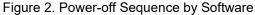
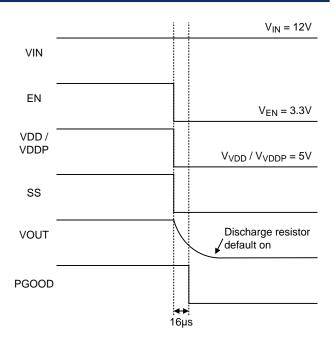





Figure 1. Start-up Sequence by Software

RT6179

Figure 3. Power-off Sequence by external EN Pin

Dynamic Voltage Scaling (DVS)

The RT6179 provides DVS function with wild voltage range for setting output voltage dynamically. Based on voltage ratio setting of register 0x11[5], output voltage can be set with different resolution by using register 0x01 and 0x02. The RT6179 also support DVS rising and falling slew rate selection by using register 0x0D[6:3], the default factory setting of 0x0D[6:3] is "1111" for DVS rising and falling slew rate = $\Delta VOUT/32 \mu s.$

The ALERT PG bit, 0x1F[6], will change to "1" when the output voltage reaches to target voltage, and then external ALERT pin will go low immediately. The RT6179 also support Mask function by register 0x21[6] to make external ALERT pin not go low after DVS operation end. In addition, register 0x37[2] and 0x38[2] shows 275ms timeout indication if output voltage do not reach to target level within 275ms, and this mechanism also has Mask function by register 0x39[2].

AnyVolt[™] Constant Voltage (CV) Regulation

The RT6179 utilizes peak current mode control topology as main control loop for output constant voltage (CV) regulation. The output voltage is used to compare with the internal reference voltage to obtain an error signal by sensing VOUT pin voltage. This error signal is externally compensated on COMPV pin to compare with

RICHTEK

the inductor current sensed on the output current sense resistor. As the signal relative inductor current falls below the compensated error signal, the HDRV1 or LDRV2 will be turned on with a time interval to make inductor current ramp up. As the inductor current reaches to peak current threshold (0x09[5:0]), the HDRV1 or LDRV2 turned off and LDRV1/HDRV2 will be turned on until an internal oscillator initializing next switching cycle.

AnyCurrent[™] Constant Current (CC) Regulation

The RT6179 also implements average current control loop by sensing the voltage across output current sense resistor R30 for output constant current (CC) regulation. The voltage across output current sense resistor is used to compare with the output CC level as register 0x03/0x04 to obtain an error signal, and then this error signal is externally compensated on COMPI pin. When the voltage across output current sense resistor is higher than output CC level, the COMPI pin voltage will fall below COMPV pin voltage to limit and keep the output current as output CC level. As the output current becomes higher than output CC level, RT6179 will limit the output current and then output voltage will lower than regulation point until UVP happened. In addition, it is recommended to use $10m\Omega/1206$ with 1W power dissipation as current sense resister for correct operation.

Mode Selection

The RT6179 provides operation mode selection for light load Power Saving Mode (PSM) and Forced-CCM Mode (FCCM) by using register 0x0D[7]. The default factory setting of operation mode is light load PSM.

Power Saving Mode

When 0x0D[7] = 0, RT6179 operates in PSM and automatically reduces switching frequency at light-load conditions to maintain high efficiency. The internal zero current detection (ZCD) circuitry will be enabled to sense the inductor current by utilizing RDS(ON) of the Q4 N-MOSFET in typical application circuit. As the inductor current drops to zero and becomes negative, both HDRVx and LDRVx are turned off with the output capacitor supplying the load current until the output voltage falls below the internal reference voltage. In reverse, when the output current increases from light load to heavy load, the switching frequency will increase to 250kHz (default factory setting) as the inductor current reaches the continuous conduction condition.

FCCM Mode

When 0x0D[7] = 1, the internal ZCD circuitry is disabled and the RT6179 operates in FCCM with typically 250kHz (default factory setting) at any load condition. This mode trades off reduced light load efficiency for low output voltage ripple, tight output voltage regulation, and constant switching frequency.

ADC Reporting

The RT6179 provides ADC function to report input/output voltage and current and TSEN pin voltage by utilizing register 0x12 to 0x1B with 11-bit resolution. Register 0x10[1] is the enable control bit for ADC function, and 0x10[7:6] is the average times of ADC function. The default factory setting of 0x10 is 82h for ADC function default enable with average 8 times. Please see the I²C register map for detail description of register 0x12 to 0x1B.

Cable Voltage Drop Compensation

The RT6179 implements cable voltage drop compensation to adjust the output voltage in heavy load condition for different equivalent series resistance (ESR) of USB cables. Register 0x0E[2:0] can set different compensation, and the default factory setting of 0x0E[2:0] is 000 for cable voltage drop compensation function default disabled.

Power Good Indication

The RT6179 provides a power good indication with open-drain output capability to show the output voltage status. When output voltage is between 90% and 120% (typically OVP trip threshold of default factory setting) of reference voltage, the external PGOOD pin keeps as high level and internal PGOOD bit changes to "1" in register 0x1D[6] and 0x1F[6]. Register 0x1F[6] also shows the output voltage status for DVS operation,

0x1F[6] will change to "1" if the output voltage reaches to the target voltage whether in DVS up or down operation.

External Thermal Sense

The RT6179 provides an external thermal sense function to sense the temperature of external components such as inductor or MOSFETs by connecting a negative temperature coefficient (NTC) thermistor from TSEN pin to AGND and a resistor from VDD to TSEN pin. Register 0x1A/0x1B can report the TSEN pin voltage from 0V to 2V with 1mV resolution while ADC function is enabled (0x10[1] = 1).

Spread-Spectrum Operation

Due to periodicity of the switching signals, the energy concentrates in one particular frequency and in its harmonics. These levels of energy will be radiated to induce potential EMI issues. The RT6179 provides spread-spectrum function by register 0x11[7] for simplifying in compliance with the CISPR and EMI requirements.

After the soft-start end, the spread-spectrum can be enabled with a pseudo random sequence and used +8% spread of the switching frequency.

Timer1 and Watchdog Function

The RT6179 implements a Timer1 function to detect Host status if system hang occurred without any protection be detected. Register 0x30[6:4] selects different Timer1 timeout, and the default factory setting value of 0x30[6:4] is 000 for Timer1 disabled. Timer1 will begin to count if $0x30[6:4] \neq 000$, and ALERT pin keeps high level if Timer1 is still counting. After Timer1 timeout completed, external ALERT pin will go to low level.

The RT6179 also implements a watchdog function to reset IC to factory default setting after watchdog timeout completed if ALERT pin keeps as low level. Register 0x30[2:0] selects different watchdog timeout, and the default factory setting value of 0x30[2:0] is 000 for watchdog disabled.

Status Change Detection and ALERT Pin

The RT6179 implements a status change detection to alert the host when a warning or fault events have occurred by using external ALERT pin with push-pull output capability for active low behavior. The warning events are input UVLO, Timer1 and PGOOD, and the fault events are the conditions of overvoltage, undervoltage, overcurrent and over-temperature. In addition, PGOOD event indicates output voltage status for normal and DVS operation.

Register 0x1C, 0x1D, 0x1E and 0x1F can help host to know what the warning of fault events happened. 0x1C and 0x1D will be cleared to default setting "0" if the event is removed, but 0x1E and 0x1F will be cleared to default setting "0" by writing this bit to "1" after the events removed only. The RT6179 also supports mask function to mask or pass the internal event flag output to external ALERT pin by using 0x20, and 0x21 registers. The overall detection function is shown in Figure 4.

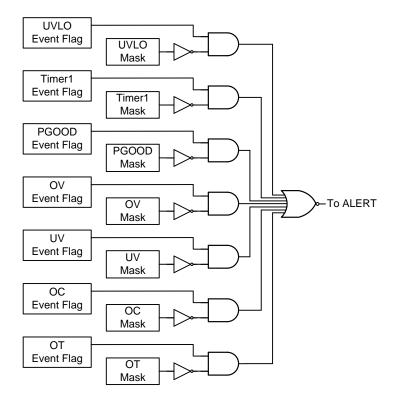


Figure 4. Overall Detection Function Block Diagram

Protection

The RT6179 implements fully protective mechanism including over/undervoltage protection (OVP/UVP) for VOUT pin, output overcurrent protection (OCP), input cycle-by-cycle peak/average current limit, over-temperature protection (OTP) and input OVP/UVP. The protection type of RT6179 is latched-off operation, and RT6179H is hiccup operation.

Output Overvoltage Protection (OVP)

The RT6179 provides output overvoltage protection (OVP) by constantly monitoring output voltage for VOUT pin. If VOUT is larger than the OVP trip threshold (typically 120%) with relative OVP delay time, HDRVx will stop switching and LDRVx will fully turn on to discharge energy of the inductor immediately until ZCD triggered. Register 0x0B[5:0] can select different OVP trip threshold and OVP delay time, and OVP trip threshold can also be adjustable by register 0x2B[4] and 0x36.

In latched-off operation, RT6179 will return to normal operating unless resetting IC by 0x0E[7] after OVP happened.

For hiccup behavior, RT6179H will return to last state before OVP happened and the output voltage will back to regulation point after OVP released.

Output Undervoltage Protection (UVP)

The RT6179 provides output undervoltage protection (UVP) against over-load or short-circuit condition by constantly monitoring output voltage for VOUT pin. If VOUT drop below the UVP trip threshold (typically 70%) with relative UVP delay time, HDRVx will stop switching and LDRVx will fully turn on to discharge energy of the inductor immediately until ZCD triggered. Register 0x0C[5:0] can select different UVP trip threshold can also be adjustable by register 0x2B[5] and 0x35.

In latched-off operation, RT6179 will return to normal operating unless resetting IC by 0x0E[7] after UVP happened. For hiccup behavior, both HDRVx and LDRVx of RT6179H will keep low state in 65ms and then IC starts to switch. If the output voltage is not greater than UVP trip threshold after internal soft-start end signal triggered, both HDRVx and LDRVx will still keep low state again for next cycle.

Output Overcurrent Protection (OCP) and Input Peak/Average Current Limit

The RT6179 provides overcurrent protection (OCP) and cycle-by-cycle current limit to prevent IC from the catastrophic damage in output short-circuit, overcurrent or inductor saturation conditions. For OCP function, RT6179 monitors the voltage across output current sense resistor R30 for OCP1/OCP2 detection. If OCPx is triggered with relative OCP delay time, HDRVx will stop switching and LDRVx will fully turn on to discharge energy of the inductor immediately until ZCD triggered. Register 0x22/0x23 and 0x26/0x27 can select OCP trip threshold and delay time, and 0x28[5:4] are the control bits for OCPx enable.

In latched-off operation, RT6179 will return to normal operating unless resetting IC by 0x0E[7] after OCPx happened. For hiccup behavior, RT6179H will return to last state before OCPx happened and the output voltage will back to regulation point after OCPx released.

The RT6179 also monitors the voltage across input current sense resistor R29 for cycle-by-cycle peak and average current limit function. When peak or average current limit is triggered, RT6179 will limit the output current and then output voltage will lower than regulation point until UVP happened. Register 0x0A can set input peak current-limit threshold, and register 0x06/0x07 can set input average current-limit threshold.

