

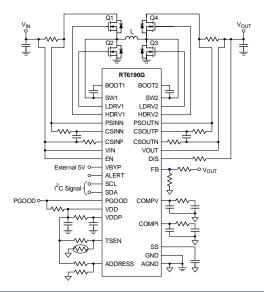
36V, 4-Switch Buck-Boost Controller with I²C Interface

General Description

The RT6190G is a 4-switch Buck-Boost controller designed for converting input voltage to output voltage that can be equal to, higher or lower than input voltage. The RT6190G operates with wide input voltage range from 4.5V to 36V, and the output voltage can be set from 3V to 36V by external FB pin.

The RT6190G implements peak current mode control mechanism for smooth operating in Buck, Boost and Buck-Boost modes. It also features adjustable soft-start function through external SS pin. With an I²C compatible interface, the RT6190G supports many programmable functions including switching frequency, power path control, and CC output without modifying external current sense resistor. Moreover, the RT6190G integrates full protection such as input UVLO, overvoltage/undervoltage protection, cycle-by-cycle current limit, short protection, and over-temperature protection.

The RT6190G is available in a WQFN-40L 5x5 package. The recommended junction temperature Range is -40°C to 125°C.

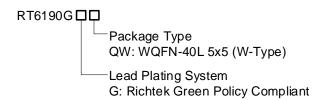

Features

- Integrated Buck-Boost Controller:
 - ▶ Wide Input Voltage Range: 4.5V to 36V
 - ▶ Wide Output Voltage Range: 3V to 36V
 - ▶ Peak Current Mode Control
- Adjustable Soft-Start Time
- Power Good Indicator
- Built-in Bleeders for Quick VOUT Discharge
- I²C Compatible Interface
 - Programmable Switching Frequency (250kHz to 1MHz)
 - ▶ Selectable PSM (Default) and FCCM
 - ► AnyPowerTM for Constant Current (in 9-Bit Resolution) Output Settings
 - ► Embedded 2nd OCP Function
 - ▶ Power Path Control
- Full Protection with UVLO, OVP, UVP, OCP, Cycleby-Cycle Current Limit and OTP
- WQFN-40L 5x5 Package

Applications

- Buck-Boost Bus Supply
- Docking Station
- USB Power Delivery

Simplified Application Circuit


Copyright © 2023 Richtek Technology Corporation. All rights reserved.

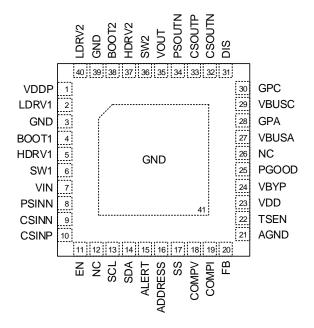
RICHTEK

is a registered trademark of Richtek Technology Corporation.

Ordering Information

Note:

Richtek products are Richtek Green Policy compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.


Marking Information

RT6190G **GQW YMDNN**

RT6190GGQW: Product Code YMDNN: Date Code

Pin Configuration

(TOP VIEW)

WQFN-40L 5x5

DS6190G-00

Functional Pin Description

Pin No.	Pin Name	Pin Function
1	VDDP	Bias voltage input pin for internal gate drivers. It is recommended to connect an external $4.7\mu F$ capacitor from this pin to GND.
2	LDRV1	Buck mode low-side gate driver output for Q2. Connect to gate of low-side N-MOSFET Q2.
3, 39, 41 (Exposed Pad)	GND	Ground. Exposed pad. The exposed pad must be soldered to a large PCB copper area for maximum power dissipation.
4	BOOT1	Buck mode bootstrap supply for high-side N-MOSFET Q1. It is recommended to connect a $0.1\mu F$ capacitor from this pin to SW1 pin. The bootstrap diode is integrated internally between VDDP pin and this pin.
5	HDRV1	Buck mode high-side gate driver output for Q1. Connect to gate of high-side N-MOSFET Q1.
6	SW1	Buck mode switch node. Connect to power inductor.
7	VIN	Supply voltage input. Input peak current sense positive input. Connect to the current sense resistor R29 for input peak current sense.
8	PSINN	Input peak current sense negative input. Connect to the current sense resistor R29 for input peak current sense.
9	CSINN	Current sense negative input for input constant current control. Connect to the current sense resistor R29 directly. It is recommended to use $10m\Omega$ for the current sense resistor R29.
10	CSINP	Current sense positive input for input constant current control. Connect to the current sense resistor R29 directly. It is recommended to use $10m\Omega$ for the current sense resistor R29.
11	EN	Enable control input. A logic-high enables the converter; a logic-low forces the device into shutdown mode. "Do Not" leave this pin floating.
12, 26	NC	No internal connection. Please keep these pins floating.
13	SCL	Clock input for I^2C interface. Connect this pin to AGND if I^2C interface is not used.
14	SDA	Data line for I ² C interface. Connect this pin to AGND if I ² C interface is not used.
15	ALERT	Active low open-drain output. Connect this pin to 1.8V or 3.3V for normal operation. It will be pulled low if this chip is under the conditions of protection, EN shutdown, or after soft-start end. Connect this pin to AGND if this pin is not used.
16	ADDRESS	I ² C slave address selection pin. Connecting this pin to VDD selects 0x2D, and connecting this pin to AGND selects 0x2C. Floating this pin if this pin is not used.
17	SS	Soft-start time control pin. Connect a capacitor between this pin and AGND to set the soft-start time.
18	COMPV	Constant voltage (CV) loop compensation. Connect an external RC network circuit from this pin to AGND for CV loop compensation. "Do Not" leave this pin floating.
19	СОМРІ	Constant current (CC) loop compensation. Connect an external RC network circuit from this pin to AGND for CC loop compensation. "Do Not" leave this pin floating.

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

DS6190G-00 December 2023 www.richtek.com

Pin No.	Pin Name	Pin Function
20	FB	Feedback voltage input. This pin is used to set the output voltage via an external resistive voltage divider. It is recommended to place the resistive voltage divider as close to FB pin and AGND as possible. "Do Not" leave this pin floating. Note: The setting range of the resistor between FB pin and AGND is recommended from $1k\Omega$ to $10k\Omega$.
21	AGND	Analog ground.
22	TSEN	Thermal sense input. This pin is used for external over-temperature protection via an external NTC network circuit. Connect this pin to VDD if thermal sense function is not used. "Do Not" leave this pin floating.
23	VDD	Internal LDO output. It is recommended to connect an external 4.7 μ F capacitor from this pin to GND. This pin is also used for internal analog circuit.
24	VBYP	Optional supply input from external 5V. Connect to external 5V voltage for VDD to increase converter efficiency. Connect this pin to GND if this pin is not used.
25	PGOOD	Power good indicator open-drain output. This pin is pulled high when the output voltage is within the target range. It will be pulled to ground if this chip is under the conditions of protection, EN shutdown, or during soft-start.
27	VBUSA	Voltage sense input for VBUSA pin. Floating this pin if this pin is not used.
28	GPA	Charge-pump gate driver output for VBUSA. This pin drives external power N-MOSFETs to turn on or off the power path between V _{OUT} and V _{VBUSA} . Float this pin if this pin is not used.
29	VBUSC	Voltage sense input for VBUSC pin. Floating this pin if this pin is not used.
30	GPC	Charge-pump gate driver output for VBUSC. This pin drives external power N-MOSFETs to turn on or off the power path between V _{OUT} and V _{VBUSC} . Float this pin if this pin is not used.
31	DIS	Input pin for output discharge. Connect an external resistor between this pin and converter output to discharge energy of output capacitors through internal pull-low N-MOSFET.
32	CSOUTN	Current sense negative input for output constant current control. Connect to the current sense resistor R30 directly. It is recommended to use $10m\Omega$ for the current sense resistor R30.
33	CSOUTP	Current sense positive input for output constant current control. Connect to the current sense resistor R30 directly. It is recommended to use $10m\Omega$ for the current sense resistor R30.
34	PSOUTN	Voltage sense input for internal constant current control loop.
35	VOUT	Voltage sense input for internal use.
36	SW2	Boost mode switch node. Connect to power inductor.
37	HDRV2	Boost mode high-side gate driver output for Q4. Connect to gate of high-side N-MOSFET Q4.
38	BOOT2	Boost mode bootstrap supply for high-side N-MOSFET Q4. It is recommended to connect a $0.1\mu F$ capacitor from this pin to SW2 pin. The bootstrap diode is integrated internally between VDDP pin and this pin.
40	LDRV2	Boost mode low-side gate driver output for Q3. Connect to gate of low-side N-MOSFET Q3.

Functional Block Diagram

Absolute Maximum Ratings (Note 1)	
• VIN, PSINN, CSINP, CSINN, VOUT, PSOUTN, CSOUTP, CSOUTN to GND	-0.3V to 40V
• VIN to PSINN, CSINP to CSINN, VOUT to PSOUTN, CSOUTP to CSOUTN	-5V to 5V
• EN, DIS, VBUSC, VBUSA to GND	-0.3V to 40V
GPC, GPA to GND	-0.3V to 50V
• BOOT1 to SW1, BOOT2 to SW2	-0.3V to 6V
DC	-0.3V to 6V
< 100ns	-5V to 7.5V
HDRV1 to SW1, HDRV2 to SW2	
DC	-0.3V to 6V
< 100ns	-5V to 7.5V
SW1, SW2 to GND	
DC	-0.3V to 40V
< 100ns	-5V to 45V
• LDRV1, LDRV2 to GND	
DC	-0.3V to 6V
< 100ns	-2.5V to 7.5V
• Other Pins	-0.3V to 6V
Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	-65°C to 150°C
ESD Ratings	
ESD Susceptibility (Note 2)	
HBM (Human Body Model)	2kV
Recommended Operating Conditions (Note 3)	
• Supply Input Voltage	4 5V to 36V
Output Voltage	
VDDP Supply Voltage	
VBYP Supply Voltage	
Junction Temperature Range	
o danotion remperature realings	10 0 10 120 0
Thermal Information (Note 4)	
• WQFN-40L 5x5, θJA	
• WQFN-40L 5x5, θJC(Top)	6°C/W

Electrical Characteristics

(V_{VIN} = 12V, V_{VDD} = V_{VDDP} = 5V, T_A = 25°C, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit						
Input and Output Voltage Range												
Input Voltage Range	VINPUT	VVIN	4.5		36	V						
Output Voltage Range	Vоитрит	VVOUT	3		36	V						
Input UVLO Threshold	Vuvlo	VVIN	2.7	3	3.4	V						
Input UVLO Hysteresis	ΔVυνιο	VVIN		200		mV						
VDD Supply Volta	ge and Enable											
VDD Output Voltage	VVDD	I _{VDD} = 0 to 60mA, V _{VIN} = 12V	4.8	5	5.2	V						
VDD Short-Circuit Current	IVDD_SC			120		mA						
VDD UVLO Threshold	VVDD_UVLO	V _{VDD} rising	2.7	3	3.4	V						
VDD UVLO Hysteresis	ΔVVDD_ UVLO			200		mV						
VDDP UVLO Threshold	VVDDP_UVLO	V _{VDDP} rising	3.7	4	4.3	V						
VDDP UVLO Hysteresis	ΔVVDDP_ UVLO			200		mV						
EN Threshold	VENH	EN rising	1.35		36	V						
EN THESHOLD	VENL	EN falling			0.85	V						
VBYP Switchover		VBYP rising		4.5		V						
Threshold		VBYP falling		230		mV						
VBYP Switchover On-Resistance				3		Ω						
VIN Operating Cu	rrent											
Input Current in Normal Mode	IQ	EN = High. In PSM without switching.		3	5	mA						
Input Current in Standby Mode	ISHDN	EN = Low.		15	30	μΑ						

DS6190G-00 December 2023

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit					
Switching Frequency											
			200	250	300						
			260	325	390						
			320	400	480						
Switching	fow	Programmable by 0x0D[2:0]	400	500	600	kHz					
Frequency	fsw	Programmable by 0x0D[2.0]	492	615	738	KIIZ					
			584	730	876						
			676	845	1014						
			768	960	1152						
Soft-Start											
Soft-Start Charge Current	Iss		5	6	7	μΑ					
Feedback Voltage	and Constant-	Current (CC) Output Levels									
FB Voltage	VFB		0.99	1	1.01	V					
CSOUTP to CSOUTN Built-in Offset Voltage		Output current sense		1.5		mV					
CSINP to CSINN Built-in Offset Voltage		Input current sense		4.5		mV					
Output CC Regulated Voltage Range	VREF_CC_OUT	VCSOUTP and VCSOUTN > 3V, with GAIN_OCS = 10x, ΔVREF_CC_OUT = 0.24mV/step, and R30 = 10mΩ for IREF_CC_OUT = 24mA/step	3		58	mV					
Output CC Regulated Voltage Accuracy		VCSOUTP and VCSOUTN > 3V, VREF_CC_OUT = 10mV/30mV/50mV, GAIN_OCS = 10x, R30 = 10mΩ	-1		1	mV					
Input CC Regulated Voltage Range	VREF_CC_IN	VCSINP and VCSINN > 3V, with GAIN_ICS = 10x, ΔVREF_CC_IN = 0.24mV/step, and R29 = 10mΩ for IREF_CC_IN = 24mA/step	3		58	mV					
Input CC Regulated Voltage Accuracy		VCSINP and VCSINN > 3V, VREF_CC_IN = 10mV/30mV/50mV, GAIN_ICS = 10x, R29 = 10mΩ	-3		3	mV					
Minimum Regulated	VREG_VIN	6-bit DAC, VIN Ratio = 0.08V/V, 350mV/step	4.55		22.05	V					
Voltage Range at VIN Pin	VILO_VIIV	6-bit DAC, VIN Ratio = 0.05V/V, 560mV/step	7.28		35.28	V					