Input Over/Undervoltage Protection (OVP/UVP)

The RT6179 also provides OVP and UVP by constantly monitoring input voltage for VIN pin. Register 0x0C[7] is used to enable or disable input OVP, and the default factory setting of input OVP is disabled. If input voltage is larger than OVP trip threshold (default factory setting is 27V), HDRVx will stop switching and LDRVx will fully turn on to discharge energy of the inductor immediately until ZCD triggered.

In addition, register 0x05 can be used to set minimum input voltage level in FCCM operation. When the input voltage is lower than minimum input voltage level, COMPV will be pulled low to make output voltage be lower than regulation point until output UVP is triggered.

Output Over-Temperature Protection (OTP)

The RT6179 includes an over-temperature protection (OTP) circuitry to prevent overheating condition. When junction temperature exceeds a thermal shutdown threshold T_{SD} with latched-off operation, the RT6179 will stop switching and resume normal operation unless resetting IC by 0x0E[7] after the junction temperature is lower than thermal shutdown hysteresis (Δ T_{SD}). For hiccup operation, the RT6179H resumes normal operation immediately once the junction temperature cools down by Δ T_{SD}.

Application Information

Richtek's component specification does not include the following information in the Application Information section. Thereby no warranty is given regarding its validity and accuracy. Customers should take responsibility to verify their own designs and reserve suitable design margin to ensure the functional suitability of their components and systems.

A general RT6179 application circuit is shown in typical application circuit section. External component selection is largely driven by the load requirement and begins with the operating frequency from setting register 0x0D[2:0]. Then the inductor (L), the input capacitor (CIN), and the output capacitor (COUT) can be determined in this section. In addition, other external components such as the internal regulator capacitor of VDD and VDDP pins, resistor and capacitor of the bootstrap network circuit, and the gate driver resistors for external power N-MOSMET will also be introduced. Finally, the discharge resistor from DIS pin to the output capacitor can be calculated to meet the USB power delivery specification.

Inductor Selection

The inductor selection makes trade-offs among size, cost, power conversion efficiency, and transient response requirements. Generally, three key inductor parameters are specified for operation with the device: inductor value (L), inductor saturation current (ISAT), and DC resistance (DCR). A good compromise between inductor size and power loss is from a 30% to 50% peak-to-peak ripple current to the IC rated current. The switching frequency, input voltage, output voltage, and selected inductor ripple current determines the inductor value for Buck and Boost operations as follows:

$$L_{BUCK} = \frac{(V_{IN} - V_{OUT})}{\Delta I_{L} \times f_{SW}} \times \frac{V_{OUT}}{V_{IN}}$$

$$L_{BOOST} = \frac{V_{IN}}{\Delta I_L \times f_{SW}} \times \frac{(V_{OUT} - V_{IN})}{V_{OUT}}$$

Larger inductance values result in lower output ripple voltage and higher efficiency, but a slightly degraded load transient response. This result in additional phase lag in the loop and reduce the crossover frequency. As the ratio of the slope compensation ramp to the sensed current ramp increases, the current-mode system tilts towards voltage-mode control. Lower inductance values allow for smaller case size, but the increased ripple current lowers the effective input peak current-limit threshold and increases the AC losses in the inductor. To enhance the power conversion efficiency, choose a low-loss inductor with the lowest possible DC resistance that fits in the allotted dimensions. The inductor value determines not only the ripple current but also the loadcurrent value at which DCM/CCM switchover occurs. The selected inductor should have a saturation current rating greater than the peak current limit setting by RT6179, and the core must be large enough not to saturate at the peak inductor current (IL_PEAK):

RICHTEK

$$\Delta I_{L_BUCK} = \frac{(V_{IN} - V_{OUT})}{L \times f_{SW}} \times \frac{V_{OUT}}{V_{IN}}$$

$$\Delta I_{L_BOOST} = \frac{V_{IN}}{L \times f_{SW}} \times \frac{\left(V_{OUT} - V_{IN}\right)}{V_{OUT}}$$

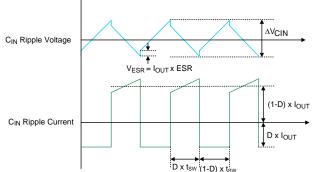
$$I_{PEAK} = I_{OUT_MAX} + \frac{1}{2} \times (\Delta I_{BUCK} \text{ or } \Delta I_{BOOST})$$

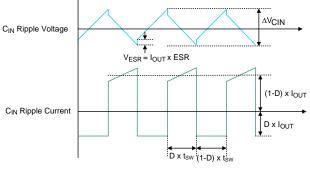
The current flowing through the inductor is the inductor ripple current plus the output current. During power up, faults or transient load conditions, the inductor current can increase above the peak inductor current level calculated above. In load transient conditions, the inductor current can increase up to the input peak current limit setting by RT6179. For this reason, the most conservative approach is to specify an inductor with a saturation current rating equal to or greater than the input peak current limit rather than the peak inductor current.

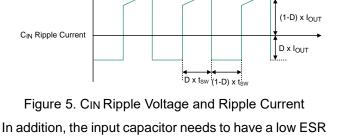
Input Capacitor Selection

Since the input current is discontinuous conduction in Buck mode, and continuous conduction in Boost mode, the input capacitor (CIN) is needed to filter the pulsating current at the drain terminal of an external power N-MOSFET Q1 for Buck mode only. CIN should be sized to do this without causing a large variation in input voltage. By using solid or electrolytic capacitors as the input bulk capacitor, the peak-to-peak voltage ripple on input capacitor can be estimated as equation below:

$$\Delta V_{CIN} = I_{OUT} \times \frac{D \times (1 - D)}{C_{IN} \times f_{SW}} + I_{OUT} \times ESR_{CIN}$$


where D = VOUT/VIN, and ESRCIN is the equivalent series resistance of the input capacitor.


Then, the minimum value of effective input capacitance can be estimated with ESR as equation below:


 $C_{IN_MIN} = I_{OUTMAX} \times \frac{D \times (1 - D)}{(\Delta V_{CIN_MAX} - I_{OUT_MAX} \times ESR_{CIN}) \times f_{SW}}$

assume $\Delta VCIN_MAX = 200 mV$ for typical application.

Figure 5 shows the CIN ripple current flowing through the input capacitors and the resulting voltage ripple across the input capacitors.

and must be rated to handle the worst-case RMS input current. The RMS input ripple current (ICIN_RMS) of the regulator can be determined by the input voltage (VIN), output voltage (Vout), and maximum output current (IOUT_MAX) as the following equation:

ICIN_RMS \cong IOUT_MAX $\times \sqrt{D \times (1-D)}$

The worst condition occurs when duty cycle = 50%, then VIN = 2 x VOUT and maximum RMS input ripple current will be 0.5 x IOUT_MAX. Note that ripple current ratings from capacitor manufacturers are often based on 2000 hours life cycle only, which makes it advisable to further de-rate the capacitor, or choose a capacitor with higher temperature rating than required.

The input capacitor should be placed as close as possible to the input current sense resistor R29, and with a low inductance connection from negative side of the input capacitor to S terminal of an external power N-MOSFET Q2. The larger input capacitance is required

for high power application by the combination of larger bulk capacitor and 2 to 4 ceramic capacitors of 10µF with 1206 in size.

In addition, the combination of bulk and ceramic capacitors can provide high ripple current capacity, reduce the output voltage ripple and minimize transient effects during output load change. For filtering high frequency noise, additional small capacitor 1µF with 0603 in size should be placed close to the part. It is recommended to use ceramic capacitors with X7R type and voltage rating up to 50V for best performance across temperature and input voltage variations.

Output Capacitor Selection

The output capacitor (COUT) is determined to satisfy the requirements for output voltage ripple and the load transient response. Similar the input current conduction mode for different operation, the output current is continuous conduction in Buck mode. and discontinuous conduction in Boost mode. COUT needs to decrease the output voltage ripple caused by the pulsating output current in Boost mode. By using solid capacitors as the output bulk capacitor, the peak-topeak voltage ripple on output capacitor can be calculated as equation below:

$$\Delta V_{\text{COUT}} = I_{\text{OUT}} \times \frac{D}{C_{\text{OUT}} \times f_{\text{SW}}} + \frac{I_{\text{OUT}}}{1 - D} \times \text{ESR}_{\text{COUT}}$$

where $D = (V_{OUT} - V_{IN})/V_{OUT}$, and ESRCOUT is the equivalent series resistance of the output capacitor.

Then, the minimum value of effective output capacitance can be calculated with ESR as equation below:

$$C_{OUT_MIN} = I_{OUT_MAX} \times \frac{D}{\left(\Delta V_{COUT_MAX} - \frac{I_{OUT_MAX}}{1 - D} \times ESR_{COUT}\right) \times f_{SW}}$$

where ΔV_{COUT} MAX is the design target to meet system requirement.

In addition, the output capacitor also needs to have a low ESR and must be rated to handle the worst-case RMS output current in real application. The RMS output ripple current (ICOUT_RMS) of the regulator can be determined by the input voltage (VIN), output voltage (VOUT), and maximum output current (IOUT MAX) as the following equation:

RICHTEK

$$I_{COUT_RMS} \cong I_{OUT_MAX} \times \sqrt{\frac{D}{1-D}}$$

Assume VIN_MIN is 12V and VOUT_MAX is 20V defined from system, the duty cycle of the regulator is 40%, and the worst case of RMS output ripple current will be 0.8165 x IOUT_MAX. Note that ripple current ratings from capacitor manufacturers are often based on 2000 hours life cycle only, which makes it advisable to further derate the capacitor, or choose a capacitor with higher temperature rating than required.

The output capacitor should be placed as close as possible to the output current sense resistor R30, and with a low inductance connection from negative side of the output capacitor to S terminal of an external power N-MOSFET Q4. The larger output capacitance is required for high power application by the combination of larger bulk capacitor and 2 to 4 ceramic capacitors of 10µF with 1206 in size. In addition, the combination of bulk and ceramic capacitors can provide high ripple current capacity, reduce the output voltage ripple and minimize transient effects during output load change. For filtering high frequency noise, additional small capacitor 1µF with 0603 in size should be placed close to the part. It is recommended to use ceramic capacitors with X7R type and voltage rating up to 50V for best performance across temperature and input voltage variations.

Loop Compensation Design

In real condition, the undercompensated system may result in unstable operations such as audible noise from the magnetic components or capacitors, larger jitter rate of the switching waveforms, output voltage oscillation, overheating of external power N-MOSFETs and so on. In order to check loop response of the compensated system, the Bode plot can be ideally measured with a network analyzer such as Bode 100. However, the measurements will be error due to parasitic parameters from PCB layout and components nonlinearity such as the ESR variations of output capacitors, linearity of inductors and capacitors, etc. In addition, the limited measurement accuracy of the instrument will also have an influence on measured results.

The RT6179 provides two control loops by connecting relative network circuit from COMPV or COMPI pins to

AGND. The COMPV pin is used for main control loop to ensure loop stability and load transient response requirements, and COMPI pin is used for output constant current function setting by register 0x03/0x04. In addition, the input constant voltage (Register 0x05) function will also have an influence on main control loop. By using peak current mode control topology, the RT6179 will operate in Buck and Boost modes automatically. The used method below can easily calculate the component value for compensation by ignoring the effects of the slope compensation due to its internal to the RT6179.

Since the compensation design is more restrictive when a right half plane zero appeared in boost mode, the COMPV compensation components can be calculated based on Boost mode as the following steps below:

- (1) Assume some parameters for normal operation below:
 - ✓ Input voltage VIN = 12V
 - ✓ Output voltage V_{OUT} = 5V for Buck mode, and V_{OUT} = 20V for Boost mode
 - ✓ Maximum output current IOUT = 5A
 - ✓ Inductor L = 4.7μ H
 - ✓ Output capacitor C_{OUT} = 140µF with R_{ESR} = $1m\Omega$
- (2) Power stage pole and zero location:

$$f_{P_BUCK} = \frac{1}{2\pi} \times \left(\frac{1}{C_{OUT} \times R_{OUT_BUCK}}\right) = 1.14 \text{kHz}$$

$$f_{P_BOOST} = \frac{1}{2\pi} \times \left(\frac{2}{C_{OUT} \times R_{OUT_BOOST}}\right) = 568 \text{Hz}$$

$$f_{Z} = \frac{1}{2\pi} \times \left(\frac{1}{C_{OUT} \times R_{ESR}}\right) = 1.14 \text{MHz}$$

$$f_{Z_RHP} = \frac{1}{2\pi} \times \left(\frac{R_{OUT_BOOST} \times (1 - D_{BOOST})^{2}}{L}\right) = 48.8 \text{kHz}$$

where ROUT_BUCK = 1Ω when VOUT = 5V and max. IOUT = 5A, ROUT_BOOST = 4Ω when VOUT = 20V and max. IOUT = 5A, DBOOST = 0.4 when VIN = 12V and VOUT = 20V.

(3) Set the crossover frequency f_C to be less than onefifth of the right half plane zero fz_RHP in Boost mode.

 Copyright © 2023 Richtek Technology Corporation. All rights reserved.
 RICHTEK is a registered trademark of Richtek Technology Corporation.

 www.richtek.com
 DS6179-00
 July
 2023

RT6179

(4) R19 as the typical application circuit can be calculated as:

$$R19 = \frac{2\pi \times C_{OUT} \times f_{C}}{1 - D_{BOOST}} \times \frac{A_{CS} \times R_{CSI}}{Gmv} \times \frac{1}{VOUT_RATIO}$$

where Acs = 16, Gmv = 550μ A/V, Rcsi = R29 = $10m\Omega$, VOUT_RATIO default factory setting is 0.08 and can be adjustable by register 0x11[5] when 0x0E[7] = 0.

(5) C10 as the typical application circuit can be calculated as:

$$C10 = \frac{C_{OUT} \times R_{OUT}_BOOST}{2 \times R19}$$

(6) C9 as the typical application circuit can be calculated as:

$$C9 = \frac{C_{OUT} \times R_{ESR}}{R19}$$

Based on the equation above, the final compensation components of COMPV can be selected as $R19 = 47k\Omega$, C10 = 3.3nF and C9 = 1pF.

Since the loop response of output constant current function will be slower than main control loop, and a right half plane zero appeared in Boost mode, the crossover frequency fc can be set to less than one-fifth to one-tenth of the right half plane zero f_{Z_RHP} . The COMPI compensation values can be calculated as below:

$$R20 = \frac{A_{CS}}{GAIN_OCS \times Gmi} \times \frac{R_{CSI}}{R_{CSO}} \times \frac{(1 - D_{BOOST})^2}{VIN} \times 2\pi \times C_{OUT}$$
$$\times f_C \times R_{OUT_BOOST}^2$$
$$C12 = \frac{\sqrt{C_{OUT} \times L}}{R20 \times (1 - D_{BOOST})}$$
$$C11 = \frac{1}{2\pi \times f_{Z_RHP} \times R20}$$

where Acs = 16, Gmi = 550μ A/V, Rcsi = R29 = $10m\Omega$, Rcso = R30 = $10m\Omega$, GAIN_OCS = 10 and can be adjustable by register 0x0F[1:0] after RT6179 powered on.

Based on the equation above, the final compensation components can be selected as $R20 = 5.1k\Omega$, C12 = 10nF and C11 = 220pF.

Output Discharge Time Setting

The RT6179 provides output discharge function to

discharge output capacitor quickly by connecting external discharge resistor from DIS pin to the positive side of output capacitor. Register 0x0E[4] is the enable control bit of output discharge function, and the default factory setting of 0x0E[4] = 1 for default output discharge function enable.

When RT6179 operates in power off conditions or DVS down operation, the internal N-MOSFET of DIS pin will be turned on to discharge output capacitor by internal N-MOSFET RDS(ON) (Typically 6Ω) and external discharge resistor. The power off conditions include external EN pin off where output discharge function is default on, and I2C EN_PWM (0x0E[7]) off where output discharge function is controlled by 0x0E[4]. If RT6179 operates in DVS down operation, the output discharge function is enabled only for DVS falling time plus an additional 100ms for correct operation in PSM condition, and this time interval can be calculated by the equation below:

where V_{OUT1} is the initial output voltage before DVS down operation, and V_{OUT2} is the final output voltage after DVS down operation, DVS down slew rate is referred to 0x0D[4:3].

For example, t_{DIS}_{EN} is equal to 138.4ms when DVS down from 20V to 5V with 0x11[5] = 0 and 0x0D[4:3] = 11.

The output voltage is discharged by the external discharge resistance and output capacitance, and discharge time can be calculated by the equation below:

$$t_{\text{DIS}} = \left(R_{\text{DS}(\text{ON})} + R13 \right) \times C_{\text{OUT}} \times \ln \left(\frac{V_{\text{OUT_INI}}}{V_{\text{OUT_FINAL}}} \right)$$

where RDS(ON) is the on-resistance of internal N-MOSFET for DIS pin, R13 is the external discharge resistor which is referred to the application circuit, COUT is the total capacitance of the PWM output, VOUT_INI is the initial output voltage before discharging, and VOUT_FINAL is the final output voltage after discharging. Note that VOUT overvoltage protection will be triggered if RT6179 operates in DVS down operation with PSM and tDIS is longer than tDIS_EN.

 Copyright © 2023 Richtek Technology Corporation. All rights reserved.
 RICHTEK
 is a registered trademark of Richtek Technology Corporation.

 DS6179-00
 July
 2023
 www.richtek.com

RICHTEK

Internal Regulator

The RT6179 integrates a 5V linear regulator (VDD) that is supplied from VIN to provide power to the internal circuitry. For internal MOSFET gate drivers, it is necessary to connect an R-C filter from VDD pin to VDDP pin. The VDD can be used as PGOOD pull-up supply, but it is "NOT" allowed to power other device or circuitry. It is recommended to use 4.7μ F/X5R with 0603 in size and rated voltage higher than 10V as bypass capacitors for VDD and VDDP, and it needs to be placed as close as possible to the VDD and VDDP pins.

Bootstrap Driver Supply

The external bootstrap capacitors (C3/C4) between BOOTx and SWx pins are used to create a voltage rail above the applied input voltage to turn on external power N-MOSFET (Q1/Q4). Once the external power N-MOSFET (Q2/Q3) are turned on, the external bootstrap capacitors can be charged through an internal diode to a voltage equal to approximately VDD each time. It is recommended to use 0.1μ F/X5R with 0603 in size and rated voltage higher than 10V as bootstrap capacitors, and it needs to be placed as close as possible to BOOTx and SWx pins.

External Bootstrap Diode

It is recommended to add an external bootstrap Schottky diode between an external 5V voltage supply and BOOTx pins to improve enhancement of the external power N-MOSFET (Q1/Q4) and improve efficiency when high power application. Refer to D1/D2 of application circuit for correct connection. The external bootstrap Schottky diode can be 1N4148 or BAT54 for low-cost consideration and the external 5V can be a fixed 5V voltage supply from the system, or a VDDP pin voltage for saving power rail. Note that the VBOOTx-SWx must be lower than 5.5V for correct operation.

External Bootstrap Resistor (Option)

The external bootstrap resistors (R7/R8) between BOOTx pins and external bootstrap capacitors (C3/C4) are reserved to reduce the voltage spike at switch node (SW1/SW2). The potential EMI issues will also be minimized due to smaller di/dt noise caused by slow rising slew rate of external power N-MOSFET (Q1/Q4). The external bootstrap resistor selection trade-offs voltage spike at switch node, potential EMI issues and power conversion efficiency. Therefore, the usual range of external bootstrap resistor is from 0Ω to 10Ω with 0603 in size, and it is recommended to use 0Ω for initial setting. Refer to application circuit for correct connection of bootstrap network circuit.

Gate Driver Resistor for External Power N-MOSFET (Option)

The gate driver resistors (R1/R2/R3/R4) are placed optional between HDRVx/LDRVx pins and external power N-MOSFET (Q1/Q2/Q3/Q4). Different from the function of external bootstrap resistor, the rising and falling slew rate of an external power N-MOSFET will be both slow. The gate driver resistors (R1/R4) for the external power N-MOSFET (Q1/Q4) are also used to reduce the voltage spike at switch node (SW1/SW2) to minimize potential EMI issues, but the gate driver resistors (R2/R3) for the external power N-MOSFET (Q2/Q3) are only used to add series resistance to avoid LDRVx turned on rapidly. The gate driver resistor selection also trade-offs voltage spike at switch node, potential EMI issues and power conversion efficiency. Therefore, the usual range of gate driver resistor is from 0Ω to 10Ω with 0603 in size, and it is recommended to use 0Ω for initial setting. Refer to application circuit for correct connection.

RC Snubber Components (Option)

The RC snubber (R5/R6/C1/C2) components are placed optional in parallel with an external power N-MOSFET (Q2/Q3) to avoid larger voltage spike appeared between D and S terminals of an external power N-MOSFET (Q2/Q3). These components are also used to minimize the potential EMI issues due to smaller voltage spike at switch node (SW1/SW2). The RC snubber components selection also trade-offs voltage spike between D and S terminals of an external power N-MOSFET (Q2/Q3), potential EMI issues and power conversion efficiency. Therefore, the usual range of snubber resistor (R5/R6) is from 0Ω to 10Ω , and snubber capacitor (C1/C2) is from 100pF to 1nF. To avoid larger power dissipation on snubber resistor (R5/R6), it is recommended to use 1206 in size when larger snubber capacitor (C1/C2) is selected. Refer to application circuit for correct connection.

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature $T_{J(MAX)}$, listed under Absolute Maximum Ratings, to avoid the permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated by the following formula:

$PD(MAX) = (TJ(MAX) - TA)/\theta JA$

where $T_{J}(MAX)$ is the maximum junction temperature; TA is the ambient temperature; and θ_{JA} is the junction-toambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a WQFN-40L 5x5 package, the thermal resistance, θ_{JA} , is 27.5°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at T_A = 25°C can be calculated as below:

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C)/(27.5^{\circ}C/W) = 3.63W$ for a WQFN-40L 5x5 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J}(MAX)$ and the thermal resistance, θ_{JA} . The derating curves in Figure 6 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

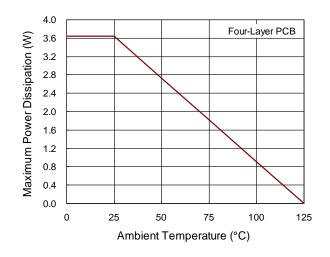


Figure 6. Derating Curve of Maximum Power Dissipation

Layout Considerations

When laying out the printed circuit board, the following checklist should be used to ensure proper operation of the RT6179:

- Four-layer or six-layer PCB with maximum ground plane is strongly recommended for good thermal performance.
- Keep the traces of the main current paths wide and short.
- Place input capacitors, external power N-MOSFETs Q1 and Q2, and input current sense resistor R29 as close together as possible to minimize loop impedance of input switching current.
- Place output capacitors, external power N-MOSFETs Q3 and Q4, and output current sense resistor R30 as close together as possible to minimize loop impedance of output switching current.
- Place multiple vias near the negative side of the input and output capacitor, and the s terminal of external power N-MOSFETs to reduce parasitic inductance and improve thermal performance.
- Place C7 and C8 as close to VDD and VDDP pins as possible.
- Place bootstrap capacitor C3 and C4 as close to IC as possible, and connect directly between BOOTx

Copyright © 2023 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

DS6179-00 July 2023

and SWx pins.