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit				
Constant-Voltage (CV) and Constant-Current (CC) Error Amplifiers										
Trans- conductance of COMPV Error Amplifier	Gmv	$I_{COMPV} = \pm 20 \mu A$	382	550	718	μ A /V				
Maximum Sink/Source Current of COMPV Error Amplifier				54	ŀ	μΑ				
Trans- conductance of COMPI Error Amplifier	Gmi	ICOMPI = ±20μA	382	550	718	μ A /V				
Maximum Sink/Source Current of COMPI Error Amplifier				54	I	μΑ				
On-Time Timer Co	ontrol and ZCD									
Minimum On- Time	ton_min			200	230	ns				
Minimum Off- Time	toff_min			200	230	ns				
Q4 ZCD Voltage Threshold	Vzcd			4		mV				
ZC Mask Time	tZCD_Mask			250		ns				
Gate Drivers	•									
HDRV1/2 Pull-Up Resistance	RHDRVx_SRC	VBOOT1/2 - VSW1/2 = 5V, VBOOT1/2 - VHDRV1/2 = 0.1V		1		Ω				
HDRV1/2 Pull- Down Resistance	RHDRVx_SNK	VHDRV1/2 - VSW1/2 = 0.1V		0.7	-	Ω				
LDRV1/2 Pull-Up Resistance	RLDRVx_SRC	VVDDP - VLDRV1/2 = 0.1V		2	-1	Ω				
LDRV1/2 Pull- Down Resistance	RLDRVx_SNK	VLDRV1/2 = 0.1V		0.4		Ω				
				30						
Dead Time	t _{DT}	Programmable by 0x0F[7:6]		50		ns				
Dead Time		Trogrammable by oxor [7.0]		70		113				
				90						
SW1/2 Pull-Down Period for Charging Bootstrap Capacitor				250		ns				

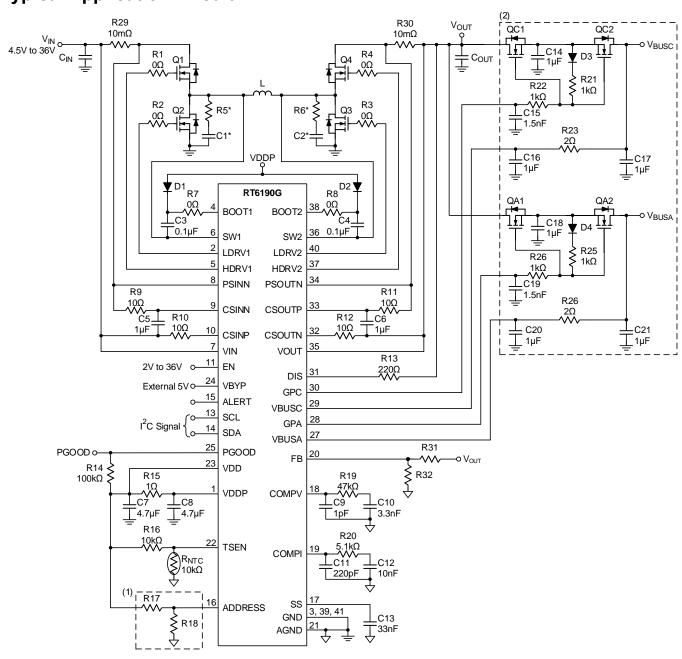
DS6190G-00 December 2023 www.richtek.com

Parameter	Symbol	Symbol Test Conditions		Тур	Max	Unit
Operating Frequency of Internal Charge Pump for BOOT1/2				10		MHz
Protections: Ove (OVP, UVP, OCP,		rvoltage, Overcurrent and External Ov	er-Temper	ature Pro	tections	
Input OVP Trip Threshold	VOVP_INPUT	0x0C[7] = 1		27		V
O. 4 4 O. /D. T.:				115		
Output OVP Trip Threshold	Vovp	Programmable by 0x0B[1:0]		120		%
				125		
Output OVP Recovery Threshold	Vovp_r	Hiccup mode of protection type		500		mV
				96		
Output OVP		D		192		
Delay Time at VOUT Pin	tovp_int	Programmable by 0x0B[5:4]		288		μS
				386		
				50		%
Output UVP Trip	Vuvp			60		
Threshold		Programmable by 0x0C[1:0]		70		
				80		1
Output UVP Recovery Threshold	Vuvp_r	Hiccup mode of protection type		500		mV
				256		
Output UVP		D		512		
Delay Time at VOUT Pin	tuvp_int	Programmable by 0x0C[5:4]		768		μS
				1024		1
Peak Current Protection	IPOCP	R29 = 10mΩ, 0x0A = 24h		13.2		А
Thermal Shutdown	TsD			150		
Thermal Shutdown Hysteresis	ΔTSD			25		°C
Power Good and	DIS					
Power Good	VTH_PG	Vout rising for % of Vout, PGOOD from low to high		90		0/
Threshold	ΔVTH_PG	Vout falling for % of Vout, PGOOD from high to low		5		%
Power Good Output Low Voltage	VPG_L	ISINK = 1mA			0.4	V

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Discharge Resistor at DIS Pin	RDIS	V _{DIS} = 0.5V		6		Ω
ADC Reporting						
Input Voltage Reporting		Vvin	-2.5		2.5	%
Output Voltage		VVOUT ≤ 5V	-2.5		2.5	%
Reporting		VVOUT > 5V	-2		2	70
VBUSC Voltage		V _{VBUSC} = 0.8V	-40		40	mV
Reporting		VvBusc ≥ 5V	-2		2	%
TSEN Voltage Reporting			-30	-	30	mV
		VCSINP - VCSINN = 40mV, VCSOUTP - VCSOUTN = 40mV	-2.5		2.5	
Input and Output		VCSINP - VCSINN = 20mV, VCSOUTP - VCSOUTN = 20mV	-4		4	0/
Current Reporting		VCSINP - VCSINN = 10mV, VCSOUTP - VCSOUTN = 10mV	-7		7	%
		VCSINP - VCSINN = 5mV, VCSOUTP - VCSOUTN = 5mV	-15		15	
Charge-Pump Ga	te Drivers (GPC	and GPA)	•			
Maximum GPC Voltage	VGPC	VOUT = 20V, RGPC-to-GND \geq 2M Ω	VVBUSC + 2 x VVDD - 5V	VVBUSC + 2 x VVDD - 3V	VVBUSC + 2 x VVDD - 1V	V
Maximum GPA Voltage	VGPA	VVBUSA = 12V, RGPA-to-GND ≥ 2MΩ	VVBUSA + 2 x VVDD - 5V	VVBUSA + 2 x VVDD - 3V	VVBUSA + 2 x VVDD - 1V	V
On-Resistance of the GPC/A Pull- Low MOSFET				250	350	Ω
I ² C Interface (N	lote 6)				<u>I</u>	
SCL, SDA Input	VIH	Rising	1.2			
Voltage	VIL	Falling			0.4	V
		Fast mode		400		kHz
SCL Clock Rate	fscL	Fast plus mode		1		MHz
		High speed mode, load 100pF max.			3.4	MHz
Hold Time (Repeated) Start Condition. After	A ==:	Fast mode	0.6			_
this Period, the First Clock Pulse is Generated	thd;sta	Fast plus mode	0.26			μS

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

RT6190G


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Low Period of the	t. o.u.	Fast mode	1.3			0	
SCL Clock	tLOW	Fast plus mode	0.5			μS	
High Period of the	4	Fast mode	0.6				
SCL Clock	thigh	Fast plus mode	0.26			μS	
Set-Up Time for a		Fast mode	0.6				
Repeated START Condition	tsu;sta	Fast plus mode	0.26			μS	
Data Hold Time	tup.pat	Fast mode	0			6	
Data Hold Time	thd;dat	Fast plus mode	0			μS	
Data Cat Un Tina	40	Fast mode	100				
Data Set-Up Time	tsu;dat	Fast plus mode	50			ns	
Set-Up Time for	4	Fast mode	0.6			_	
STOP Condition	tsu;sto	Fast plus mode	0.26			μS	
Bus Free Time between a STOP	tBUF	Fast mode	1.3			6	
and START Condition		Fast plus mode	0.5			μS	
Rising Time of		Fast mode	20		300		
both SDA and SCL Signals	t _R	Fast plus mode			120	ns	
Falling Time of both SDA and	4-	Fast mode	20		300		
SCL Signals	t _F	Fast plus mode			120	ns	
SDA Output Low Sink Current	loL	SDA voltage = 0.4V	2			mA	

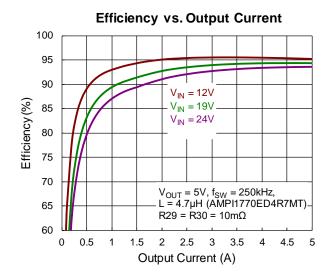
Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

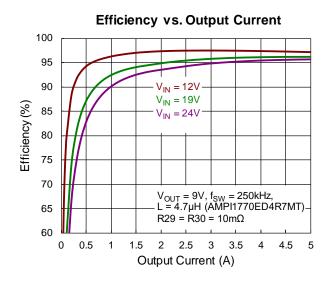
- Note 2. Devices are ESD sensitive. Handling precautions are recommended.
- Note 3. The device is not guaranteed to function outside its operating conditions.
- Note 4. For more information about thermal parameter, see the Application and Definition of Thermal Resistances report, AN061.
- Note 5. Guaranteed by design.

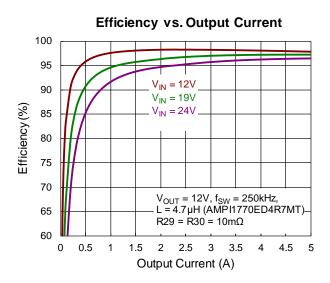
Typical Application Circuit

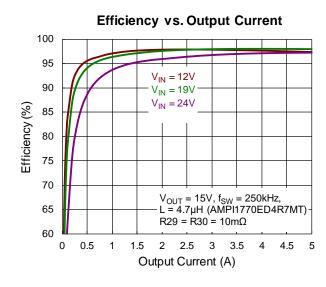
Note:

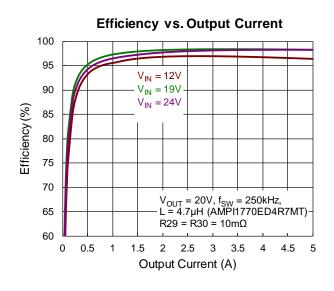
- If I²C interface is used, I²C slave address:
 - \checkmark 0x2C when R17 = NC. R18 = 100kΩ.
 - \checkmark 0x2D when R17 = 100kΩ, R18 = NC.
- Support power path control for 1C1A when Vout = 5V. VBUSC/GPC/VBUSA/GPA pins can be floating if power path function is not used.
- (3)The R32 range is recommended from $1k\Omega$ to $10k\Omega$.
- (4)*: Optional components R5, R6, C1 and C2 are used for Snubber.

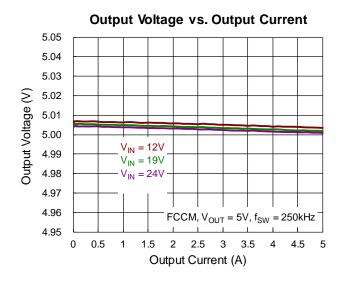


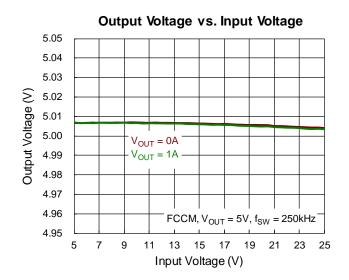

Table 1. Recommended BOM

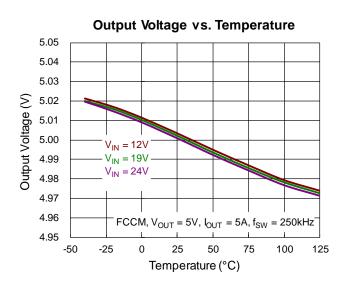

Reference	Qty	Part Number	Description	Package	Manufacture
U1	1	1 RT6190G DC-DC Controller		WQFN-40L 5x5	RICHTEK
L	1	AMPI1770ED4R7MT	4.7μΗ	17.0 x 17.0 x 7.0	ARLITECH
CIN, COUT	1 + 1	350ARHA101M08X8	100μF/35V	EC-2P_8_3-5MM	APAQ
CIN, COUT	4 + 4	GRM31CR61H106KA12	10μF/50V	C-1206	MURATA
R29, R30	2	RLM-1632-6F-R010- FNH	Current Sense Resistor R-1206		CYNTEC
01.04	2	SM4514NHKP	30V High-Side N-MOSFET	DFN5x6-8	SINOPOWER
Q1, Q4	2	SM4037NHKP	40V High-Side N-MOSFET	DFN5x6-8	SINOPOWER
02.02	2	SM4512NHKP	30V Low-Side N-MOSFET	DFN5x6-8	SINOPOWER
Q2, Q3	2	SM4035NHKP	40V Low-Side N-MOSFET	DFN5x6-8	SINOPOWER
QC1, QC2	4	SM3425NHQA	30V Power Path N-MOSFE	DFN3.3x3.3-8	SINOPOWER
QA1, QA2 4		SM3430NHQA	40V Power Path N-MOSFET	DFN3.3x3.3-8	SINOPOWER
D1, D2, D3, D4	4	1N4148WS	Diode	SOD-323	PANJIT

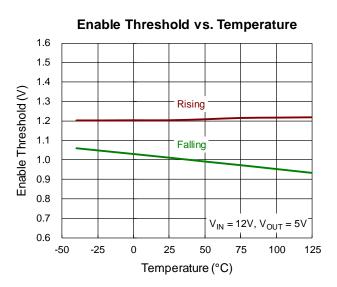


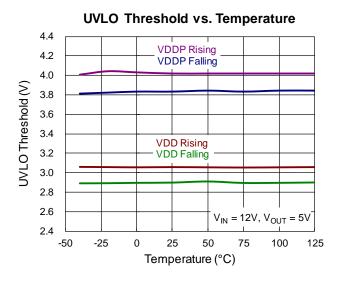

Typical Operating Characteristics

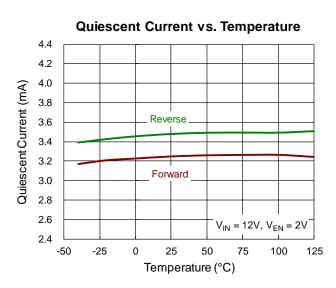


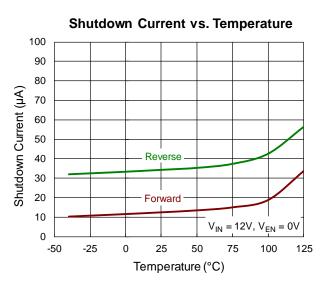


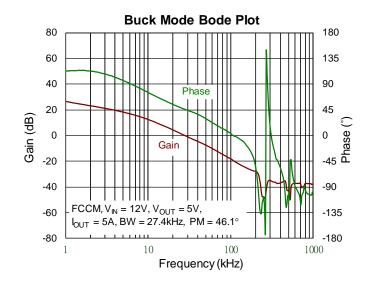

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

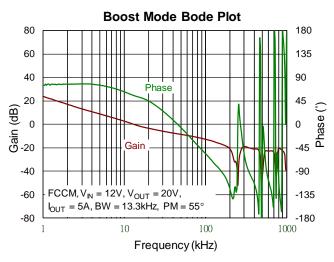

RICHTEK

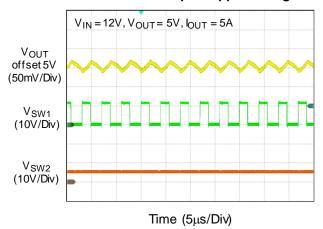

is a registered trademark of Richtek Technology Corporation.