- ► Route the trace with 30mil width for BOOTx, SWx, HDRVx, LDRVx pins, and 20mil for VDD, VDDP pins.
- The high frequency switching nodes, BOOTx and SWx, should be as small as possible, and reduce the area size of SWx exposed copper to minimize the electrically coupling from this voltage. Keep analog components away from the BOOTx and SWx nodes.
- Minimize current sense voltage errors by using Kelvin connection for PCB routing. R29, CSINP/CSINN and VIN/PSINN pins for input current sense, R30, CSOUTP/CSOUTN and VOUT/PSOUTN for output current sense.
- Place the compensation components R19/C9/C10 and R20/C11/C12 near the IC.
- ► Place the soft-start capacitor C13 near the IC.
- Separate AGND and GND planes to avoid noise couple on SS pins and network circuit of COMPV and COMPI pins.

Figure 7. and Figure 8. are the layout example that uses four-layer PCB in size of 132mm x 90mm with 1oz copper thickness.

RT6179

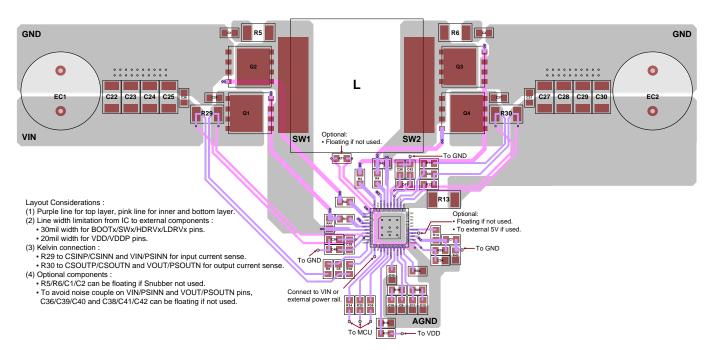


Figure 7. PCB Layout in Top Layer

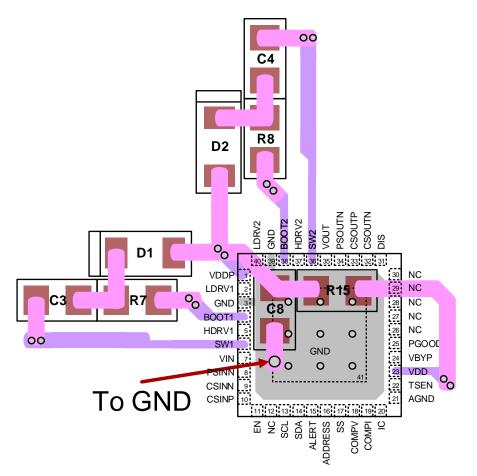


Figure 8. PCB Layout in Bottom Layer

Functional Register Description

The RT6179 I²C slave address can be determined by ADDRESS pin. Connect ADDRESS pin to VDD selects 0x2D, and connect ADDRESS pin to AGND selects 0x2C. The RT6179 supports fast mode (bit rate up to 400kb/s), and the read or write bit stream (N \ge 1) is shown as Figure 9.

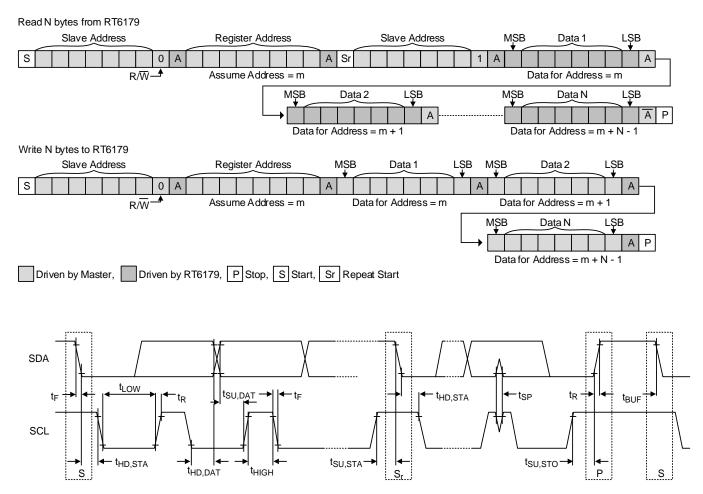


Figure 9. I²C Read/Write Bit Stream and Timing Diagram

Table 2. I²C Register Summary

Register Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
0x00	Manufactur er_ID	MANUFACTURER_ID								0x82
0x01		OUT_CV[7:0]								0x90
0x02	Output_CV		Reserved					OUT_CV[10:	8]	0x01
0x03					OUT_	CC[7:0]				0x59
0x04	Output_CC		Reserved OUT_CC [8]						OUT_CC [8]	0x01
0x05	Input_CV	Rese	erved			IN_	CV			0x00
0x06					IN_C	C[7:0]				0xFF
0x07	Input_CC	Reserved IN_CC[8]								0x01
0x08	Vref_SC	Rese	erved			VRE	F_SC			0x12
0x09	Vref_PSM	GAIN_	VCOMP			VREF	_PSM			0x6E
0x0A	Vref_POCP	Rese	erved			VREF_	POCP			0x24
0x0B	OVP	Rese	erved	OVP_DEI SET	_AY_INT_	Rese	erved	OVP_LEVEL		0x12
0x0C	UVP	EN_IN_ OVP	Reserved	UVP_DEL SET	P_DELAY_INT_ Reserved UVP_LE			LEVEL	0x12	
0x0D	Setting1	F_CCM	SLEWF	RATE_R	SLEWRATE_F FSW			0x78		
0x0E	Setting2	EN_ PWM	DIS_ INCV	DIS_ INCC	EN_ DISCHA RGE	Reserved	eserved IR_COMPR			0x10
0x0F	Setting3	DT_	SEL	GN	I_EA	GAIN	LICS	GAIN	_OCS	0x10
0x10	Setting4	ADC_A	VG_SEL	I2C_ SPEED		Reserved EN_ADC CHARG			0x82	
0x11	RATIO	SSP_EN	VIN_ RATIO	VOUT_ RATIO	Reserved					
0x12	Output_	OUT_VOLTAGE[7:0]						0x00		
0x13	Voltage			Reserved			OUT	_VOLTAGE	[10:8]	0x00
0x14	Output_	OUT_CURRENT[7:0]						0x00		
0x15	Current		Reserved OUT_CURRENT[10:8]					0x00		
0x16	Input_			IN_VOLTAGE[7:0]						0x00
0x17	Voltage			Reserved IN_VOL				VOLTAGE[10:8]		0x00
0x18	Input_				IN_CURI	RENT[7:0]				0x00
0x19	Current	Reserved					IN_CURRENT[10:8]			0x00

RICHT	'EK
-------	------------

Register Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
0x1A	- .	TEMPERATURE[7:0]							0x00	
0x1B	Temperature	Reserved TEMPERATURE[10:8]						0x00		
0x1C	Status1	IN_OVP	OTP	INT_UVP	INT_OVP	NT_OVP Reserved				
0x1D	Status2	Reserved	PG	Reserved	CV_CC	Rese	erved	OCP2	OCP1	0x10
0x1E	Alert1	ALERT_ IN_OVP	ALERT_ OTP	ALERT_ INT_ UVP	ALERT_ INT_ OVP	Reserved				0x00
0x1F	Alert2	ALERT_ OTP_R	ALERT_ RAMP_ PG	ALERT_ TM1	ALERT_ WDT	Reserved ALERT_ ALERT_ OCP2 OCP1			0x00	
0x20	Mask1	M_ALER T_IN_ OVP	M_ALER T_OTP	M_ALER T_INT_ UVP	M_ALER T_INT_ OVP	Reserved				0xFF
0x21	Mask2	M_ALER T_OTP_ R	M_ALER T_RAMP _PG	M_ALER T_TM1	M_ALER T_WDT	Reserved M_ALER T_OCP2		M_ALER T_OCP2	M_ALER T_OCP1	0xFF
0x22	OCP1_ Setting	OCP1_SETTING							0x51	
0x23	OCP2_ Setting	OCP2_SETTING							0x64	
0x26	OCP1 Delay Time	OCP1_ TIME_ LSB	OCP1_TIMING							0x0D
0x27	OCP2 Delay Time	OCP2_ TIME_ LSB	OCP2_TIMING						0x00	
0x28	OCP Enable	Rese	erved OCP2_ OCP1_ Reserved					0x30		
0x2B	PPS	Rese	erved UVP_ OVP_ PPS PPS			Reserved				0xC0
0x30	Watchdog	Reserved	TIMER1_SEL Reserved WATCHDOG_SEL					SEL	0x00	
0x35	UVP_ Reference	UVP_REF							0x21	
0x36	OVP_ Reference	OVP_REF						0xDC		
0x37	Status3		Reserved TO IN_UVLO					0x00		
0x38	Alert3		ALERT_ ALERT_ ALERT_ ALERT_ Reserved TO_ IN_UVL IN_UVL 275MS O_F O_R					0x00		
0x39	Mask3		M_ALER M_ALER M_ALER M_ALER Reserved T_TO_ T_IN_UV T_IN_UV 275MS LO_F LO_R					0x00		

Table 3. I²C Register Map

Register Address	0x	00	Register Name		N	lanufacturer_l	D	
Bits	Bit 7	Bit 6	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1					
Default	1	0	0	0	0	0	1	0
Read/Write	R	R	R	R	R	R	R	R
Bits	Na	me	Description					
Bit 7 to Bit 0	MANUFAC	CTURE_ID	MANUFACTURE_ID					

Register Address	0x	01	Register Name	Output CV						
Bits	Bit 7	Bit 6	Bit 5	Bit 4 Bit 3 Bit 2 Bit 1 Bit 0						
Default	1	0	0	1 0 0 0 0						
Read/Write	RW	RW	RW	RW RW RW RW						
Bits	Na	me		Description						
Bit 7 to Bit 0	OUT_(CV[7:0]	Lower 8 bits of 11-bit OUT_CV[10:0] for output constant voltage (CV) setting. VOUT_CV = OUT_CV[10:0](Decimal) x ΔV (1) When 0x11[5] = 0, VOUT ratio = 0.08V/V : Range = 3V (0x0F0) to 21V (0x690) with ΔV = 12.5mV/step. (2) When 0x11[5] = 1, VOUT ratio = 0.05V/V : Range = 3V (0x096) to 32V (0x640) with ΔV = 20mV/step. (3) Default value = 0x190 with VOUT ratio = 0.08V/V for default VOUT = 5V.							