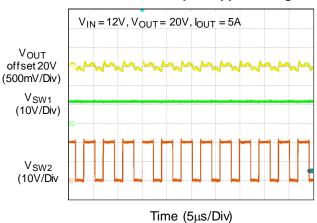


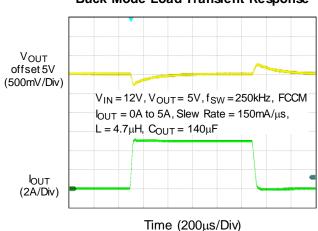







www.richtek.com

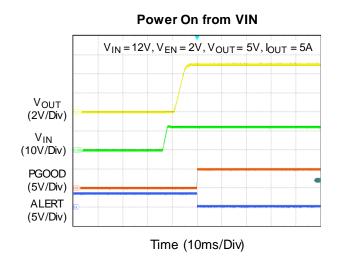


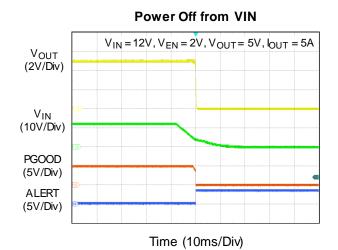

Buck Mode Output Ripple Voltage

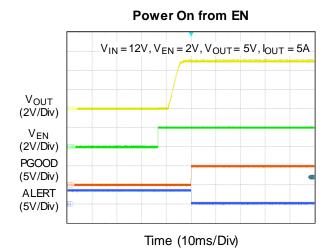
Boost Mode Output Ripple Voltage

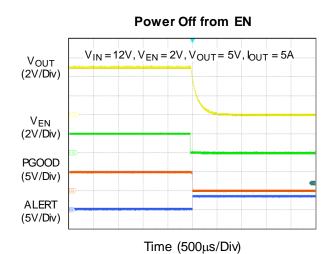
Buck Mode Load Transient Response

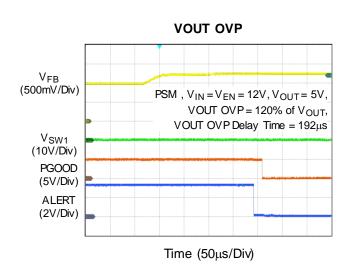
Boost Mode Load Transient Response

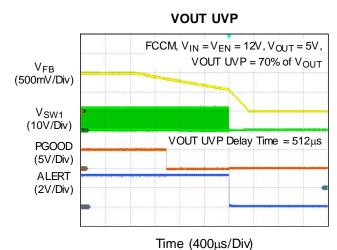

Time (200µs/Div)

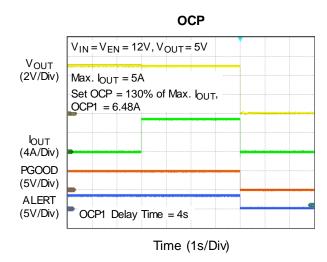

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

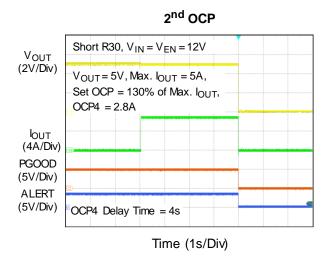

RICHTEK is a registered trademark of Richtek Technology Corporation.

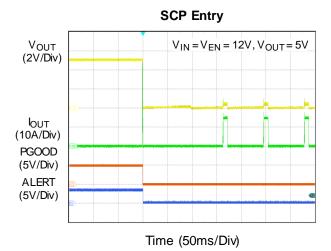

DS6190G-00 December 2023 www.richtek.com

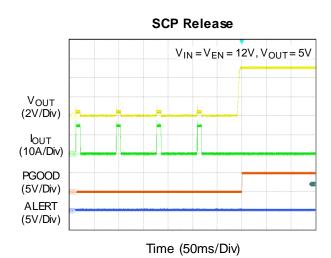


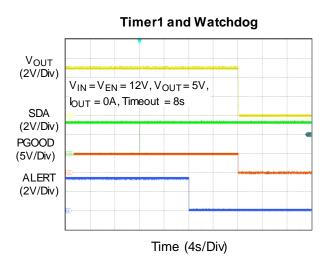












Copyright © 2023 Richtek Technology Corporation. All rights reserved.

Operation

The RT6190G is a Buck-Boost controller with integrated gate drivers for 4 external power N-MOSFETs. If input voltage is higher than output voltage, RT6190G will operate in Buck mode, and it will operate in Boost mode when input voltage is lower than output voltage. Once input voltage is close to output voltage, RT6190G will operate in Buck or Boost mode automatically, depending on internal control circuit for lower internal gate driver losses. The input voltage range is from 4.5V to 36V, and the output range is from 3V to 36V with $\pm 1\%$ accuracy of reference voltage.

The RT6190G utilizes peak current mode control to obtain fixed 250kHz switching frequency. The VDD provides 5V not only for internal logic circuit control but also for internal N-MOSFET gate drivers through VDDP pin to save system power rail. In order to minimize the inrush current in power on condition, the soft-start time can be adjustable by connecting a capacitor from SS pin to AGND. The RT6190G also provides I²C compatible interface for optional programmable functions: switching frequency from 250kHz to 1MHz, power path control, and etc.

The RT6190G implements full protection including input undervoltage lockout (UVLO), input and output overvoltage/undervoltage (OVP/UVP), protection output overcurrent protection (OCP), input cycle-bycycle peak/average current limit and OTP. It is recommended to choose suitable current sense resistor for input and output terminals under overcurrent condition.

UVLO, Enable Control and Soft-Start

The RT6190G implements undervoltage lockout (UVLO) protection to prevent insufficient input voltage by monitoring VIN, VDD and VDDP pins. When the input voltage of these pins are lower than UVLO threshold, the IC stops switching and resets all digital functions.

The RT6190G provides an EN pin to enable or disable the device externally. When EN pin voltage falls below a logic-low threshold voltage (VENL), the RT6190G will enter shutdown mode and reset all digital functions even if the input voltage of relative pins are above each UVLO threshold (VUVLO). In shutdown mode, the supply current can be reduced to ISHDN (typically 15µA). Once the EN pin voltage rises above a logic-high threshold voltage (VENH) and VIN is higher than its UVLO threshold, the VDD pin voltage will be regulated at 5V for internal digital circuits and VDDP for internal MOSFET gate drivers. After VDD and VDDP are higher than UVLO threshold voltage, the VOUT starts to ramp up with 50µs (typ.) delay time. In addition, EN pin can be connected to VIN pin directly to save power rail of system for normal operation.

The RT6190G provides adjustable soft-start function by connecting a capacitor from SS pin to AGND to prevent large inrush current during start-up. The soft-start time can be calculated as the equation below:

$$t_{SS}(ms) = \frac{C_{SS}(nF) \times 0.9V}{I_{SS}(\mu A)}$$

Figure 1 shows the start-up sequence by external enable pin. When VIN is above UVLO threshold voltage and VEN is higher than a logic-high threshold voltage, internal digital circuit will be enabled after VDD and VDDP rise above each UVLO threshold. After EN delay time, the VOUT starts to ramp up when SS voltage is higher than 0.7V. After SS voltage reaches to 2.3V, PGOOD will change to high level with 512µs (typ.) delay time.

For power-off condition, when RT6190G is disabled by external EN pin, the output voltage will ramp down with default discharge resistor on. In disabled operation, PGOOD will go low after 16µs (typ.) delay time after SS pin voltage is pulled low by internal discharging current. The power-off sequence is shown in Figure 2.

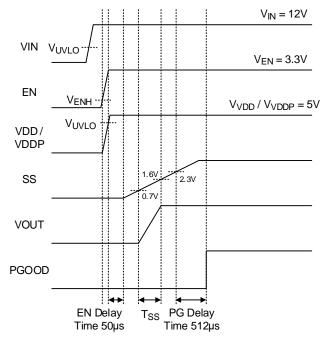


Figure 1. Start-up Sequence

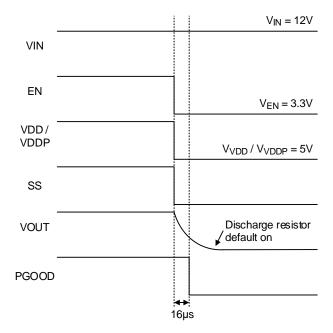


Figure 2. Power-off Sequence

Output Voltage Setting

Based on the typical application circuit, the RT6190G output voltage can be adjusted from 3V to 36V by setting the feedback resistor RFB1 and RFB2. Choose the RFB2 to be in the recommended range from $1k\Omega$ to $10k\Omega$, the RFB1 can be calculated as the equation below:

$$V_{OUT} = V_{FB} \times \frac{R_{FB1} + R_{FB2}}{R_{FB2}}$$

where VFB is 1V.

Note that minimum output voltage will be limited when input voltage is much larger than output voltage or in high switching frequency application due to minimum on-time specification.

Power Up with Pre-bias Output Voltage

In conventional application, the output capacitor of converter has been pre-charged to a non-zero positive voltage to make the FB pin voltage of PWM controller be a non-zero voltage. If the converter is powered up under this condition, the soft-start function of PWM controller will turn on low-side N-MOSFET with maximum duty ratio to rapidly discharge the output capacitor, and FB pin voltage will track the internal soft-start voltage from 0V. Then output voltage may oscillate and go negative due to the discharging current that depends on the inductance and the output capacitance. Therefore, the negative output voltage will damage the output devices.

The RT6190G implements control circuits specifically to prevent the negative output voltage when the converter is powered up with pre-biased voltage on the output capacitor. Figure 3 shows the RT6190G power on waveform with pre-biased output voltage, and the output voltage rises smoothly from its pre-charged initial value during soft-start without sagging.

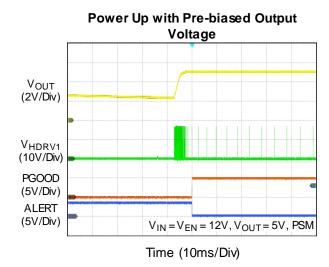


Figure 3. Power Up with Pre-biased Output Voltage

rved. RICHTEK

Power Good Indication

The RT6190G provides a power good indication with open-drain output capability to show the output voltage status. When output voltage is between 90% and 120% (typically OVP trip threshold of default factory setting) of reference voltage, the external PGOOD pin keeps as high level and internal PGOOD bit changes to "1" in register 0x1D[6] and 0x1F[6].

AnyCurrentTM Constant Current (CC) Regulation

The RT6190G also implements average current control loop by sensing the voltage across output current sense resistor R30 for output constant current (CC) regulation. The voltage across output current sense resistor is used to compare with the output CC level as register 0x03/0x04 to obtain an error signal, and then this error signal is externally compensated on COMPI pin. When the voltage across output current sense resistor is higher than output CC level, the COMPI pin voltage will fall below COMPV pin voltage to limit and keep the output current as output CC level. As the output current becomes higher than output CC level, RT6190G will limit the output current and then output voltage will lower than regulation point until UVP happens. In addition, it is recommended to choose suitable current sense resistor for input and output terminals under overcurrent condition.

Mode Selection

The RT6190G provides operation mode selection for light load Power Saving Mode (PSM) and Forced-CCM Mode (FCCM) by using register 0x0D[7]. The default factory setting of operation mode is light load PSM.

Power Saving Mode

When 0x0D[7] = 0, RT6190G operates in PSM and automatically reduces switching frequency at light-load conditions to maintain high efficiency. The internal zero current detection (ZCD) circuitry will be enabled to sense the inductor current by utilizing RDS(ON) of the Q4 N-MOSFET in typical application circuit. As the inductor current drops to zero and becomes negative, both HDRVx and LDRVx are turned off with the output capacitor supplying the load current until the output voltage falls below the internal reference voltage. In

reverse, when the output current increases from light load to heavy load, the switching frequency will increase to 250kHz (default factory setting) as the inductor current reaches the continuous conduction condition.

FCCM Mode

When 0x0D[7] = 1, the internal ZCD circuitry is disabled and the RT6190G operates in FCCM with typically 250kHz (default factory setting) at any load condition. This mode trades off reduced light load efficiency for low output voltage ripple, tight output voltage regulation, and constant switching frequency.

ADC Reporting

The RT6190G provides ADC function to report input/output voltage and current, VBUSC voltage and TSEN pin voltage by utilizing register 0x12 to 0x1B and 0x33 to 0x34 with 11-bit resolution. Register 0x10[1] and 0x32[1] are the enable control bit for ADC function, and 0x10[7:6] is the average times of ADC function. The default factory setting of 0x10 is 80h and 0x32 is 00h for ADC function default disable with average 8 times. Please see the I²C register map for detailed description of register 0x12 to 0x1B.

Power Path Control

The RT6190G integrates an internal gate driver to control external power path MOSFETs for USB-C and USB-A (1C1A) VBUS terminals when VBUS = 5V. The GPC/VBUSC pins are used for USB-C terminal, and GPA/VBUSA pins are used for USB-A terminal. Register 0x29[3:2] selects the external MOSFETs type of N-MOSFETs and P-MOSFETs for USB-C and USB-A terminals, and register 0x29[1:0] are the enable control bit for each power path MOSFETs. All power path MOSFETs will be turned off when protection happens with the default factory setting of register 0x29[7:4], and it can be set after internal digital circuit enabled for different application. In addition, the default factory setting of register 0x29[1:0] is 00 for power path function not used.

External Thermal Sense

The RT6190G provides an external thermal sense function to sense the temperature of external components such as inductor or MOSFETs by connecting a negative temperature coefficient (NTC) thermistor from TSEN pin to AGND and a resistor from VDD to TSEN pin. Register 0x1A/0x1B can report the TSEN pin voltage from 0V to 2V with 1mV resolution while ADC function is enabled (0x10[1] = 1).

Spread-Spectrum Operation

Due to periodicity of the switching signals, the energy concentrates in one particular frequency and in its harmonics. These levels of energy will be radiated to induce potential EMI issues. The RT6190G provides spread-spectrum function by register 0x11[7] for simplifying in compliance with the CISPR and EMI requirements.

After the soft-start ends, the spread-spectrum can be enabled with a pseudo random sequence and used +8% spread of the switching frequency. This function is default disabled.

Timer1 and Watchdog Function

The RT6190G implements a Timer1 function to detect Host status if system hang occurs without any protection being detected. Register 0x30[6:4] selects different Timer1 timeout, and the default factory setting value of 0x30[6:4] is 000 for Timer1 disabled. Timer1 will begin to count if 0x30[6:4] ≠ 000, and ALERT pin keeps high level if Timer1 is still counting. After Timer1 timeout completes, external ALERT pin will go to low level.

The RT6190G also implements a watchdog function to reset IC to factory default setting after watchdog timeout is completed if ALERT pin keeps as low level. Register 0x30[2:0] selects different watchdog timeout, and the default factory setting value of 0x30[2:0] is 000 for watchdog disabled.

Status Change Detection and ALERT Pin

The RT6190G implements a status change detection to alert the host when a warning or fault events have occurred by using external ALERT pin with push-pull output capability for active low behavior. The warning events are input UVLO, Timer1 and PGOOD, and the fault events are the conditions of overvoltage, undervoltage, overcurrent and over-temperature. In addition, PGOOD event indicates output voltage status for normal operation.

Register 0x1C, 0x1D, 0x1E and 0x1F can help host to know what the warning of fault events happens. 0x1C and 0x1D will be cleared to default setting "0" if the event is removed, but 0x1E and 0x1F will be cleared to default setting "0" by writing this bit to "1" after the events are removed only. The RT6190G also supports mask function to mask or pass the internal event flag output to external ALERT pin by using 0x20, and 0x21 registers. The overall detection function is shown in Figure 4.

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

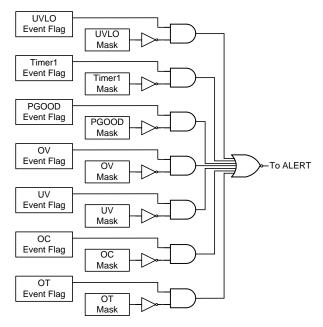


Figure 4. Overall Detection Function Block Diagram

Protection

The RT6190G implements full protective mechanism overvoltage/undervoltage protection (OVP/UVP) for VOUT pin, output overcurrent protection (OCP), input cycle-by-cycle peak/average current limit, over-temperature protection (OTP) and input OVP/UVP. The protection type is hiccup operation. Besides, RT6190G also provides pin-short protection to prevent the IC damaged in smoke, fire or spark conditions.

Output Overvoltage Protection (OVP)

The RT6190G provides output overvoltage protection (OVP) by constantly monitoring FB pin voltage. If VFB is larger than the OVP trip threshold (typically 120%) with relative OVP delay time, HDRVx will stop switching and LDRVx will fully turn on to discharge energy of the inductor immediately until ZCD is triggered. Register 0x0B[5:4] can select different OVP trip threshold, and Register 0x0B[1:0] is used to select OVP delay time. After OVP is released, RT6190G will return to last state before OVP happens and VFB will go back to regulation point.

Output Undervoltage Protection (UVP)

The RT6190G provides output undervoltage protection (UVP) against over-load or short-circuit condition by constantly monitoring FB pin voltage. If VFB drops below the UVP trip threshold (typically 70%) with relative UVP delay time, HDRVx will stop switching and LDRVx will fully turn on to discharge energy of the inductor immediately until ZCD is triggered. Register 0x0C[5:4] can select different UVP trip threshold, and Register 0x0C[1:0] is used to select UVP delay time. In UVP condition, both HDRVx and LDRVx will keep low state in 65ms and then the IC starts to switch. If VFB is not greater than UVP trip threshold after internal softstart end signal is triggered, both HDRVx and LDRVx will still keep low state again for next cycle.

Output Overcurrent Protection (OCP) and Input Peak/Average Current Limit

The RT6190G provides overcurrent protection (OCP) and cycle-by-cycle current limit to prevent the IC from the catastrophic damage in output short-circuit, overcurrent or inductor saturation conditions. For OCP function, RT6190G monitors the voltage across output current sense resistor R30 for OCP1/OCP2/OCP3 detection, and R30/R29 for OCP4 detection. If OCPx is triggered with relative OCP delay time, HDRVx will stop switching and LDRVx will fully turn on to discharge energy of the inductor immediately until ZCD is

DS6190G-00

triggered. Register 0x22 to 0x27 and 0x28[3:0] can select OCP trip threshold and delay time, and 0x28[7:4] are the control bits for OCPx enable. It is recommended to use the same current sense gain of input and output for correct OCP4 function. After OCP is released, RT6190G will return to last state before OCP happens and the feedback voltage will be back to regulation point. The RT6190G also monitors the voltage across input current sense resistor R29 for cycle-by-cycle peak and average current limit function. When peak or average current limit is triggered, RT6190G will limit the output current and then output voltage will lower than regulation point until UVP happens. Register 0x0A can set input peak current-limit threshold, and register 0x06/0x07 can set input average current-limit threshold.

Input Over/Undervoltage Protection (OVP/UVP)

The RT6190G also provides OVP and UVP by constantly monitoring input voltage for VIN pin. Register 0x0C[7] is used to enable or disable input OVP, and the default factory setting of input OVP is disabled. If input voltage is larger than OVP trip threshold (default factory setting is 27V), HDRVx will stop switching and LDRVx will fully turn on to discharge energy of the inductor immediately until ZCD is triggered. In addition, register 0x05 can be used to set minimum input voltage level in FCCM operation. When the input voltage is lower than minimum input voltage level, COMPV will be pulled low to make output voltage lower than regulation point until output UVP is triggered.

Output Over-Temperature Protection (OTP)

The RT6190G includes an over-temperature protection (OTP) circuitry to prevent overheating condition. When junction temperature exceeds a thermal shutdown threshold Tsp, the RT6190G will stop switching and resume normal operation immediately once the junction temperature cools down by thermal shutdown hysteresis (ΔT_{SD}).

Pin-Short Protection

The RT6190G provides pin-short protection for neighbor pins. The internal protection circuitry will be enabled to protect the IC in smoke, fire and spark situations.

DS6190G-00 December 2023 www.richtek.com

Application Information

Richtek's component specification does not include the following information in the Application Information section. Thereby no warranty is given regarding its validity and accuracy. Customers should take responsibility to verify their own designs and reserve suitable design margin to ensure the functional suitability of their components and systems.

A general RT6190G application circuit is shown in typical application circuit section. External component selection is largely driven by the load requirement and begins with the operating frequency from setting register 0x0D[2:0]. Then the inductor (L), the input capacitor (Cin), and the output capacitor (Cout) can be determined in this section. In addition, other external components such as the internal regulator capacitor of VDD and VDDP pins, resistor and capacitor of the bootstrap network circuit, and the gate driver resistors for external power N-MOSMET will also be introduced. Finally, the discharge resistor from DIS pin to the output capacitor can be calculated to meet the USB power delivery specification.

Inductor Selection

The inductor selection makes trade-offs among size, cost, power conversion efficiency, and transient response requirements. Generally, three key inductor parameters are specified for operation with the device: inductor value (L), inductor saturation current (Isat), and DC resistance (DCR). A good compromise between inductor size and power loss is from a 30% to 50% peak-to-peak ripple current to the IC rated current. The switching frequency, input voltage, output voltage, and selected inductor ripple current determines the inductor value for Buck and Boost operations as follows:

$$L_{BUCK} = \frac{(V_{IN} - V_{OUT})}{\Delta I_{L} \times f_{SW}} \times \frac{V_{OUT}}{V_{IN}}$$

$$L_{BOOST} = \frac{V_{IN}}{\Delta I_L \times f_{SW}} \times \frac{\left(V_{OUT} - V_{IN}\right)}{V_{OUT}}$$

Larger inductance values result in lower output ripple voltage and higher efficiency, but a slightly degraded load transient response. This result in additional phase lag in the loop and reduce the crossover frequency. As the ratio of the slope compensation ramp to the sensed current ramp increases, the current-mode system tilts towards voltage-mode control. Lower inductance values

allow for smaller case size, but the increased ripple current lowers the effective input peak current-limit threshold and increases the AC losses in the inductor. To enhance the power conversion efficiency, choose a low-loss inductor with the lowest possible DC resistance that fits in the allotted dimensions. The inductor value determines not only the ripple current but also the load-current value at which DCM/CCM switchover occurs. The selected inductor should have a saturation current rating greater than the peak current limit setting by RT6190G, and the core must be large enough not to saturate at the peak inductor current (IL_PEAK):

$$\Delta I_{L_BUCK} = \frac{\left(V_{IN} - V_{OUT}\right)}{L \times f_{SW}} \times \frac{V_{OUT}}{V_{IN}}$$

$$\Delta I_{L_BOOST} = \frac{V_{IN}}{L \times f_{SW}} \times \frac{(V_{OUT} - V_{IN})}{V_{OUT}}$$

$$I_{L_PEAK} = I_{OUT_MAX} + \frac{1}{2} \times \left(\Delta I_{L_BUCK} \text{ or } \Delta I_{L_BOOST}\right)$$

The current flowing through the inductor is the inductor ripple current plus the output current. During power up, faults or transient load conditions, the inductor current can increase above the peak inductor current level calculated above. In load transient conditions, the inductor current can increase up to the input peak current limit setting by RT6190G. For this reason, the most conservative approach is to specify an inductor with a saturation current rating equal to or greater than the input peak current limit rather than the peak inductor current.

Input Capacitor Selection

Since the input current is discontinuous conduction in Buck mode, and continuous conduction in Boost mode, the input capacitor (CIN) is needed to filter the pulsating current at the drain terminal of an external power N-MOSFET (Q1) for Buck mode only. CIN should be sized to do this without causing a large variation in input voltage. By using solid or electrolytic capacitors as the

input bulk capacitor, the peak-to-peak voltage ripple on input capacitor can be estimated as the equation below:

$$\Delta V_{CIN} = I_{OUT} \times \frac{D \times (1-D)}{C_{IN} \times f_{SW}} + I_{OUT} \times ESR_{CIN}$$

where D = VOUT/VIN, and ESRCIN is the equivalent series resistance of the input capacitor.

Then, the minimum value of effective input capacitance can be estimated with ESR as the equation below:

$$C_{\text{IN_MIN}} = I_{\text{OUTMAX}} \times \frac{D \times (1-D)}{\left(\Delta V_{\text{CIN_MAX}} - I_{\text{OUT_MAX}} \times \text{ESR}_{\text{CIN}}\right) \times f_{\text{SW}}}$$

assume $\Delta VCIN_MAX = 200mV$ for typical application.

Figure 5 shows the C_{IN} ripple current flowing through the input capacitors and the resulting voltage ripple across the input capacitors.

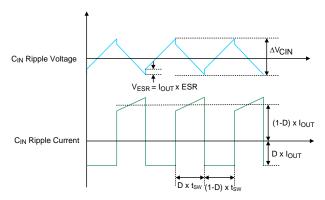


Figure 5. CIN Ripple Voltage and Ripple Current

In addition, the input capacitor needs to have a low ESR and must be rated to handle the worst-case RMS input current. The RMS input ripple current (ICIN_RMS) of the regulator can be determined by the input voltage (VIN), output voltage (VOUT), and maximum output current (IOUT MAX) as the following equation:

$$I_{CIN_RMS} \cong I_{OUT_MAX} \times \sqrt{D \times (1-D)}$$

The worst condition occurs when duty cycle = 50%, then $VIN = 2 \times VOUT$ and maximum RMS input ripple current will be 0.5 x $IOUT_MAX$. Note that ripple current ratings from capacitor manufacturers are often based on 2000 hours life cycle only, which makes it advisable to further de-rate the capacitor, or choose a capacitor with higher temperature rating than required.

The input capacitor should be placed as close as possible to the input current sense resistor (R29), and

with a low inductance connection from negative side of the input capacitor to S terminal of an external power N-MOSFET (Q2). The larger input capacitance is required for high power application by the combination of larger bulk capacitor and 2 to 4 ceramic capacitors of $10\mu F$ with 1206 in size.

In addition, the combination of bulk and ceramic capacitors can provide high ripple current capacity, reduce the output voltage ripple and minimize transient effects during output load change. For filtering high frequency noise, additional small capacitor $1\mu F$ with 0603 in size should be placed close to the part. It is recommended to use ceramic capacitors with X7R type and voltage rating up to 50V for best performance across temperature and input voltage variations.

Output Capacitor Selection

The output capacitor (Cout) is determined to satisfy the requirements for output voltage ripple and the load transient response. Similar to the input current conduction mode for different operation, the output current is continuous conduction in Buck mode, and discontinuous conduction in Boost mode. Cout needs to decrease the output voltage ripple caused by the pulsating output current in Boost mode. By using solid or electrolytic capacitors as the output bulk capacitor, the peak-to-peak voltage ripple on output capacitor can be calculated as the equation below:

$$\Delta V_{COUT} = I_{OUT} \times \frac{D}{C_{OUT} \times f_{SW}} + \frac{I_{OUT}}{1 - D} \times ESR_{COUT}$$

where D = (VOUT - VIN) / VOUT, and ESRCOUT is the equivalent series resistance of the output capacitor.

Then, the minimum value of effective output capacitance can be calculated with ESR as the equation below:

$$Cout_min = Iout_max \times \underbrace{ \frac{D}{\left(\Delta V_{COUT_max} - \frac{Iout_max}{1 - D} \times ESR_{COUT}\right) \times f_{SW}}}$$

where ΔV_{COUT_MAX} is the design target to meet system requirement.

In addition, the output capacitor also needs to have a low ESR and must be rated to handle the worst-case RMS output current in real application. The RMS output ripple current (ICOUT_RMS) of the regulator can be determined by the input voltage (VIN), output voltage

Copyright © 2023 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

www.richtek.com

(Vout), and maximum output current (Iout_MAX) as the following equation:

$$I_{COUT_RMS} \cong I_{OUT_MAX} \times \sqrt{\frac{D}{1-D}}$$

Assume Vin Min is 12V and Vout MAX is 20V defined from system, the duty cycle of the regulator is 40%, and the worst case of RMS output ripple current will be 0.8165 x IOUT_MAX. Note that ripple current ratings from capacitor manufacturers are often based on 2000 hours life cycle only, which makes it advisable to further derate the capacitor, or choose a capacitor with higher temperature rating than required.