Register Address	0x	02	Register Name			Output_CV			
Bits	Bit 7	Bit 6	Bit 5	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 E					
Default	0	0	0	0	0	0	0	1	
Read/Write	R	R	R R R RW RW						
Bits	Na	me			Desci	iption		·	
Bit 7 to Bit 3	Rese	erved	Reserved bit	S					
Bit 2 to Bit 0	OUT_C	V[10:8]	Upper 3 bits of 11-bit OUT_CV[10:0] for output constant voltage (CV) setting. Refer to 0x01 register for detail description.						

Register Address	0x	03	Register Name			Output_CC				
Bits	Bit 7	Bit 6	Bit 5	Bit 4 Bit 3 Bit 2 Bit 1 Bit 0						
Default	0	1	0	1 1 0 0 1						
Read/Write	RW	RW	RW	RW RW RW RW						
Bits	Na	me	Description							
Bit 7 to Bit 0	OUT_C	CC[7:0]	output sense IOUT_CC = (1) When 0x Range = (2) When 0x Range = (3) When 0x Range = (4) When 0x Range = (5) Default v	e resistor R30 -0.15A + {OU 0F[1:0] = 00 (0 0.306A (0x01 0F[1:0] = 01 (0 0.306A (0x02 0F[1:0] = 10 (0 0.306A (0x03 0F[1:0] = 11 (0 0.306A (0x04	= $10m\Omega$, the of T_CC[8:0](De GAIN_OCS = 3) to 12.114A GAIN_OCS = 6) to 5.982A (GAIN_OCS = 9) to 3.938A (GAIN_OCS = C) to 2.916A	output CC car cimal) $x \Delta l$ 10x) : (0x1FF) with 20x) : (0x1FF) with Δ 30x) : (0x1FF) with Δ 40x) : (0x1FF) with Δ	t current (CC) the set as: $\Delta I = 24 mA/step$ $\Delta I = 12 mA/step$ $\Delta I = 8 mA/step$ $\Delta I = 6 mA/step$ OCS = 10x) for	эр. э.		

Register Address	0x	04	Register Name			Output_CC			
Bits	Bit 7	Bit 6	Bit 5	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit					
Default	0	0	0	0	0	0	0	1	
Read/Write	R	R	R	R R R R I					
Bits	Na	me			Descr	iption			
Bit 7 to Bit 1	Rese	erved	Reserved bit	S					
Bit 0	OUT_	CC[8]	Upper 1 bit of 9-bit OUT_CC[8:0] for output constant current (CC) setting. Refe to 0x03 register for detail description.						

Register Address	0x	05	Register Name	Input_CV						
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Default	0	0	0	0 0 0 0						
Read/Write	R	R	RW	RW RW RW RV						
Bits	Na	me		Description						
Bit 7 to Bit 6	Reserved		Reserved bit	S						
Bit 5 to Bit 0	IN_	CV	VIN_CV = IN (1) When 0x Range = (2) When 0x Range =	m input constant voltage (CV) setting. / = IN_CV[5:0](Decimal) x ΔV en 0x11[6] = 0, VIN ratio = 0.08V/V : ge = 0V (0x00) to 22.05V (0x3F) with ΔV = 350mV/step. en 0x11[6] = 1, VIN ratio = 0.05V/V : ge = 0V (0x00) to 35.28V (0x3F) with ΔV = 560mV/step. ault value = 0x00 with VIN ratio = 0.08V/V for default input CV = 0V.						

RT61 7	79
---------------	----

Register Address	0x	06	Register Name			Input_CC				
Bits	Bit 7	Bit 6	Bit 5	Bit 4 Bit 3 Bit 2 Bit 1 Bit 0						
Default	1	1	1	1 1 1 1 1						
Read/Write	RW	RW	RW	RW RW RW RW						
Bits	Na	me		Description						
Bit 7 to Bit 0	IN_C	C[7:0]	sense resista IIN_CC = -0. (1) When 0x Range = (2) When 0x Range = (3) When 0x Range = (4) When 0x Range = (5) Default v	or R29 = 10ms 45A + {IN_CC 0F[3:2] = 00 (0 0.318A (0x02 0F[3:2] = 01 (0 0.318A (0x04 0F[3:2] = 10 (0 0.318A (0x06 0F[3:2] = 11 (0 0.318A (0x08	Ω, the input C [8:0](Decima GAIN_ICS = 1 0) to 11.814A GAIN_ICS = 2 0) to 5.682A (GAIN_ICS = 3 0) to 3.638A (GAIN_ICS = 4 0) to 2.616A (10x) : . (0x1FF) with 20x) : (0x1FF) with ∆ 30x) : (0x1FF) with ∆	as: ∆I = 24mA/ste I = 12mA/step I = 8mA/step. I = 6mA/step.	ep p.		

Register Address	0x	07	Register Name			Input_CC			
Bits	Bit 7	Bit 6	Bit 5	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit					
Default	0	0	0 0 0 0 0						
Read/Write	R	R	R R R R R						
Bits	Na	me			Descr	iption			
Bit 7 to Bit 1	Rese	erved	Reserved bits						
Bit 0	IN_C	C[8]	Upper 1 bit of 9-bit IN_CC[8:0] for input constant current (CC) setting. Refer to 0x06 register for detail description.						

Register Address	0x	08	Register Name	Vref_SC					
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	0	0	0 1 0 0 1					0	
Read/Write	R	R	RW RW RW RW					RW	
Bits	Na	me			Descr	iption			
Bit 7 to Bit 6	Rese	erved	Reserved bits						
Bit 5 to Bit 0	VRE	SC	Slope compensation ramp setting for internal use.						

Register Address	0x	09	Register Name	Vref_PSM					
Bits	Bit 7	Bit 6	Bit 5	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1					
Default	0	1	1 0 1 1 1					0	
Read/Write	RW	RW	RW	N RW RW RW RW					
Bits	Na	me			Descr	iption			
Bit 7 to Bit 6	GAIN_\	/COMP	Vcomp gain	Vcomp gain setting for internal use.					
Bit 5 to Bit 0	VREF	_PSM	Minimum pe	Minimum peak current setting of TON in PSM for internal use.					

Register Address	0x	0A	Register Name	Vref_POCP						
Bits	Bit 7	Bit 6	Bit 5	Bit 4Bit 3Bit 2Bit 1Bit 0						
Default	0	0	1	0 0 1 0 0						
Read/Write	R	R	RW	W RW RW RW RW						
Bits	Na	Name		Description						
Bit 7 to Bit 6	Rese	erved	Reserved bit	S						
Bit 5 to Bit 0	VREF_	POCP	peak current I _{POCP} = [0x0 (1) Range =	Input peak current limit setting. With input sense resistor R29 = $10m\Omega$, the input peak current limit can be set as: $I_{POCP} = [0x0A[5:0](Decimal) \times 0.4A] - 1.169A.$ (1) Range = 5.231A (0x10) to 24.031A (0x3F). (2) Default value = 0x24 for default I _{POCP} = 13.231A.						

Register Address	0x	0B	Register OVP Name OVP						
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	0	0	0	1	0	0	1	0	
Read/Write	R	R	RW	RW	R	R	RW	RW	
Bits	Na	me	Description						
Bit 7 to Bit 6 Bit 3 to Bit 2	Rese	erved	Reserved bit	S					
Bit 5 to Bit 4	OVP_DELA	Y_INT_SET	00:96μs	lelay time setting for VOUT pin 6μs 10:288μs 92μs (Default) 11:386μs					
Bit 1 to Bit 0	OVP_I	_EVEL	OVP thresho 00 : Reserve 01 : 115%	•		10:120% (I 11:125%	Default)		

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

RT6179

Register Address	0x	0C	Register Name	UVP					
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	0	0	0	1	0	0	1	0	
Read/Write	RW	RW	RW	RW	R	R	RW	RW	
Bits	Name			Description					
Bit 7	EN_IN	I_OVP	Enable or disable input OVP function. (Trip level = 27V) 0 : Disable 1 : Enable						
Bit 6 Bit 3 to Bit 2	Rese	erved	Reserved bits						
Bit 5 to Bit 4	UVP_DELA	Y_INT_SET	UVP delay time setting for VOUT pin. 00 : 256μs 10 : 768μs 01 : 512μs (Default) 11 : 1024μs						
Bit 1 to Bit 0	UVP_I	_EVEL	UVP thresho 00 : 50% 01 : 60%	VP threshold setting.): 50%10: 70% (Default)					

Register Address	0x0D		Register Name			Setting1			
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	0	1	1	1	1	0	0	0	
Read/Write	RW	RW	RW	RW	RW	RW	RW	RW	
Bits	Na	me			Descr	iption			
Bit 7	F_C	CM	Operation mode setting. 0 : Light load PSM 1 : Force CCM						
Bit 6 to Bit 5	SLEWR	ATE_R	Rising slew rate setting for DVS up.(1) For $0x11[5] = 0$, VOUT ratio = $0.08V/V$, $\Delta VOUT = 12.5mV/step$.(2) For $0x11[5] = 1$, VOUT ratio = $0.05V/V$, $\Delta VOUT = 20mV/step$.00 : Slew rate = $\Delta VOUT/4\mu s$ 10 : Slew rate = $\Delta VOUT/4\mu s$						
			01 : Slew ra	te = $\Delta VOUT/8$	μs	11 : Slew ra	te = $\Delta VOUT/3$	2μs(Default)	
Bit 4 to Bit 3	SLEWF	RATE_F	(1) For 0x11	rate setting fo [5] = 0, VOUT [5] = 1, VOUT	ratio = 0.08V	•	12.5mV/step. 20mV/step.		
				te = $\Delta VOUT/4$ te = $\Delta VOUT/8$	•		te = $\Delta VOUT/1$ te = $\Delta VOUT/3$	•	
			Switching fre	equency settin	g.				
Bit 2 to Bit 0	FS	SW	000:250kH 001:325kH 010:400kH	Z		100:615kHz 101:730kHz 110:845kHz			
			011:500kH	Z		111:960kH	Z		

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

RICHTEK

Register Address	0x	0E	Register Name	Settind2						
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Default	0	0	0	1	0	0	0	0		
Read/Write	RW	RW	RW	RW	R	RW	RW	RW		
Bits	Na	me	Description							
Bit 7			Enable or dis	sable RT6179						
Dil 7		PWM	0 : Disable 1 : Enable							
Bit 6	DIS		Enable or dis	sable input C	loop to ignor	e IN_CV setti	ng.			
Bit 0	010_		0 : Enable			1 : Disable				
Bit 5	DIS		Enable or dis	sable input CO	C loop to ignor	e IN_CC setti	ng.			
Bit 5	010_	INCC	0 : Enable 1 : Disable							
Bit 4	EN_DISC	CHARGE	Enable or disable the output discharge resistor when turn off by I2C or in DVS down operation.							
			0 : Disable			1 : Enable				
Bit 3	Rese	erved	Reserved bit	S						
			Cable voltag	e drop compe	nsation settin	g:				
			000 : Disabl	e (Default)		100:80mΩ				
Bit 2 to Bit 0	IR_CC	OMPR	001:10mΩ			101:120m				
				010 : 20mΩ 110 : 160mΩ						
			011:40mΩ			111:200m	2			