The output capacitor should be placed as close as possible to the output current sense resistor (R30), and with a low inductance connection from negative side of the output capacitor to S terminal of an external power N-MOSFET (Q4). The larger output capacitance is required for high power application by the combination of larger bulk capacitor and 2 to 4 ceramic capacitors of $10\mu F$ with 1206 in size. In addition, the combination of bulk and ceramic capacitors can provide high ripple current capacity, reduce the output voltage ripple and minimize transient effects during output load change. For filtering high frequency noise, additional small capacitor 1µF with 0603 in size should be placed close to the part. It is recommended to use ceramic capacitors with X7R type and voltage rating up to 50V for best performance across temperature and input voltage variations.

Loop Compensation Design

In real condition, the undercompensated system may result in unstable operations such as audible noise from the magnetic components or capacitors, larger jitter rate of the switching waveforms, output voltage oscillation, overheating of external power N-MOSFETs and so on. In order to check loop response of the compensated system, the Bode plot can be ideally measured with a network analyzer such as Bode 100. However, the measurements will be error due to parasitic parameters from PCB layout and components nonlinearity such as the ESR variations of output capacitors, linearity of inductors and capacitors, etc. In addition, the limited measurement accuracy of the instrument will also have an influence on measured results.

The RT6190G provides two control loops by connecting relative network circuit from COMPV or COMPI pins to AGND. The COMPV pin is used for main control loop to ensure loop stability and load transient response requirements, and COMPI pin is used for output constant current function setting by register 0x03/0x04. In addition, the input constant voltage (Register 0x05) function will also have an influence on main control loop. By using peak current mode control topology, the RT6190G will operate in Buck and Boost modes automatically. The used method below can easily calculate the component value for compensation by ignoring the effects of the slope compensation due to its internal to the RT6190G.

Since the compensation design is more restrictive when a right half plane zero appears in boost mode, the COMPV compensation method needs to be separated into Buck or Boost mode independently for the conditions of fixed output voltage versus different input voltage. Therefore, below are the design procedure of compensation components estimation for Buck and Boost operation mode:

Buck Mode Operation:

- (1) COMPV compensation:
 - ✓ Set the crossover frequency fc to be less than one-tenth of the switching frequency, and obtain the power stage location from the equations below:

$$f_{P_BUCK} = \frac{1}{2\pi} \times \left(\frac{1}{C_{OUT} \times R_{OUT_BUCK}} \right)$$

$$f_Z = \frac{1}{2\pi} \times \left(\frac{1}{C_{OUT} \times R_{ESR}} \right)$$

where ROUT BUCK is the output equivalent resistance under the conditions of output voltage and max. output current, and RESR is the equivalent series resistance of output capacitor Cout.

√ R19, C10 and C9 as the typical application circuit can be calculated as:

$$R19 = 2\pi \times C_{OUT} \times f_C \times \frac{A_{CS} \times R_{CSI}}{Gmv} \times \frac{V_{OUT}}{V_{FB}}$$

$$C10 = \frac{C_{OUT} \times R_{OUT_BUSK}}{R19}$$

$$C9 = \frac{C_{OUT} \times R_{ESR}}{R19}$$

where Acs = 16, $Gmv = 550\mu A/V$, Rcsi = R29, VFB = 1V, and Vout is the target output voltage.

(2) COMPI compensation:

- ✓ Set the crossover frequency fc to be less than one-tenth of the switching frequency.
- √ R20 and C12 as the typical application circuit can be calculated as:

$$R20 = \frac{A_{CS}}{GAIN_OCS \times Gmi} \times \frac{R_{CSI}}{R_{CSO}} \times \frac{1}{V_{IN}} \times 2\pi$$
$$\times C_{OUT} \times f_{C} \times R_{OUT} \text{ BUCK}^{2}$$

$$C12 = \frac{\sqrt{C_{OUT} \times L}}{R20}$$

where Acs = 16, Gmi = 550μ A/V, Rcsi = R29, Rcso = R30, V_{IN} is the applied input voltage, L is the inductor, GAIN_OCS = 10 and can be adjustable by register 0x0F[1:0] after RT6190G powered on.

Boost Mode Operation:

(1) COMPV compensation:

✓ Set the crossover frequency fc to be less than one-fifth of the right half plane zero fz_RHP, and obtain the power stage location from the equations below:

$$f_{P_BOOST} = \frac{1}{2\pi} \times \left(\frac{2}{C_{OUT} \times R_{OUT} BOOST} \right)$$

$$f_Z = \frac{1}{2\pi} \times \left(\frac{1}{C_{OUT} \times R_{ESR}} \right)$$

$$f_{Z_RHP} = \frac{1}{2\pi} \times \left(\frac{R_{OUT_BOOST} \times (1 - D_{BOOST})^2}{L} \right)$$

where Rout BOOST is the output equivalent resistance under the conditions of output voltage and max. output current, Resk is the equivalent series resistance of output capacitor Cout, DBOOST is the duty cycle of Boost mode operation, and L is the inductor.

√ R19, C10 and C9 as the typical application circuit can be calculated as:

$$R19 = \frac{2\pi \times C_{OUT} \times f_{C}}{1 - D_{BOOST}} \times \frac{A_{CS} \times R_{CSI}}{Gmv} \times \frac{V_{OUT}}{V_{FB}}$$

$$C10 = \frac{C_{OUT} \times R_{OUT_BOOST}}{2 \times R19}$$

$$C9 = \frac{COUT \times RESR}{R19}$$

where Acs = 16, $Gmv = 550\mu A/V$, Rcsi = R29, VFB = 1V, and VouT is the target output voltage.

(2) COMPI compensation:

- ✓ Set the crossover frequency fc to be less than one-fifth to one-tenth of the right half plane zero fz_RHP
- √ R20, C12 and C11 as the typical application circuit can be calculated as:

$$R20 = \frac{A_{CS}}{GAIN_OCS \times Gmi} \times \frac{R_{CSI}}{R_{CSO}} \times \frac{(1 - D_{BOOST})^2}{VIN}$$
$$\times 2\pi \times C_{OUT} \times f_C \times R_{OUT} \text{ BOOST}^2$$

$$C12 = \frac{\sqrt{C_{OUT} \times L}}{R20 \times (1-D_{BOOST})}$$

$$C11 = \frac{1}{2\pi \times f_{Z \text{ RHP}} \times R20}$$

where Acs = 16, Gmi = 550μ A/V, Rcsi = R29, RCSO = R30, VIN is the applied input voltage, GAIN OCS = 10 and can be adjustable by register 0x0F[1:0] after RT6190G is powered on.

Based on the design procedures and equations above, the recommended component values of COMPV and COMPI compensation network circuits for Buck and Boost operation mode are calculated as Table 2.

www.richtek.com

Table 2. Recommended Compensation Values for COMPV and COMPI

VIII. (M)	Vour (\/)		COMPV			COMPI	
Vin (V)	Vout (V)	R19 (kΩ)	C9 (pF)	C10 (nF)	R20 (kΩ)	C11 (pF)	C12 (nF)
	5	29.4	4.7	5.6	4.99		4.7
	9	53.6	2.7	5.6	16.2		1.5
12	12	42.2	3.3	3.9	14.3	180	1.8
	15	49.9	2.2	3.3	12.7	180	2.2
	20	63.4	1.8	3.3	9.09	330	3.9
	5	29.4	4.7	5.6	3.16		8.2
	9	53.6	2.7	5.6	10		2.2
19	12	71.5	1.8	5.6	18		1.5
	15	76.8	1.5	5.6	24.3		1
	20	100	1	2.2	36.5	39	0.68
	5	29.4	4.7	5.6	2.49		10
	9	53.6	2.7	5.6	8.06		3.3
24	12	71.5	1.8	5.6	14.3		1.8
	15	76.8	1.5	5.6	19.1		1.2
	20	97.6	1	5.6	33.2		0.68
Test Co	Test Conditions		5A, fsw = 25 Cout = 100μF		+ 10μF (MLC	C) x 4	

Output Discharge Time Setting

The RT6190G provides output discharge function to discharge output capacitor quickly by connecting external discharge resistor from DIS pin to the positive side of output capacitor. Register 0x0E[4] is the enable control bit of output discharge function, and the default factory setting of 0x0E[4] = 1 for output discharge function default enable. When RT6190 operates in power off condition, the internal N-MOSFET of DIS pin will be turned on to discharge output capacitor by internal N-MOSFET RDS(ON) (Typically 6Ω) and external discharge resistor. Thus, the output voltage discharging time can be determined by the external discharge resistance and output capacitance as the equation below:

$$t_{DIS} = \left(R_{DS(ON)} + R13\right) \times C_{OUT} \times In\left(\frac{V_{OUT_INI}}{V_{OUT_FINAL}}\right)$$

where RDS(ON) is the on-resistance of internal N-MOSFET for DIS pin, R13 is the external discharge resistor which is referred to the application circuit, Cout is the total capacitance of the PWM output, Vout in is the initial output voltage before discharging, and VOUT FINAL is the final output voltage after discharging. Note that Vout FINAL may not be set to 0V for correct estimation of output voltage discharging time.

Internal Regulator

The RT6190G integrates a 5V linear regulator (VDD) that is supplied from VIN or VBUSC pins to provide power to the internal circuitry. For internal MOSFET gate drivers, it is necessary to connect an R-C filter from VDD pin to VDDP pin. The VDD can be used as PGOOD pull-up supply, but it is "NOT" allowed to power other device or circuitry. It is recommended to use 4.7μF/X5R with 0603 in size and rated voltage higher than 10V as bypass capacitors for VDD and VDDP, and it needs to be placed as close as possible to the VDD and VDDP pins.

Bootstrap Driver Supply

The external bootstrap capacitors (C3/C4) between BOOTx and SWx pins are used to create a voltage rail above the applied input voltage to turn on external power N-MOSFET (Q1/Q4). Once the external power N-MOSFET (Q2/Q3) are turned on, the external bootstrap capacitors can be charged through an internal diode to a voltage equal to approximately VDD each time. It is recommended to use $0.1\mu F/X5R$ with 0603 in size and rated voltage higher than 10V as bootstrap capacitors, and it needs to be placed as close as possible to BOOTx and SWx pins.

External Bootstrap Diode

It is recommended to add an external bootstrap Schottky diode between an external 5V voltage supply and BOOTx pins to improve enhancement of the external power N-MOSFET (Q1/Q4) and improve efficiency when high power application. Refer to D1/D2 of application circuit for correct connection. The external bootstrap Schottky diode can be 1N4148 or BAT54 for low-cost consideration and the external 5V can be a fixed 5V voltage supply from the system, or a VDDP pin voltage for saving power rail. Note that the VBOOTx-SWX must be lower than 5.5V for correct operation.

External Bootstrap Resistor (Option)

The external bootstrap resistors (R7/R8) between BOOTx pins and external bootstrap capacitors (C3/C4) are reserved to reduce the voltage spike at switch node (SW1/SW2). The potential EMI issues will also be minimized due to smaller di/dt noise caused by slow rising slew rate of external power N-MOSFET (Q1/Q4). The external bootstrap resistor selection trade-offs voltage spike at switch node, potential EMI issues and power conversion efficiency. Therefore, the usual range of external bootstrap resistor is from 0Ω to 10Ω with 0603 in size, and it is recommended to use 0Ω for initial setting. Refer to application circuit for correct connection of bootstrap network circuit.

Gate Driver Resistor for External Power N-MOSFET (Option)

The gate driver resistors (R1/R2/R3/R4) are placed optionally between HDRVx/LDRVx pins and external power N-MOSFET (Q1/Q2/Q3/Q4). Different from the function of external bootstrap resistor, the rising and falling slew rate of an external power N-MOSFET will be both slow. The gate driver resistors (R1/R4) for the external power N-MOSFET (Q1/Q4) are also used to reduce the voltage spike at switch node (SW1/SW2) to

RICHTEK is a registered trademark of Richtek Technology Corporation.

Copyright © 2023 Richtek Technology Corporation. All rights reserved. DS6190G-00 December 2023 www.richtek.com

minimize potential EMI issues, but the gate driver resistors (R2/R3) for the external power N-MOSFET (Q2/Q3) are only used to add series resistance to avoid LDRVx turning on rapidly. The gate driver resistor selection also make trade-offs among voltage spike at switch node, potential EMI issues and power conversion efficiency. Therefore, the usual range of gate driver resistor is from 0Ω to 10Ω with 0603 in size, and it is recommended to use 0Ω for initial setting. Refer to application circuit for correct connection.

RC Snubber Components (Option)

The RC snubber (R5/R6/C1/C2) components are placed optionally in parallel with an external power N-MOSFET (Q2/Q3) to avoid larger voltage spike appearing between Drain and Source terminals of an **N-MOSFET** (Q2/Q3). external power These components are also used to minimize the potential EMI issues due to smaller voltage spike at switch node (SW1/SW2). The RC snubber components selection also makes trade-offs among voltage spike between Drain and Source terminals of an external power N-MOSFET (Q2/Q3), potential EMI issues and power conversion efficiency. Therefore, the usual range of snubber resistor (R5/R6) is from 0Ω to 10Ω , and snubber capacitor (C1/C2) is from 100pF to 1nF. To avoid larger power dissipation on snubber resistor (R5/R6), it is recommended to use 1206 in size when larger snubber capacitor (C1/C2) is selected. Refer to application circuit for correct connection.

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature T_J(MAX), listed under Absolute Maximum Ratings, to avoid the permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated by the following formula:

 $P_{D(MAX)} = (T_{J(MAX)} - T_{A})/\theta_{JA}$

where T_{J(MAX)} is the maximum junction temperature; T_A is the ambient temperature; and θ_{JA} is the junction-toambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a WQFN-40L 5x5 package, the thermal resistance, θJA, is 27.5°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at $T_A = 25^{\circ}C$ can be calculated as below:

 $PD(MAX) = (125^{\circ}C - 25^{\circ}C)/(27.5^{\circ}C/W) = 3.63W$ for a WQFN-40L 5x5 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed TJ(MAX) and the thermal resistance, θ JA. The derating curves in Figure 6 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

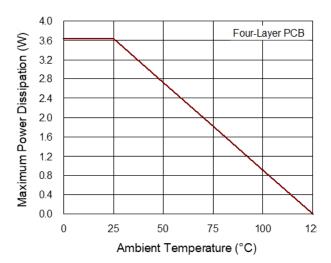


Figure 6. Derating Curve of Maximum Power Dissipation

2023

Layout Considerations

When laying out the printed circuit board, the following checklist should be used to ensure proper operation of the RT6190G:

- ▶ Four-layer or six-layer PCB with maximum ground plane is strongly recommended for good thermal performance.
- ▶ Keep the traces of the main current paths wide and short.
- ▶ Place input capacitors, external power N-MOSFETs Q1 and Q2, and input current sense resistor R29 as close together as possible to minimize loop impedance of input switching current.
- ▶ Place output capacitors, external power N-MOSFETs Q3 and Q4, and output current sense resistor R30 as close together as possible to minimize loop impedance of output switching current.
- ▶ Place multiple vias near the negative side of the input and output capacitor, and the s terminal of external power N-MOSFETs to reduce parasitic inductance and improve thermal performance.
- ▶ Place C7 and C8 as close to VDD and VDDP pins as possible.
- ▶ Place bootstrap capacitor C3 and C4 as close to IC as possible, and connect directly between BOOTx and SWx pins.

- ▶ Route the trace with 30mil width for BOOTx, SWx, HDRVx, LDRVx pins, and 20mil for VDD, VDDP, VBUSC, GPC, VBUSA, GPA pins.
- ▶ The high frequency switching nodes, BOOTx and SWx, should be as small as possible, and reduce the area size of SWx exposed copper to minimize the electrically coupling from this voltage. Keep analog components away from the BOOTx and SWx nodes.
- ▶ Minimize current sense voltage errors by using Kelvin connection for PCB routing. R29, CSINP/CSINN and VIN/PSINN pins for input current sense, R30, CSOUTP/CSOUTN and VOUT/PSOUTN for output current sense.
- ▶ Place voltage divider resistor R31 and R32 near the IC.
- ▶ Place the compensation components R19/C9/C10 and R20/C11/C12 near the IC.
- ▶ Place the soft-start capacitor C13 near the IC.
- ▶ Separate AGND and GND planes to avoid noise couple on SS pins and network circuit of COMPV and COMPI pins.

Figure 7. and Figure 8. are the layout example that uses four-layer PCB in size of 132mm x 90mm with 1oz copper thickness.

www.richtek.com

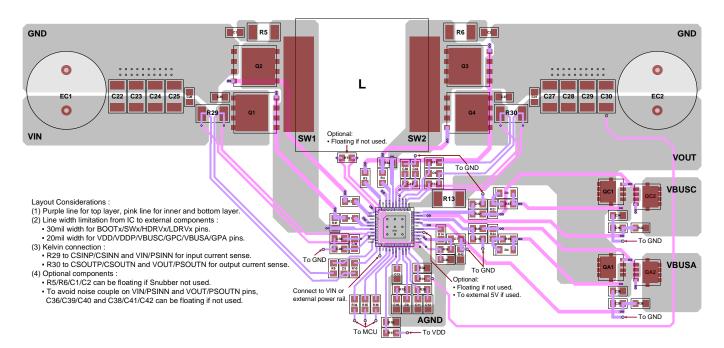


Figure 7. PCB Layout in Top Layer

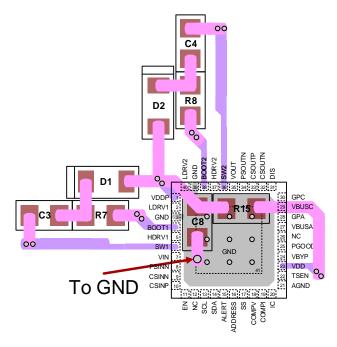


Figure 8. PCB Layout in Bottom Layer

2023

I²C Interface

The RT6190G I²C slave address can be determined by ADDRESS pin. Connecting ADDRESS pin to VDD selects 0x2D, and connecting ADDRESS pin to AGND selects 0x2C. The RT6190G supports fast mode (bit rate up to 400kb/s), and the read or write bit stream (N ≥ 1) is shown in Figure 9.

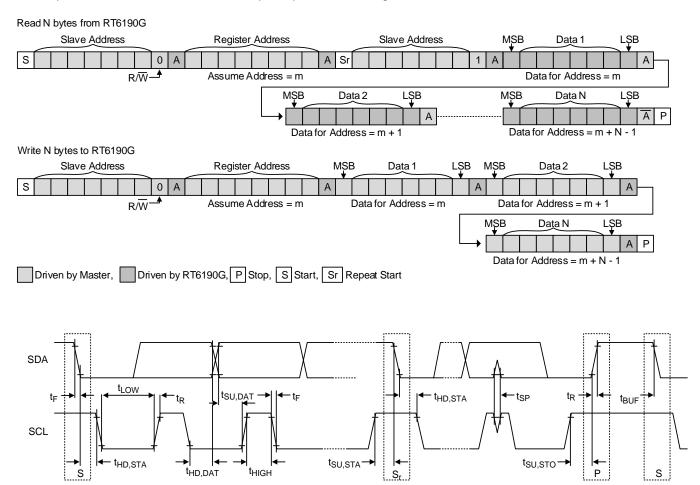


Figure 9. I²C Read/Write Bit Stream and Timing Diagram

DS6190G-00 December 2023

Functional Register Description

Table 3. I²C Register Summary

Register Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default		
0x00	Manufacturer _ID		MANUFACTURER_ID									
0x03			OUT_CC[7:0]									
0x04	Output_CC				Reserved				OUT_CC[8]	0x01		
0x05	Input_CV	Rese	erved			IN_	CV			0x00		
0x06				•	IN_C	C[7:0]				0xFF		
0x07	Input_CC				Reserved				IN_CC [8]	0x01		
0x0A	Vref_POCP	Rese	erved			VREF_	POCP			0x24		
0x0B	OVP	Rese	erved	OVP_DEL SET	_AY_INT_	Rese	erved	OVP_	LEVEL	0x12		
0x0C	UVP	EN_IN_ OVP	Reserved	UVP_DEL SET	AY_INT_	Rese	erved	UVP_	LEVEL	0x12		
0x0D	Setting1	F_CCM	SLEWF	RATE_R	SLEWR	RATE_F		FSW		0x78		
0x0E	Setting2	EN_ PWM	DIS_ INCV	DIS_ INCC	EN_ DISCHA RGE		Reserved			Reserved		0x90
0x0F	Setting3	DT_	SEL	GM	_EA	GAIN_ICS GAIN_OC		_ocs	0x10			
0x10	Setting4	ADC_A	VG_SEL	I2C_ SPEED	OCP4_T IME_X10	Rese	erved	EN_ADC	DRIVER _CHAR GE	0x80		
0x11	RATIO	SSP_EN	VIN_ RATIO									
0x12	Output_				OUT_VOL	TAGE[7:0]				0xE8		
0x13	Voltage			Reserved			OUT.	_VOLTAGE	[10:8]	0x03		
0x14	Output_				OUT_CUR	RENT[7:0]				0x00		
0x15	Current			Reserved			OUT_	_CURRENT	[10:8]	0x00		
0x16	Input_				IN_VOLT	AGE[7:0]				0x00		
0x17	Voltage		Reserved IN_VOLTAGE[10:8]					0x00				
0x18	Input_		IN_CURRENT[7:0]					0x00				
0x19	Current		Reserved IN_CURRENT[10:8]						0x00			
0x1A	Temperature				TEMPERA	TURE[7:0]				0x00		
0x1B	· omporatoro			Reserved			TEM	PERATURE	[10:8]	0x00		

Register Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default	
0x1C	Status1	IN_OVP	OTP	INT_UVP	INT_OVP		Rese	erved		0x00	
0x1D	Status2	Reserved	PG	Reserved	CV_CC	OCP4	0x10				
0x1E	Alert1	ALERT_ IN_OVP	ALERT_ OTP	ALERT_ INT_ UVP	ALERT_ INT_ OVP		Rese	erved		0x00	
0x1F	Alert2	ALERT_ OTP_R	ALERT_ RAMP_ PG	ALERT_ TM1	ALERT_ WDT	ALERT_ OCP4	ALERT_ OCP3	ALERT_ OCP2	ALERT_ OCP1	0x00	
0x20	Mask1	M_ALER T_IN_ OVP	M_ALER T_OTP	M_ALER T_INT_ UVP	M_ALER T_INT_ OVP		Rese	erved		0xFF	
0x21	Mask2	M_ALER T_OTP_ R	M_ALER T_RAMP _PG	M_ALER T_TM1	M_ALER T_WDT	M_ALER T_OCP4	M_ALER T_OCP3	M_ALER T_OCP2	M_ALER T_OCP1	0xFF	
0x22	OCP1_ Setting				OCP1_S	SETTING				0x51	
0x23	OCP2_ Setting		OCP2_SETTING								
0x24	OCP3_ Setting				OCP3_S	SETTING				0xFF	
0x25	OCP4_ Setting		OCP4_SETTING								
0x26	OCP1 Delay Time	OCP1_ TIME_ LSB			0	CP1_TIMIN	IG			0x0D	
0x27	OCP2 Delay Time	OCP2_ TIME_ LSB			0	CP2_TIMIN	IG			0x00	
0x28	OCP Enable	OCP4_ EN	OCP3_ EN	OCP2_ EN	OCP1_ EN	OCP4_	TIMING	OCP3_	TIMING	0x00	
0x29	Setting5	PROTE CT_PAT H_C	PROTE CT_PAT H_A	PROTE CT_PAT H_1	PATH_ FLOATI NG	PATH_C _TYPE	PATH_A _TYPE	POWER _PATH_ GC	POWER _PATH_ GA	0x00	
0x2B	PPS	DIS_ALA RM_LO	DIS_ALA RM_HI			Rese	erved			0xC0	
0x2C	VBUSC Alarm High				ALARM	I_HI[7:0]				0xFF	
0x2D	Threshold			Reserved			AL	ARM_HI[10	D:8]	0x07	
0x2E	VBUSC				ALARM	_LO[7:0]				0x00	
0x2F	Alarm Low Threshold	Reserved ALARM_LO[10:8]							0x00		
0x30	Watchdog	Reserved	Т	IMER1_SE	L	Reserved	WA	TCHDOG_	SEL	0x00	
0x32	VBUSC_ Voltage ADC			Rese	erved			VBUSC ADC	Reserved	0x00	
0x33	VBUSC_			\	/BUSC_VC	LTAGE[7:0]			0x00	
0x34	Voltage			Reserved			VBUSC	_VOLTAG	E[10:8]	0x00	

Copyright © 2023 Richtek Technology Corporation. All rights reserved. DS6190G-00 December 2023

RT6190G

Register Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
0x37	Status3	Reserved			ALARM_ LO	ALARM_ HI	Reserved	IN_UVLO		0x00
0x38	Alert3	Reserved			ALERT_ ALARM_ LO	ALERT_ ALARM_ HI	Reserved	ALERT_ IN_UVL O_F	ALERT_ IN_UVLO _R	0x00
0x39	Mask3	Reserved			M_ALER T_ALAR M_LO	M_ALER T_ALAR M_HI	Reserved	M_ALER T_IN_UV LO_F	_	0x00

Table 4. I²C Register Map

Register Address	0x00		Register Name	Manufacturer_ID					
Bits	Bit 7 Bit 6		Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	1	0	0	0	0	0	1	0	
Read/Write	R	R	R	R	R	R	R	R	
Bits	Na	me	Description						
Bit 7 to Bit 0	MANUFAC	CTURE_ID	MANUFACTURE_ID						

Register Address	0×	:03	Register Name			Output_CC				
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Default	0	1	0	1	1	0	0	1		
Read/Write	RW	RW	RW	RW	RW	RW	RW	RW		
Bits	Na	me	Description							
Bit 7 to Bit 0	OUT_0	Name OUT_CC[7:0]		OUT_CC[= Sense resistor below. 0F[1:0] = 00 (0.306A (0x01) 0F[1:0] = 11 (0.306A (0x03) 0F[1:0] = 11 (0.306A (0x04)	as the equation 8:0](Decima GAIN_OCS R30 R30 = 10mΩ GAIN_OCS = 3) to 12.114A GAIN_OCS = 6) to 5.982A GAIN_OCS = 9) to 3.938A GAIN_OCS = C) to 2.916A	e, the output C 10x): 10x1 (0x1FF) with 10x1FF) with 1 10x1FF) with 1 10x1FF) with 8 10x1FF) with 8 10x1FF) with 8	1.5mV C setting rang 24mA/step. 2mA/step. 8mA/step.	ge can be		
			(5) Default value = 0x159 with 0x0F[1:0] = 00 (GAIN_OCS = 10x) for default output CC = 8.13A.Note: Minimum OUT_CC setting must be larger than 0.3A for using different output sense resistor R30.							

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

Register Address	0x04		Register Name	Output_CC					
Bits	Bit 7 Bit 6		Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	0	0	0	0	0	0	0	1	
Read/Write	R	R	R	R	R	R	R	RW	
Bits	Na	me		Description					
Bit 7 to Bit 1	Rese	erved	Reserved bits						
Bit 0	OUT_	CC[8]	Upper 1 bit of 9-bit OUT_CC[8:0] for output constant current (CC) setting. Refer to 0x03 register for detailed description.						

Register Address	0x	05	Register Name	Input_CV						
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Default	0	0 0		0	0	0	0	0		
Read/Write	R	R	RW	RW	RW	RW	RW	RW		
Bits	Na	me	Description							
Bit 7 to Bit 6	Rese	erved	Reserved bits							
Bit 5 to Bit 0	IN_CV		VIN_CV = IN (1) When 0x' Range = (2) When 0x' Range = (3)	Minimum input constant voltage (CV) setting. $VIN_CV = IN_CV[5:0](Decimal) \times \Delta V$ (1) When 0x11[6] = 0, VIN ratio = 0.08V/V : Range = 0V (0x00) to 22.05V (0x3F) with $\Delta V = 350$ mV/step. (2) When 0x11[6] = 1, VIN ratio = 0.05V/V : Range = 0V (0x00) to 35.28V (0x3F) with $\Delta V = 560$ mV/step. (3) Default value = 0x00 with VIN ratio = 0.08V/V for default input CV = 0V.						