Register Address	0x	0F	Register Setting3 Name Setting3							
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Default	0	0	0	0 1 0			0	0		
Read/Write	RW	RW	RW	RW	RW	RW	RW	RW		
Bits	Na	me		Descri			iption			
Bit 7 to Bit 6	DT_	SEL	Dead time setting. 00 : 30ns (Default) 10 : 70ns 01 : 50ns 11 : 90ns							
Bit 5 to Bit 4	GM	_EA	00∶275µA/\	Error amplifier gain setting.)0:275μA/V 10:825μA/V)1:550μA/V (Default) 11:1100μA/V						
Bit 3 to Bit 2	GAIN				Default) 10 : 30x 11 : 40x					
Bit 1 to Bit 0	GAIN	_OCS	Output avera 00 : 10x (De 01 : 20x	-	ense gain setti	ng. 10:30x 11:40x				

RT6179

Register Address	0x	10	Register Name	Setting4						
Bits	Bit 7	Bit 6	Bit 5 Bit 4 Bit 3			Bit 2	Bit 1	Bit 0		
Default	1	0	0	0 0 0		0	1	0		
Read/Write	RW	RW	RW	R	R	R	RW	RW		
Bits	Na	me	Description							
Bit 7 to Bit 6	ADC_AVG_SEL		Average times of ADC function.00 : 2 times10 : 8 times (Default)01 : 4 times11 : 16 times							
Bit 5	I2C_S	PEED	•	I2C speed selection.0 : Bit rate = 300kHz.1 : Bit rate = 1MHz/3.4MHz						
Bit 4 to Bit 2	Rese	erved	Reserved bit	S						
Bit 1	EN_	ADC	Enable or dis 0 : Disable	sable ADC fur	nction for 0x12	to 0x1B regis 1 : Enable	sters.			
Bit 0	DRIVER_	CHARGE	Enable or dis 0 : Disable	Enable or disable driver charge function.						

Register Address	0x	11	Register Name	RATIO						
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Default	0	0	0	0						
Read/Write	RW	RW	RW	R	R	R	R	R		
Bits	Na	me	Description							
Bit 7	SSP	_EN	Enable or disable spread spectrum function.0 : Disable1 : Enable							
Bit 6	VIN_F	RATIO	VIN ratio selection for input voltage setting range.0 : 0.08V/V1 : 0.05V/VNote: This register "Only" can be set when 0x0E[7] = 0							
Bit 5	VOUT_	RATIO	0:0.08V/V	VOUT ratio selection for output voltage setting range. $0 : 0.08V/V$ $1 : 0.05V/V$ Note: This register "Only" can be set when $0x0E[7] = 0$						
Bit 4	Rese	erved	Reserved bits							
Bit 3 to Bit 0	CHIP_V	ERSION	CHIP_VERS	ION						

Register Address	0x	12	Register Name	Output_Voltage						
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Default	0	0	0	0	0	0	0	0		
Read/Write	R	R	R	R	R	R	R	R		
Bits	Na	me		Description						
Bit 7 to Bit 0	OUT_VOL	TAGE[7:0]	Lower 8 bits of 11-bit OUT_VOLTAGE[10:0] for output voltage reporting VOUT Reporting = OUT_VOLTAGE[10:0](Decimal) x ΔV (1) When 0x11[5] = 0, VOUT ratio = 0.08V/V : Range = 3V (0x0F0) to 25.5875V (0x7FF) with ΔV = 12.5mV/step. (2) When 0x11[5] = 1, VOUT ratio = 0.05V/V : Range = 3V (0x096) to 36V (0x708) with ΔV = 20mV/step.					C C		

Register Address	0x	13	Register Name	Output_Voltage					
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	0	0	0	0	0	0	0	0	
Read/Write	R	R	R	R	R	R	R	R	
Bits	Na	me			Descr	iption			
Bit 7 to Bit 3	Rese	erved	Reserved bit	S					
Bit 2 to Bit 0	OUT_VOLT	TAGE[10:8]	Upper 3 bits of 11-bit OUT_VOLTAGE[10:0] for output voltage reporting. Refer to 0x12 register for detail description.					orting.	

Register Address	0x	14	Register Name		C	Dutput_Currer	nt	
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Default	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R
Bits	Name		Description					
Bit 7 to Bit 0	OUT_CUR	RENT[7:0]	reporting. W can be read IOUT Report (1) When 0x Range = (2) When 0x Range = (3) When 0x Range = (4) When 0x	of 11-bit OUT ith output sens as below: ting = $-0.15A - 0F[1:0] = 00$ (0 0.0036A (0x0 0F[1:0] = 01 (0 0.0036A (0x0 0F[1:0] = 10 (0 0.0036A (0x0 0F[1:0] = 11 (0 0.0036A (0x0)	se resistor R3 + {OUT_CURI GAIN_OCS = 0F) to 20.811 GAIN_OCS = 1E) to 10.33A GAIN_OCS = 2D) to 6.837A GAIN_OCS =	$0 = 10m\Omega$, the RENT[10:0](D 10x): A (0x7FF) with 20x): A (0x7FF) with 30x): A (0x7FF) with 40x):	e output avera lecimal) x Δ I h Δ I = 10.24m Δ I = 5.12mA/ Δ I = 3.413mA	age current nA/step step A/step

Register Address	0x	15	Register Name	Output Current					
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	0	0	0	0	0	0	0	0	
Read/Write	R	R	R R R R F						
Bits	Na	me			Descr	iption			
Bit 7 to Bit 3	Rese	erved	Reserved bits						
Bit 2 to Bit 0	OUT_CURI	RENT[10:8]	Upper 3 bits of 11-bit OUT_CURRENT[10:0] for output average current reporting. Refer to 0x14 register for detail description.						

Register Address	0x	16	Register Input_Voltage						
Bits	Bit 7	Bit 6	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1						
Default	0	0	0	0	0	0	0	0	
Read/Write	R	R	R R R R R						
Bits	Na	me	Description						
Bit 7 to Bit 0	IN_VOLT	AGE[7:0]	VIN Reportin (1) When 0x Range = (2) When 0x	ng = IN_VOLT 11[6] = 0, VIN	AGE[10:0](De ratio = 0.08V 25.5875V (0) ratio = 0.05V	cimal) x ΔV /∨ : k7FF) with ΔV /∨ :	ltage reporting 7 = 12.5mV/ste nV/step.		

Register Address	0x	17	Register Name						
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	0	0	0	0	0	0	0	0	
Read/Write	R	R	R R R R F						
Bits	Na	me			Desci	iption	·		
Bit 7 to Bit 3	Rese	erved	Reserved bit	S					
Bit 2 to Bit 0	IN_VOLT	AGE[10:8]	Upper 3 bits of 11-bit IN_VOLTAGE[10:0] for input voltage reporting. Refer to 0x16 register for detail description.						

RICHTEK

Register Address	0x	18	Register Name			Input_Current	t		
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	0	0	0 0 0 0 0					0	
Read/Write	R	R	R	R					
Bits	Na	me	Description						
Bit 7 to Bit 0	IN_CURF	RENT[7:0]	With input se as below: IIN Reporting (1) When 0x Range = (2) When 0x Range = (3) When 0x Range = (4) When 0x	of 11-bit IN_C ense resistor F g = -0.45A + { 0F[3:2] = 00 (0.0108A (0x0 0F[3:2] = 01 (0.0108A (0x0 0F[3:2] = 10 (0.0108A (0x0 0F[3:2] = 11 (0.0108A (0x0	$R29 = 10m\Omega$, GAIN_ICS = 1 2D) to 20.511 GAIN_ICS = 2 5A) to 10.03A GAIN_ICS = 3 87) to 6.537A GAIN_ICS = 4	the input aver [[10:0](Decim [0x): A (0x7FF) wit 20x): A (0x7FF) with 30x): (0x7FF) with 40x):	age current ca al) x Δ I} h Δ I = 10.24m Δ I = 5.12mA/ Δ I = 3.413mA	an be read nA/step step /step	

Register Address	0x	19	Register Input_Current Name Input_Current					
Bits	Bit 7	Bit 6	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1				Bit 1	Bit 0
Default	0	0	0	0	0	0	0	0
Read/Write	R	R	R R R R R R					
Bits	Na	me			Descr	iption		
Bit 7 to Bit 3	Rese	erved	Reserved bit	S				
Bit 2 to Bit 0	IN_CURR	ENT[10:8]	Upper 3 bits of 11-bit IN_CURRENT[10:0] for input average current reporting. Refer to 0x18 register for detail description.					

Register Address	0x	1A	Register Temperature Name Temperature					
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Default	0	0	0	0	0	0	0	0
Read/Write	R	R	R R R R R R					
Bits	Na	me			Descr	iption	·	
Bit 7 to Bit 0	TEMPERA	TURE[7:0]	Lower 8 bits of 11-bit TEMPERATURE[10:0] for temperature reporting. The 11-bit TEMPERATURE[10:0] is used for external thermal sense by recordi TSEN pin voltage. The temperature reporting range is from 0V to 2V w 1mV/step.					

Register Address	0x	1B	Register Name			Temperature		
Bits	Bit 7	Bit 6	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1					Bit 0
Default	0	0	0	0	0	0	0	0
Read/Write	R	R	R R R R F					
Bits	Na	me			Descr	iption		
Bit 7 to Bit 3	Rese	erved	Reserved bits					
Bit 2 to Bit 0	TEMPERA	TURE[7:0]	Upper 3 bits of 11-bit TEMPERATURE[10:0] for temperature reporting. Refer to 0x1A register for detail description.					

Register Address	0x	1C	Register Name			Status1			
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	0	0	0	0 0 0 0 0					
Read/Write	R	R	R	R	R				
Bits	Na	me							
Bit 7		IN_OVP OVP indicator for VIN pin.							
Dil 7	IN_C	JVF	0 : No fault			1 : Fault			
Bit 6	0	гр	OTP indicate	or.					
Bit 0	0	IF	0 : No fault			1 : Fault			
Bit 5		UVP	UVP indicate	or for VOUT p	in.				
BIL 3		005	0 : No fault			1 : Fault			
Bit 4	INIT	OVP	OVP indicator for VOUT pin.						
DIL 4		OVF	0 : No fault) : No fault 1 : Fault					
Bit 3 to Bit 0	Rese	erved	Reserved bit	S					

Register Address	0x	1D	Register Name			Status2			
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	0	0	0	1	0	0	0	0	
Read/Write	R	R	R R R R R R						
Bits	Na	me	Description						
Bit 7, Bit 5 Bit 3, Bit 2	Rese	erved	Reserved bits						
Bit 6	PG		Power good status indicator. 0 : VOUT Pin Voltage < 85% of setting or ≥ OVP trip threshold. 1 : OVP trip threshold > VOUT Pin Voltage ≥ 90% of setting.						
Bit 4	CV_	_CC	0 : CV mode			constant curre 1 : CC mode 7] = 1.			
Bit 1	oc	P2	(1) ADC fund (2) OUT_CU	e changed to ction is enable RRENT[10:3]	ed (0x10[1] = 1 (Register 0x1	, 14/0x15) > OC	CP2_SETTING 0x27).	6[7:0]	
Bit 0	oc	P1	(Register 0x23) with OCP2 Delay Time (Register 0x27). OCP1 indicator. 0 : No fault 1 : Fault This bit will be changed to 1 only when: (1) ADC function is enabled (0x10[1] = 1). (2) OUT_CURRENT[10:3] (Register 0x14/0x15) > OCP1_SETTING[7:0] (Register 0x22) with OCP1 Delay Time (Register 0x26).						