Register Address	0x	06	Register Name	- Innut (.(.						
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Default	1	1	1	1	1					
Read/Write	RW	RW	RW	RW	RW	RW	RW	RW		
Bits	Na	me	Description							
Bit 7 to Bit 0	IN_C	C[7:0]	With input sessimplified as (1) When 0x Range = (2) When 0x Range = (3) When 0x Range = (4) When 0x Range = (5) Default vinput CC	ense resistor F below. 0F[3:2] = 00 (0.318A (0x02 0F[3:2] = 01 (0.318A (0x04 0F[3:2] = 10 (0.318A (0x06 0F[3:2] = 11 (0.318A (0x08 alue = 0x1FF = 11.814A. um IN_CC set	Decimal) × 0.0 IN_ICS R29 R29 = $10mΩ$, GAIN_ICS = $\frac{2}{3}$ 0) to $\frac{11.814A}{3}$ 4 GAIN_ICS = $\frac{2}{3}$ 0) to $\frac{2}{3}$ 6 The second of $\frac{2}{3}$ 7 The second of $\frac{2}{3}$ 8 The second of $\frac{2}{3}$ 8 The second of $\frac{2}{3}$ 9	0024 – 4.5m\ the input CC s 10x) : (0x1FF) with 20x) : (0x1FF) with 130x) : (0x1FF) with 8	setting range of a setting range	r default		

Register Address	0x07		Register Name	Input_CC					
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	0	0 0		0	0	0	0	1	
Read/Write	R	R	R	R	R	R	R	RW	
Bits	Na	me	Description						
Bit 7 to Bit 1	Rese	erved	Reserved bits						
Bit 0	IIN L.C.IXI		Upper 1 bit of 9-bit IN_CC[8:0] for input constant current (CC) setting. Refer to 0x06 register for detailed description.						

Register Address	0x	0A	Register Name	VREF_POCP							
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Default	0 0		1	0	0	1	0	0			
Read/Write	R	R	RW	RW	RW	RW	RW	RW			
Bits	Na	me		Description							
Bit 7 to Bit 6	Rese	erved	Reserved bits	Reserved bits							
Bit 5 to Bit 0	VREF_	_POCP	IPOCP = {0x With input se (1) Range = 5	:0A[5:0](Dec ense resistor I 5.231A (0x10		•		eet as:			

Register Address	0x	0B	Register Name	OVP						
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Default	0 0		0	1	0	0	1	0		
Read/Write	R	R	RW	RW	R	R	RW	RW		
Bits	Na	me	Description							
Bit 7 to Bit 6 Bit 3 to Bit 2	Rese	erved	Reserved bit	Reserved bits						
			OVP delay time setting for FB pin voltage.							
Bit 5 to Bit 4	OVP_DELA	Y_INT_SET	00 : 96μs 10 : 288μs 01 : 192μs (Default) 11 : 386μs							
			OVP thresho	old setting.						
Bit 1 to Bit 0	OVP_I	LEVEL	00 : Reserve 01 : 115%	,						

Register Address	0x	0C	Register Name	UVP							
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Default	0	0	0	1	0	0	1	0			
Read/Write	RW	RW R		RW	R	R	RW	RW			
Bits	Na	me		Description							
Bit 7	EN_IN_OVP		Enable or dis 0 : Disable	nable or disable input OVP function. (Trip level = 27V) : Disable 1 : Enable							
Bit 6 Bit 3 to Bit 2	Rese	erved	Reserved bits								
			UVP delay ti	me setting for	FB pin voltag	e.					
Bit 5 to Bit 4	UVP_DELA	Y_INT_SET	00 : 256μs 01 : 512μs (Default)		10 : 768μs 11 : 1024μs					
			UVP threshold setting.								
Bit 1 to Bit 0	UVP_LEVEL		00 : 50% 01 : 60%	,							

Register Address	0x	0D	Register Name			Setting1				
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Default	0	1	1	1	1	0	0	0		
Read/Write	RW	RW	RW	RW RW RW						
Bits	Na	me	Description							
Bit 7	F_C	ССМ	'	Operation mode setting. 0: Light load PSM 1: Force CCM						
Bit 6 to Bit 5	SLEWF	RATE_R	(1) For 0x11 (2) For 0x11 00 : Slew rate	[5] = 1, VOUT te = Δ VOUT/4	ratio = 0.08\ ratio = 0.05\ μs		20mV/step. te = Δ VOUT/1	l6μs		
Bit 4 to Bit 3	SLEWF	RATE_F	Falling slew (1) For 0x11 (2) For 0x11 00 : Slew rate		r DVS down. ratio = 0.08\ ratio = 0.05\ μs	//V, ΔVOUT = //V, ΔVOUT = 10 : Slew ra	12.5mV/step.	- 16μs		
Bit 2 to Bit 0	FS	SW		equency settin z (Default) z z	·	100 : 615kH 101 : 730kH 110 : 845kH 111 : 960kH	lz lz	, = (= = = = = = = = = = = = = = = = = =		

Register Address	0x	0E	Register Name			Setting2			
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	0	0	0	1	0	0	0	0	
Read/Write	RW	RW	RW RW R R R						
Bits	Na	me			Descr	iption			
D:4 7	EN I	D\A/A4	Enable or dis	sable RT6190	•				
Bit 7	EN_I	PWM	0 : Disable			1 : Enable			
Dit C	DIC	INIO) /	Enable or dis	sable input C\	loop to ignor	e IN_CV setti	ng.		
Bit 6	DIS_	INCV	0 : Enable			1 : Disable			
Dir.C	DIC	INICC	Enable or dis	sable input C0	loop to ignor	e IN_CC setti	ing.		
Bit 5	DIS_	INCC	0 : Enable			1 : Disable			
Bit 4	EN_DISC	Enable or disable the output discharge resistor when turn off by I ² C or in D down operation.						C or in DVS	
			0 : Disable 1 : Enable						
Bit 3 to Bit 0	Rese	erved	Reserved bits						

Register Address	0x	0F	Register Name			Setting3			
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	0	0	0	1	0	0	0	0	
Read/Write	RW	RW	RW	RW	RW	RW	RW	RW	
Bits	Na	me	Description						
			Dead time se	etting.					
Bit 7 to Bit 6	DT_	SEL	00 : 30ns (D 01 : 50ns	efault)		10 : 70ns 11 : 90ns			
			Error amplific	er gain setting	J.				
Bit 5 to Bit 4	GM _.	_EA	00 : 275μΑ/\ 01 : 550μΑ/\			10:825μΑ/V 11:1100μΑ/V			
			Input averag	e current sens	se gain setting	j .			
Bit 3 to Bit 2	GAIN	_ICS	00:10x (De 01:20x	fault)	10 : 30x 11 : 40x				
			Output avera	age current se	nse gain setti	ng.			
Bit 1 to Bit 0	GAIN <u>.</u>	_OCS	00 : 10x (Default)						

Register Address	0x	10	Register Name			Setting4		
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Default	1	0	0	0	0	0	0	0
Read/Write	RW	RW	RW RW R R RW					
Bits	Na	me	Description					
			Average time	es of ADC fun	ction.			
Bit 7 to Bit 6	ADC_A\	/G_SEL	00: 2 times 10: 8 times (Default) 01: 4 times 11: 16 times					
D:4 C	100.0	DEED	I ² C speed se	election.				
Bit 5	120_5	PEED	0 : Bit rate =	300kHz.		1 : Bit rate =	1MHz/3.4MH	z
Dit 4	OCD4 T	IME V40	OCP4 delay	time ratio.				
Bit 4	UCP4_11	IME_X10	0:x1			1:x10		
Bit 3 to Bit 2	Rese	erved	Reserved bit	S				
Dit 4	- FNI	ADC	Enable or disable ADC function for 0x12 to 0x1B registers.					
Bit 1	EN_	ADC	0 : Disable 1 : Enable					
Dit 0	DDIVED CHARGE		Enable or disable driver charge function.					
BIT U	Bit 0 DRIVER_CHARGE		0 : Disable			1 : Enable		

Register Address	0x	11	Register Name	- RAIIO				
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Default	0	0	0	0				
Read/Write	RW	RW	RW R R R					
Bits	Na	me	Description					
D:+ 7	CCD	- FNI	Enable or disable spread spectrum function.					
Bit 7	337	_EN	0 : Disable 1 : Enable					
			VIN ratio selection for input voltage setting range.					
Bit 6	VIN_F	RATIO	0:0.08V/V			1: 0.05V/V		
			Note: This re	egister can "O	nly" be set v	when 0x0E[7] :	= 0	
			VOUT ratio s	selection for o	utput voltage	setting range.		
Bit 5	VOUT_	RATIO	0: 0.08V/V 1: 0.05V/V					
			Note: This register can "Only" be set when 0x0E[7] = 0					
Bit 4	Rese	erved	Reserved bits					
Bit 3 to Bit 0	CHIP_V	ERSION	CHIP_VERSION					

Register Address	0x	12	Register Name Output_Voltage					
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Default	1	1	1	0	1	0	0	0
Read/Write	R	R	R R R R R					
Bits	Na	me			Descr	iption		
Bit 7 to Bit 0	OUT_VOL	TAGE[7:0]	Lower 8 bits of 11-bit OUT_VOLTAGE[10:0] for fixed feedback voltage reporting. VFB Reporting = OUT_VOLTAGE[10:0](Decimal) $\times \Delta V$ VFB will be fixed to 0x3E8 with $\Delta V = 1$ mV/step for feedback voltage = 1V.					

Register Address	0x13		Register Name		Output_Voltage					
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Default	0	0	0	0	0	0	1	1		
Read/Write	R	R	R	R	R	R	R	R		
Bits	Na	me			Descr	iption				
Bit 7 to Bit 0	OUT_VOL	ΓAGE[10:8]		of 11-bit OUT 2 register for o			eedback volta	ge reporting.		

Register Address	0x	:14	Register Name		Output_Current				
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	0	0	0	0	0	0	0	0	
Read/Write	R	R	R R R R					R	
Bits	Na	me	Description						
Bit 7 to Bit 0	OUT_CUR	RENT[7:0]	IOUT_Report With output range can be (1) When 0x Range = (2) When 0x Range = (3) When 0x Range = (4) When 0x	orting = OUT orting = Sense resistor e simplified for 0.0036A (0x0 0F[1:0] = 01 (0.0036A (0x0 0F[1:0] = 10 (0.0036A (0x0 0F[1:0] = 11 (CURRENT[1 Irrent can be r CURRENT T R30 = 10mg r reading as b GAIN_OCS = 0F) to 20.811. GAIN_OCS = 1E) to 10.33A GAIN_OCS = 2D) to 6.837A GAIN_OCS = 3C) to 5.09A	ead as the eq [10:0](Decim GAIN_OCS R30 Ω, the output elow. 10x): A (0x7FF) with 20x): A (0x7FF) with 30x): A (0x7FF) with 40x):	average current 10.24mA/step. 3.413mA/step.	ent reporting	

Register Address	0x	15	Register Name Output_Current					
Bits	Bit 7	Bit 6	Bit 5	Bit 5 Bit 4 Bit 3 Bit 2 E			Bit 1	Bit 0
Default	0	0	0	0	0	0	0	0
Read/Write	R	R	R R R R R					
Bits	Na	me			Descr	iption		
Bit 7 to Bit 3	Rese	erved	Reserved bits					
Bit 2 to Bit 0	OUT_CURI	RENT[10:8]	Upper 3 bits of 11-bit OUT_CURRENT[10:0] for output average current reporting. Refer to 0x14 register for detailed description.					rent

Register Address	0x	16	Register Input_Voltage						
Bits	Bit 7	Bit 6	Bit 5	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1					
Default	0	0	0	0	0	0	0	0	
Read/Write	R	R	R R R R R						
Bits	Na	me	Description						
Bit 7 to Bit 0	IN_VOLT	'AGE[7:0]	Lower 8 bits of 11-bit IN_VOLTAGE[10:0] for input voltage reporting. VIN Reporting = IN_VOLTAGE[10:0](Decimal) x ΔV (1) When 0x11[6] = 0, VIN ratio = 0.08V/V: Range = 3V (0x0F0) to 25.5875V (0x7FF) with ΔV = 12.5mV/step. (2) When 0x11[6] = 1, VIN ratio = 0.05V/V: Range = 3V (0x096) to 36V (0x708) with ΔV = 20mV/step.						

Register Address	0x	17	Register Input_Voltage					
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Default	0	0	0	0	0	0	0	0
Read/Write	R	R	R R R R R					
Bits	Na	me			Descr	iption		
Bit 7 to Bit 3	Rese	erved	Reserved bit	S				
Bit 2 to Bit 0	IN_VOLT/	AGE[10:8]	Upper 3 bits of 11-bit IN_VOLTAGE[10:0] for input voltage reporting. Refer to 0x16 register for detailed description.					g.

Register Address	0x	18	Register Name			Input_Current	t	
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Default	0	0	0	0	0	0	0	0
Read/Write	R	R	R R R R					R
Bits	Na	me	Description					
Bit 7 to Bit 0	IN_CURF	RENT[7:0]	IIN_Report With input secan be simpl (1) When 0x Range = (2) When 0x Range = (3) When 0x Range = (4) When 0x		ENTERNO DE TERNO DE	ad as the equivalence of the input average of the i	ation below. <0.001024 age current reput 10.24mA/step. 5.12mA/step. 3.413mA/step.	4.5mV porting range

Register Address	0x	19	Register Input_Current						
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	0	0	0	0	0	0	0	0	
Read/Write	R	R	R	R R R R R					
Bits	Na	me			Descr	ription			
Bit 7 to Bit 3	Rese	erved	Reserved bit	S					
Bit 2 to Bit 0	IN_CURR	ENT[10:8]	Upper 3 bits of 11-bit IN_CURRENT[10:0] for input average current re Refer to 0x18 register for detailed description.					reporting.	

Register Address	0x	1A	Register Name			Temperature		
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Default	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R
Bits	Na	me			Descr	iption		
Bit 7 to Bit 0	TEMPERA	.TURE[7:0]	Lower 8 bits of 11-bit TEMPERATURE[10:0] for temperature reporting. The 11-bit TEMPERATURE[10:0] is used for external thermal sense by rec TSEN pin voltage. The temperature reporting range is from 0V to 2\(^1\) 1mV/step.					

Register Address	0x	1B	Register Name			Temperature		
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Default	0	0	0	0	0	0	0	0
Read/Write	R	R	R R R R					R
Bits	Na	me			Descr	iption		
Bit 7 to Bit 3	Rese	erved	Reserved bits					
Bit 2 to Bit 0	TEMPERA	TURE[7:0]	Upper 3 bits of 11-bit TEMPERATURE[10:0] for temperature reporting. Refer to 0x1A register for detailed description.					