Register Address	0x	1E	Register Alert1							
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Default	0	0	0	0	0	0	0	0		
Read/Write	RW	RW	RW RW R R R R							
Bits	Na	me			Descr	iption				
Bit 7	ALERT_	IN_OVP	 Internal flag to detect input OVP for VIN pin voltage. 0 : No fault. ALERT pin keeps high level. 1 : Fault. ALERT pin goes to low level. Note: When input OVP fault condition is removed, this bit can be changed to default setting "0" by writing this bit to "1" only. 							
Bit 6	ALERI	I_OTP	Internal flag to detect OTP. 0 : No fault. ALERT pin keeps high level. 1 : Fault. ALERT pin goes to low level. Note: After OTP fault condition is detected, this bit can be changed to default setting "0" by writing this bit to "1" only.							
Bit 5	ALERT_I	NT_UVP	0 : No fault. 1 : Fault. AL Note: When	to detect outp ALERT pin ke ERT pin goes output UVP fa ig "0" by writin	eps high leve to low level. ault condition i	l. s removed, th	-	changed to		
Bit 4	ALERT_I	NT_OVP	 Internal flag to detect output OVP for VOUT pin voltage. 0 : No fault. ALERT pin keeps high level. 1 : Fault. ALERT pin goes to low level. Note: When output OVP fault condition is removed, this bit can be changed to default setting "0" by writing this bit to "1" only. 							
Bit 3 to Bit 0	Rese	erved	Reserved bit	S	-	-				

Register Address	0x	1F	Register Name			Alert2				
Bits	Bit 7	Bit 6	Bit 5	5 Bit 4 Bit 3 Bit 2 Bit 1						
Default	0	0	0	0	0	0	0	0		
Read/Write	RW	RW	RW RW R R RW R							
Bits	Na	me			Descr	iption	·			
Bit 7	ALERT_	_OTP_R	0 : OTP not 1 : OTP reco Note: After C	 atternal flag to detect OTP recovery after OTP happened. OTP not recovery. ALERT pin keeps low level. OTP recovery. ALERT pin goes to high level. lote: After OTP recovery condition is detected, this bit can be changed to defauetting "0" by writing this bit to "1" only. 						

RICHTEK

Bits	Name	Description
Bit 6	ALERT_RAMP_PG	 Internal flag to detect VOUT pin voltage status. 0 : ALERT pin keeps high level. (1) Power off: Output Voltage < 85% of setting. (2) Normal: OVP trip threshold > Output Voltage ≥ 90% of setting. (3) DVS: Output Voltage not reach to target level. 1 : ALERT pin becomes low level. (1) Power on: After 0x0E[7] from 0 to 1, Output Voltage ≥ 90% of setting. (2) Normal: Output Voltage < 85% of setting or ≥ OVP trip threshold. (3) DVS: Output Voltage reach to target level. (2) Normal: Output Voltage reach to target level. (3) DVS: Output Voltage reach to target level. (4) DVS: Output Voltage reach to target level. (5) DVS: Output Voltage reach to target level. (6) DVS: Output Voltage reach to target level. (7) Note: After this bit = 1, this bit can be changed to default setting "0" by writing this bit to "1" only.
Bit 5	ALERT_TM1	 Internal flag to detect Timer1 status. 0 : Timer1 is disabled and ALERT pin keeps high level. Timer1 will begin to count if 0x30[6:4] ≠ 000, and ALERT pin keeps high level if Timer1 is still counting. 1 : Timer1 timeout completed. ALERT pin goes to low level. Note: After Timer1 finished counting, this bit can be changed to default setting "0" by writing this bit to "1" only.
Bit 4	ALERT_WDT	 Internal flag to detect watchdog timer status. 0 : Watchdog is disabled and ALERT pin keeps high level. Watchdog will begin to count if 0x30[2:0] ≠ 000, and ALERT pin goes to low level. 1 : Watchdog timeout completed. ALERT will keep low level and RT6179 will be reset to default setting including all I2C registers except 0x1F[4] and 0x30. Note: After watchdog timer finished counting, this bit can be changed to default setting "0" by writing this bit to "1" only.
Bit 3 to Bit 2	Reserved	Reserved bits
Bit 1	ALERT_OCP2	Internal flag to detect OCP2. 0 : No fault. ALERT pin keeps high level. 1 : Fault. ALERT pin goes to low level. This bit will be changed to 1 only when: (1) ADC function is enabled (0x10[1] = 1). (2) OUT_CURRENT[10:3] (Register 0x14/0x15) > OCP2_SETTING[7:0] (Register 0x23) with OCP2 Delay Time (Register 0x27). Note: When OCP2 fault condition is removed, this bit can be changed to default setting "0" by writing this bit to "1" only.
Bit 0	ALERT_OCP1	Internal flag to detect OCP1. 0 : No fault. ALERT pin keeps high level. 1 : Fault. ALERT pin goes to low level. This bit will be changed to 1 only when: (1) ADC function is enabled (0x10[1] = 1). (2) OUT_CURRENT[10:3] (Register 0x14/0x15) > OCP1_SETTING[7:0] (Register 0x22) with OCP1 Delay Time (Register 0x26). Note: When OCP1 fault condition is removed, this bit can be changed to default setting "0" by writing this bit to "1" only.

Register Address	0x20		Register Name	Mask1					
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	1	1	1	1	1	1	1	1	
Read/Write	RW	RW	RW	RW	R	R	R	R	
Bits	Na	me			Descr	iption			
Bit 7	M_ALERT_IN_OVP		Mask internal flag output of input OVP for VIN pin voltage to ALERT pin.						
			0 : Mask	: Mask 1 : Not mask					
Bit 6	M ALEF		Mask internal flag output of OTP to ALERT pin.						
DILO			0 : Mask 1 : Not mask						
Bit 5			Mask internal flag output of output UVP for VOUT pin voltage to ALERT pin.						
DIL D	M_ALERT		0 : Mask	0 : Mask 1 : Not mask					
Dit 4			Mask internal flag output of output OVP for VOUT pin voltage to ALERT pin.					ERT pin.	
Bit 4	M_ALERT		0 : Mask	0 : Mask 1 : Not mask					
Bit 3 to Bit 0	Rese	erved	Reserved bit	S					

Register Address	0x	21	Register Name	Mask2						
Bits	Bit 7	Bit 6	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							
Default	1	1	1 1 1 1 1							
Read/Write	RW	RW	RW RW R			R	RW	RW		
Bits	Na	me			Descr	iption				
Bit 7	M_ALER		Mask interna	al flag output o	of OTP recove	ry to ALERT p	oin.			
			0 : Mask 1 : Not mask							
Bit 6	M_ALERT_		Mask interna	al flag output o	of VOUT pin v	oltage status t	to ALERT pin.			
Bit 0		KAWF_FG	0 : Mask	0 : Mask 1 : Not mask						
Bit 5	M ALEF	DT TM1	Mask interna	al flag output o	of Timer1 to A	LERT pin.				
Bit 5			0 : Mask 1 : Not mask							
Bit 4		RT_WDT	Mask internal flag output of watchdog timer to ALERT pin.							
DIL 4			0 : Mask 1 : Not mask							
Bit 3 to Bit 2	Rese	erved	Reserved bits							
Dit 1			Mask internal flag output of OCP2 to ALERT pin.							
Bit 1	IVI_ALER	T_OCP2	0 : Mask 1 : Not mask							
Bit 0	M_ALER		Mask interna	al flag output o	of OCP1 to AL	ERT pin.				
Bit U	IVI_ALER		0 : Mask 1 : Not mask							

Register Address	0x	22	Register Name	OCP1_Setting						
Bits	Bit 7	Bit 6	Bit 5	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0						
Default	0	1	0	1	0	0	0	1		
Read/Write	RW	RW	RW	RW	RW	RW	RW	RW		
Bits	Na	me	Description							
Bit 7 to Bit 0	OCP1_S	ETTING	OCP1 = -0.1 (1) When 0x Range = (2) When 0x Range = (3) When 0x Range = (4) When 0x Range =	$5A + OCP1_{S}$ 0F[1:0] = 00 (0) 0.3415A (0x0) 0F[1:0] = 01 (0) 0.3415A (0x0) 0F[1:0] = 10 (0) 0.3415A (0x1) 0F[1:0] = 11 (0) 0.3415A (0x1) alue = 0x51 w	SETTING[7:0] GAIN_OCS = 6) to 20.7396. GAIN_OCS = C) to 10.2948 GAIN_OCS = 2) to 6.8132A GAIN_OCS = 8) to 5.0724A	(Decimal) x △ 10x): A (0xFF) with 20x): A (0xFF) with 30x): (0xFF) with △ 40x): (0xFF) with △	an be set as be $\Delta I = 81.92 \text{mA}$ $\Delta I = 40.96 \text{mA}$ $\Delta I = 27.307 \text{mA}$ $\Delta I = 20.48 \text{mA/s}$ $\Delta CS = 10x$) for	/step. \/step. /step. step.		

Register Address	0x23 Register OCP2_Setting									
Bits	Bit 7	Bit 6	Bit 5	Bit 4 Bit 3 Bit 2 Bit 1 Bit 0						
Default	0	1	1	0	0	1	0	0		
Read/Write	RW	RW	RW	RW	RW	RW	RW	RW		
Bits	Na	me	Description							
Bit 7 to Bit 0	OCP2_S	ETTING	OCP2 = -0.1 (1) When 0x Range = (2) When 0x Range = (3) When 0x Range = (4) When 0x Range =	$5A + OCP2_5$ 0F[1:0] = 00 ('' 0.3415A (0x0) 0F[1:0] = 01 ('' 0.3415A (0x0) 0F[1:0] = 10 ('' 0.3415A (0x1) 0F[1:0] = 11 ('' 0.3415A (0x1) alue = 0x64 w	SETTING[7:0] GAIN_OCS = 6) to 20.7396. GAIN_OCS = C) to 10.2948 GAIN_OCS = 2) to 6.8132A GAIN_OCS = 8) to 5.0724A	A (0xFF) with 20x): A (0xFF) with 30x): . (0xFF) with Δ	I $\Delta I = 81.92 mA$ $\Delta I = 40.96 mA$ $\Delta I = 27.307 mA$ $\Delta I = 20.48 mA/2$	v/step. A/step. v/step. step.		

Register Address	0x	26	Register Name	OCP1 Delay Time					
Bits	Bit 7	Bit 6	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0						
Default	0	0	0	0	1	1	0	1	
Read/Write	RW	RW	RW	RW	RW	RW	RW	RW	
Bits	Na	me	Description						
Bit 7	OCP1_T	IME_LSB	Time step se 0 : 8ms	election for OC	P1 delay time	e: 1:32ms			
Bit 6 to Bit 0	OCP1_	TIMING	With 0x26[7], OCP1 delay time can be set as below:OCP1 Delay Time = OCP1_TIMING[6:0](Decimal) x Δt (1) When 0x26[7] = 0 :Range = 0ms (0x00) to 1.016s (0x7F) with Δt = 8ms/step.(2) When 0x26[7] = 1 :Range = 0ms (0x80) to 4.064s (0xFF) with Δt = 32ms/step.(3) Default value = 0x0D for default OCP1 delay time = 104ms.						

Register Address	0x	27	Register Name	OCP2 Delay Time						
Bits	Bit 7	Bit 6	Bit 5	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0						
Default	0	0	0	0	0	0	0	0		
Read/Write	RW	RW	RW	RW	RW	RW	RW	RW		
Bits	Na	me	Description							
Bit 7	OCP2_T	IME_LSB	Time step se 0 : 8ms	election for OC	P2 delay time	e: 1:32ms				
Bit 6 to Bit 0	OCP2_	TIMING	0:8ms1:32msWith 0x27[7], OCP2 delay time can be set as below: OCP2 Delay Time = OCP2_TIMING[6:0](Decimal) x Δt (1) When 0x27[7] = 0: Range = 0ms (0x00) to 1.016s (0x7F) with Δt = 8ms/step.(2) When 0x27[7] = 1: Range = 0ms (0x80) to 4.064s (0xFF) with Δt = 32ms/step.(3) Default value = 0x00 for default OCP2 delay time = 0ms.							

Register Address	0x	28	Register Name	- ULP Enable						
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Default	0	0	1	1	0	0	0	0		
Read/Write	R	R	RW	RW	R	R	R	R		
Bits	Na	me		Description						
Bit 7 to Bit 6 Bit 3 to Bit 0	Rese	erved	Reserved bit	Reserved bits						
Bit 5	OCP:	2 EN	Enable or disable OCP2.							
Bito	0017	۷_۲۱	0 : Disable 1 : Enable							
Bit 4	OCP [.]		Enable or dis	sable OCP1.						
DIL 4	UCP		0 : Disable			1 : Enable				

Register Address	0x2B Register PPS								
Bits	Bit 7	Bit 6	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1						
Default	1	1	0	0	0	0	0	0	
Read/Write	R	R	RW	RW	R	R	R	R	
Bits	Na	me	Description						
Bit 7 to Bit 6 Bit 3 to Bit 0	Rese	erved	Reserved bit	Reserved bits					
Bit 5	UVP_	_PPS	0 : Keep UV	UVP threshold control bit. 0 : Keep UVP_LEVEL (0x0C[1:0]) setting. 1 : Follow UVP_REF (0x35[7:0]) setting.					
Bit 4	OVP_PPS 0 : Keep O				0B[1:0]) settir 6[7:0]) setting				

Register Address	0x	30	Register Name			Watchdog				
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Default	0	0	0	0	0	0	0	0		
Read/Write	R	RW	RW	RW	R	RW	RW	RW		
Bits	Na	me			Descr	iption				
Bit 7, Bit 3	Rese	erved	Reserved bit	s						
Bit 6 to Bit 4	TIMER	1_SEL	Timer1 timeo The ALERT 000 : Disable 001 : 0.5s 010 : 1s 011 : 2s	T pin will go low when Timer1 finished counting.						
Bit 2 to Bit 0	WATCHE	OOG_SEL	•			ERT pin goes 100 : 3s 101 : 4s 110 : 6s 111 : 8s	low, and it wil	I be reset by		

Register Address	0x35		Register Name	UVP_Reference								
Bits	Bit 7 Bit 6		Bit 5	Bit 4 Bit 3		Bit 2	Bit 1	Bit 0				
Default	0 0		1	0	0	0	0	1				
Read/Write	RW	RW RW		RW	RW	RW	RW	RW				
Bits	Na	me		Description								
Bit 7 to Bit 0	UVP_	REF	UVP = UVP_ (1) When 0x Range = (2) When 0x Range =	5] = 1, UVP th _REF[7:0](Dec 11[5] = 0, VOI 0V (0x00) to 2 11[5] = 1, VOI 0V (0x00) to 3 alue = 0x21 w	cimal) x ∆V UT ratio = 0.00 25.5V (0xFF) UT ratio = 0.00 36V (0xE1) wi	8V/V : with $\Delta V = 0.1V$ 5V/V : th $\Delta V = 0.16V$	√/step. //step.					

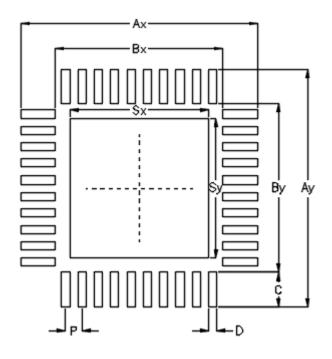
Register Address	0x36		Register Name	r OVP_Reference							
Bits	Bit 7 Bit 6		Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Default	1	1	0	1	1	1	0	0			
Read/Write	RW RW		RW	RW	RW	RW	RW	RW			
Bits	Na	me	Description								
Bit 7 to Bit 0	OVP_	_REF	OVP = OVP (1) When 0x Range = (2) When 0x Range =	REF[7:0](De 11[5] = 0, VO 0V (0x00) to 2 11[5] = 1, VO 0V (0x00) to 3	treshold can b cimal) $x \Delta V$ UT ratio = 0.00 25.5V (0xFF) v UT ratio = 0.00 36V (0xE1) wi with VOUT ratio	BV/V : with $\Delta V = 0.1V$ 5V/V : th $\Delta V = 0.16V$	√/step. //step.				

Register Address	0x37		Register Name	Status3								
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
Default	0	0	0	0	0	0	0	0				
Read/Write	R	R	R	R R R R R								
Bits	Na	me		Description								
Bit 7 to Bit 3	Rese	erved	Reserved bit	Reserved bits								
Bit 2	TO_2	75MS	0 : 275ms tir	out indicator for mer is countin completed wh	g after OUT_0	CV[10:0] is ch	anged for DV 275ms.	S operation.				
Bit 1	IN L	IVLO	VIN pin UVLO indicator. 00 : VIN pin voltage < 2.7V (typ.)									
Bit 0			01/10 : Reserved 11 : VIN pin voltage > 3V (typ.)									

Register Address	0x	38	Register Name	Alert3							
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Default	0	0	0	0 0 0 0 0							
Read/Write	R	R	R R R RW RW								
Bits	Na	me			Descr	iption					
Bit 7 to Bit 3	Rese	erved	Reserved bit	S							
Bit 2	ALERT_T	O_275MS	 Internal flag to detect 275ms timeout for DVS operation. 0: 275ms timer is counting after OUT_CV[10:0] is changed for DVS operation. 1: Timeout completed when ALERT not go low after 275ms. Note: When 275ms timeout condition is removed, this bit can be changed to "C by writing this bit to "1" only. 								
Bit 1	ALERT_IN	I_UVLO_F	Internal flag to detect VIN pin UVLO falling.0 : Input > 2.7V (typ.)1 : Input < 2.7V (typ.)								
Bit 0	ALERT_IN	I_UVLO_R	0 : Input < 3	V (typ.)	pin UVLO risi	1 : Input > 3		bit to "1" only.			

Register Address	0x39		Register Name	Mask3							
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Default	0	0 0		0	0	0	0	0			
Read/Write	R R		R	R	R	RW	RW	RW			
Bits	Na	me	Description								
Bit 7 to Bit 3	Rese	erved	Reserved bits								
Bit 2	M_ALERT_	TO_275MS	Mask internal flag output of 275ms timeout for DVS operation to ALERT pin.0 : Mask1 : Not mask								
Bit 1	M_ALERT_	IN_UVLO_F	Mask interna 0 : Mask	al flag output c	f VIN pin UVL	O falling to A. 1 : Not masł	•				
Bit 0	M_ALERT_I	N_UVLO_R	Mask interna 0 : Mask	al flag output c	of VIN pin UVL	O rising to AL 1 : Not mask	•				

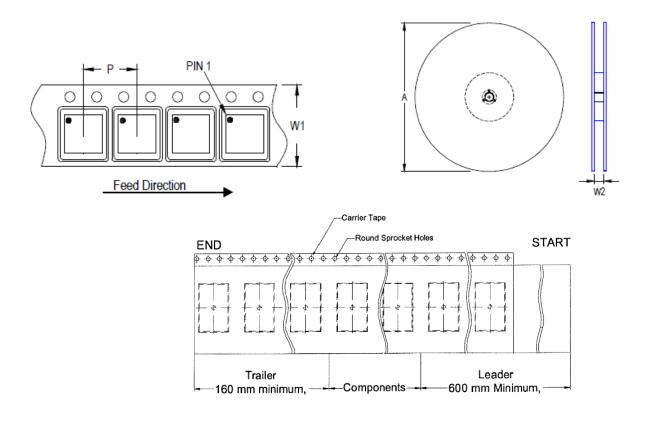
Outline Dimension


Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

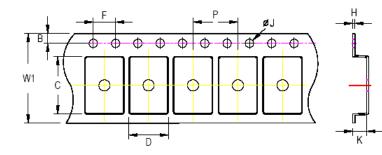
Symbol	Dimensions	In Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Мах		
А	0.700	0.800	0.028	0.031		
A1	0.000	0.050	0.000	0.002		
A3	0.175	0.250	0.007	0.010		
b	0.150	0.250	0.006	0.010		
D	4.950	5.050	0.195	0.199		
D2	3.250	3.500	0.128	0.138		
E	4.950	5.050	0.195	0.199		
E2	3.250	3.500	0.128	0.138		
е	0.400		0.0)16		
L	0.350	0.450	0.014	0.018		

W-Type 40L QFN 5x5 Package

Footprint Information



Dookogo	Number of	Footprint Dimension (mm)									Tolerance
Package	Pin	Р	P Ax Ay Bx By C D Sx Sy						TOIETATICE		
V/W/U/XQFN5*5-40	40	0.40	5.80	5.80	4.10	4.10	0.85	0.20	3.40	3.40	±0.05



Packing Information

Tape and Reel Data

De alva en Tres a	Tape Size	Pocket Pitch	Reel Size (A)		Units	Trailer	Leader	Reel Width (W2)	
Package Type	(W1) (mm)	(P) (mm)	(mm)	(in)	per Reel	(mm)	(mm)	Min./Max. (mm)	
QFN/DFN 5x5	12	8	180	7	1,500	160	600	12.4/14.4	

C, D and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 12mm carrier tape: 0.5mm max.

Tape Size	W1	Р		В		F		ØJ		Н
Tape Size	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
12mm	12.3mm	7.9mm	8.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1		4	
	Reel 7"		3 reels per inner box Box A
2		5	
	HIC & Desiccant (1 Unit) inside		12 inner boxes per outer box
3		6	RICHTEK INTAILIZE BARTAR AND AND AND AND AND AND AND AND AND AND
	Caution label is on backside of Al bag		Outer box Carton A

Container	Reel		Вох					Carton			
Package	Size	Units	Item	Size(cm)	Weight(Kg)	Reels	Units	Item	Size(cm)	Boxes	Unit
QFN/DFN 5x5	7"	1,500	Box A	18.3*18.3*8.0	0.1	3	4,500	Carton A	38.3*27.2*38.3	12	54,000
			Box E	18.6*18.6*3.5	0.03	1	1,500	For Combined or Partial Reel.			

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band	
Ω/cm^2	10 ⁴ to 10 ¹¹						

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2023 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

www.richtek.com

Datasheet Revision History

Version	Date	Description	Item
00	2023/7/5	Final	General Description on P1 Ordering Information on P2 Marking Information on P2 Functional Pin Description on P4