Register Address	0x	1C	Register Name			Status1				
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Default	0	0	0	0	0	0	0	0		
Read/Write	R	R	R	R	R	R	R	R		
Bits	Na	me			Descr	ription				
D:4.7	INI. d	O) (D	OVP indicate	OVP indicator for VIN pin.						
Bit 7	IIN_C	OVP	0 : No fault			1 : Fault				
Dit C	0-	TD	OTP indicate	or.						
Bit 6	0	IP	0 : No fault			1 : Fault				
Dit 5	INIT	11)/D	UVP indicate	or for FB pin.						
Bit 5	IIN I _	UVP	0 : No fault 1 : Fault							
Dit 4	INT	OVP indicator for FB pin.								
Bit 4	INI_	OVP	0 : No fault 1 : Fault							
Bit 3 to Bit 0	Rese	erved	Reserved bit	s						

Register Address	0x	1D	Register Name	Status/						
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Default	0	0	0	1	0	0	0	0		
Read/Write	R	R	R	R	R	R	R	R		
Bits	Na	me	Description							
Bit 7, Bit 5	Rese	erved	Reserved bits							
Bit 6	P	G	0: V _{FB} < 85	Power good status indicator. 0 : V _{FB} < 85% of setting or ≥ OVP trip threshold. 1 : OVP trip threshold > V _{FB} ≥ 90% of setting.						
			Indicator for constant voltage (CV) and constant current (CC).							
Bit 4	CV_	_CC	0 : CV mode	0 : CV mode 1 : CC mode.						
			Note: This bit will be active when 0x0E[7] = 1.							
			OCP4 indicator.							
			0 : No fault 1 : Fault							
Bit 3	oc	P4	This bit will be changed to 1 only when: (1) ADC function is enabled (0x10[1] = 1). (2) {IN_CURRENT[10:3] (Register 0x18/0x19) - OUT_CURRENT[10:3] (Register 0x14/0x15)} > OCP4_SETTING[7:0] (Register 0x25) with OCP4 Delay Time (Register 0x28[3:2]).							
			OCP3 indica	tor.						
			0 : No fault			1 : Fault				
Bit 2	OC	P3	(1) ADC fund (2) OUT_CU	RRENT[10:3]	1 only when: ed (0x10[1] = 1 (Register 0x1 CP3 Delay Til	4/0x15) > OC		6[7:0]		
			OCP2 indica	tor.						
			0 : No fault			1 : Fault				
Bit 1	OC	P2	This bit will be changed to 1 only when: (1) ADC function is enabled (0x10[1] = 1). (2) OUT_CURRENT[10:3] (Register 0x14/0x15) > OCP2_SETTING[7:0] (Register 0x23) with OCP2 Delay Time (Register 0x27).							
			OCP1 indicator.							
			0 : No fault			1 : Fault				
Bit 0	OC	:P1	(1) ADC fund (2) OUT_CU	RRENT[10:3]	1 only when: ed (0x10[1] = 1 (Register 0x1 CP1 Delay Til	4/0x15) > OC		G[7:0]		

Register Address	0x	1E	Register Name			Alert1				
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Default	0	0	0	0	0	0	0	0		
Read/Write	RW	RW	RW	RW	R	R	R	R		
Bits	Na	me			Descr	iption				
Bit 7	ALERT_	.IN_OVP	0 : No fault. 1 : Fault. AL Note: When	Internal flag to detect OVP for VIN pin voltage. 0 : No fault. ALERT pin keeps high level. 1 : Fault. ALERT pin goes to low level. Note: When input OVP fault condition is removed, this bit can be changed to default setting "0" by writing this bit to "1" only.						
Bit 6	ALER	г_ОТР	Internal flag to detect OTP. 0: No fault. ALERT pin keeps high level. 1: Fault. ALERT pin goes to low level. Note: After OTP fault condition is detected, this bit can be changed to default setting "0" by writing this bit to "1" only.							
Bit 5	ALERT_I	INT_UVP	0 : No fault. 1 : Fault. AL Note: When	to detect UVP ALERT pin ke ERT pin goes output UVP fa ng "0" by writin	eps high leve to low level. ault condition i	l. s removed, th	iis bit can be c	changed to		
Bit 4	ALERT_I	Internal flag to detect OVP for FB pin voltage. 0 : No fault. ALERT pin keeps high level. 1 : Fault. ALERT pin goes to low level. Note: When output OVP fault condition is removed, this bit can be changed default setting "0" by writing this bit to "1" only.						changed to		
Bit 3 to Bit 0	Rese	erved	Reserved bit	ts						

Register Address	0x	1F	Register Name	Alert2							
Bits	Bit 7	Bit 6	Bit 5	Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 0 0							
Default	0	0	0	0	0 0 0 0						
Read/Write	RW	RW	RW	RW	RW	RW	RW	RW			
Bits	Na	me			Descr	iption	on				
Bit 7	ALERT_	_OTP_R	0 : OTP not 1 : OTP reco	Internal flag to detect OTP recovery after OTP happens. 0: OTP not recovery. ALERT pin keeps low level. 1: OTP recovery. ALERT pin goes to high level. Note: After OTP recovery condition is detected, this bit can be changed to default setting "0" by writing this bit to "1" only.							
Bit 6	ALERT_RAMP_PG		Internal flag to detect FB pin voltage status. 0: ALERT pin keeps high level. (1) Power off: VFB < 85% of setting. (2) Normal: OVP trip threshold > VFB ≥ 90% of setting. 1: ALERT pin becomes low level. (1) Power on: After 0x0E[7] from 0 to 1, VFB ≥ 90% of setting. (2) Normal: VFB < 85% of setting or ≥ OVP trip threshold. Note: After this bit = 1, this bit can be changed to default setting "0" b this bit to "1" only.					0" by writing			
Bit 5	ALER [*]	г_ТМ1	Internal flag to detect Timer1 status. 0 : Timer1 is disabled and ALERT pin keeps high level. Timer1 will begin to count if 0x30[6:4] ≠ 000, and ALERT pin keeps high level if Timer1 is still counting. 1 : Timer1 timeout completed. ALERT pin goes to low level. Note: After Timer1 finished counting, this bit can be changed to default setting "0" by writing this bit to "1" only.								
Bit 4	ALERT	ALERT_WDT		g timeout com vill keep low le all I2C registe vatchdog time	and ALERT pi count if 0x30 apleted. evel and RT61 ers except 0x1 r finished cou	n keeps high [2:0] ≠ 000, ar 90G will be re IF[4] and 0x30	nd ALERT pin	setting			
Bit 3	ALERT	_OCP4	setting "0" by writing this bit to "1" only. Internal flag to detect OCP4. 0 : No fault. ALERT pin keeps high level. 1 : Fault. ALERT pin goes to low level. This bit will be changed to 1 only when: (1) ADC function is enabled (0x10[1] = 1). (2) {IN_CURRENT[10:3] (Register 0x18/0x19) - OUT_CURRENT[10:3] (Register 0x14/0x15)} > OCP4_SETTING[7:0] (Register 0x25) with OCI Delay Time (Register 0x28[3:2]). Note: When OCP4 fault condition is removed, this bit can be changed to desetting "0" by writing this bit to "1" only.								

Bits	Name	Description
Bit 2	ALERT_OCP3	Internal flag to detect OCP3. 0 : No fault. ALERT pin keeps high level. 1 : Fault. ALERT pin goes to low level. This bit will be changed to 1 only when: (1) ADC function is enabled (0x10[1] = 1). (2) OUT_CURRENT[10:3] (Register 0x14/0x15) > OCP3_SETTING[7:0] (Register 0x24) with OCP3 Delay Time (Register 0x28[1:0]). Note: When OCP3 fault condition is removed, this bit can be changed to default setting "0" by writing this bit to "1" only.
Bit 1	ALERT_OCP2	Internal flag to detect OCP2. 0: No fault. ALERT pin keeps high level. 1: Fault. ALERT pin goes to low level. This bit will be changed to 1 only when: (1) ADC function is enabled (0x10[1] = 1). (2) OUT_CURRENT[10:3] (Register 0x14/0x15) > OCP2_SETTING[7:0] (Register 0x23) with OCP2 Delay Time (Register 0x27). Note: When OCP2 fault condition is removed, this bit can be changed to default setting "0" by writing this bit to "1" only.
Bit 0	ALERT_OCP1	Internal flag to detect OCP1. 0: No fault. ALERT pin keeps high level. 1: Fault. ALERT pin goes to low level. This bit will be changed to 1 only when: (1) ADC function is enabled (0x10[1] = 1). (2) OUT_CURRENT[10:3] (Register 0x14/0x15) > OCP1_SETTING[7:0] (Register 0x22) with OCP1 Delay Time (Register 0x26). Note: When OCP1 fault condition is removed, this bit can be changed to default setting "0" by writing this bit to "1" only.

Register Address	0x	20	Register Name			Mask1				
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Default	1	1	1	1	1	1	1	1		
Read/Write	RW	RW	RW	RW	R	R	R	R		
Bits	Na	me			Descr	iption				
D:4.7	M ALEDI	E IN OVE	Mask interna	Mask internal flag output of input OVP for VIN pin voltage to ALERT pin.						
Bit 7	M_ALER	Γ_IN_OVP	0 : Mask			1 : Not mask	<			
D.1. 0	NA AL 5	OT OTD	Mask internal flag output of OTP to ALERT pin.							
Bit 6	M_ALE	RT_OTP	0 : Mask	0 : Mask 1 : Not mask						
Du c	M ALEDT	INT UVD	Mask interna	al flag output o	f output UVP	for FB pin vol	tage to ALER	T pin.		
Bit 5	M_ALERT	_INT_UVP	0 : Mask			1 : Not mask	(
Dir 4	M ALEDT	Mask internal flag output of output OVP for FB pin voltage to ALEF						T pin.		
Bit 4	W_ALERT	M_ALERT_INT_OVP 0 : Mask 1 : Not mask								
Bit 3 to Bit 0	Rese	erved	Reserved bit	S						

Register Address	0x	21	Register Name			Mask2				
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Default	1	1	1	1	1	1	1	1		
Read/Write	RW	RW	RW	RW	RW	RW	RW	RW		
Bits	Na	me			Desci	ription				
D:4 7	M ALED	T OTD D	Mask interna	I flag output o	of OTP recove	ery to ALERT	oin.			
Bit 7	W_ALER	T_OTP_R	0 : Mask			1 : Not mask	<			
Bit 6	M ALEDT	RAMP PG	Mask interna	I flag output o	of FB pin volta	ige status to A	LERT pin.			
DIL 0	WI_ALERI_	_KAIVIP_PG	0 : Mask 1 : Not mask							
Bit 5	M ALE	OT TM4	Mask interna	I flag output o	of Timer1 to A	LERT pin.				
ыго	IVI_ALE	RT_TM1	0 : Mask			1 : Not mask	<			
Bit 4	M ALE	RT WDT	Mask interna	I flag output o	of watchdog ti	mer to ALERT	pin.			
DIL 4	IVI_ALER	KI_WDI	0 : Mask			1 : Not mask	<			
Bit 3	M ALED	T_OCP4	Mask interna	I flag output o	of OCP4 to AL	ERT pin.				
Dit 3	IVI_ALEN	.1_00F4	0 : Mask			1 : Not mask	<			
Bit 2	M ALED	T_OCP3	Mask interna	Il flag output o	of OCP3 to AL	ERT pin.				
Dit 2	IVI_ALLIN	.1_0013	0 : Mask			1 : Not mask	<			
Bit 1	M ALED	Mask internal flag output of OCP2 to ALERT pin.								
DILI	IVI_ALEN	.1_0012	0 : Mask			1 : Not mask	<			
Bit 0	M ALED	Mask internal flag output of OCP1 to ALERT pin. M_ALERT_OCP1								
Dit 0	IVI_ALEN	.1_0011	0 : Mask			1: Not mask	<			

Register Address	0x	22	Register Name	OCP1 Setting							
Bits	Bit 7	Bit 6	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit								
Default	0	1	0 1 0 0 1								
Read/Write	RW	RW	RW RW RW RW								
Bits	Na	me	Description								
Bit 7 to Bit 0	OCP1_S	SETTING	OCP1 = — With output simplified as (1) When 0x Range = (2) When 0x Range = (3) When 0x Range = (4) When 0x Range = (5) Default v OCP1 =	0F[1:0] = 00 (0.3415A (0x0 0F[1:0] = 01 (0.3415A (0x0 0F[1:0] = 10 (0.3415A (0x1 0F[1:0] = 11 (0.3415A (0x1 alue = 0x51 w 6.4855A. um OCP1 sett	R3 $R30 = 10mΩ$	10x): A (0xFF) with 20x): A (0xFF) with 30x): (0xFF) with 2 40x): (0xFF) with 2	etting range ca 81.92mA/step 40.96mA/step 27.307mA/step 20.48mA/step. OCS = 10x) for	an be			

Register Address	0x	23	Register Name		(OCP2_Settino)			
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Default	0	1	1 0 0 1 0 0							
Read/Write	RW	RW	RW RW RW RW R							
Bits	Na	me	Description							
Bit 7 to Bit 0	OCP2_S	SETTING	With output simplified as (1) When 0x Range = (2) When 0x Range = (3) When 0x Range = (4) When 0x Range = (5) Default v OCP2 = (5)	0F[1:0] = 00 (0.3415A (0x0 0F[1:0] = 01 (0.3415A (0x0 0F[1:0] = 10 (0.3415A (0x1 0F[1:0] = 11 (0.3415A (0x1 alue = 0x64 w 8.042A. um OCP2 sett	NG[7:0](Dec GAIN_OCS R3 R30 = 10mΩ GAIN_OCS = 6) to 20.7396. GAIN_OCS = C) to 10.2948 GAIN_OCS = 2) to 6.8132A GAIN_OCS = 8) to 5.0724A vith 0x0F[1:0]	cimal) × 0.008 5 60 , the OCP2 set 10x): A (0xFF) with 20x): A (0xFF) with 30x): (0xFF) with 2 40x): (0xFF) with 2 = 00 (GAIN_C	etting range ca 81.92mA/step 40.96mA/step 27.307mA/step 20.48mA/step. OCS = 10x) for	an be		

Register Address	0x	24	Register OCP3_Setting							
Bits	Bit 7	Bit 6	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit							
Default	1	1	1 1 1 1							
Read/Write	RW	RW	RW RW RW RW							
Bits	Na	me	Description							
Bit 7 to Bit 0	OCP3_S	SETTING	OCP3 = — With output simplified as (1) When 0x Range = (2) When 0x Range = (3) When 0x Range = (4) When 0x Range = (5) Default v OCP3 = 3	sense resistor below. 0F[1:0] = 00 (0.3415A (0x0 0F[1:0] = 01 (0.3415A (0x0 0F[1:0] = 10 (0.3415A (0x1 0F[1:0] = 11 (0.3415A (0x1 alue = 0xFF w 20.7396A. um OCP3 sett	R3 $R30 = 10mΩ$	30 , the OCP3 set 10x): A (0xFF) with 20x): A (0xFF) with 30x): (0xFF) with 2	etting range ca 81.92mA/step 40.96mA/step 27.307mA/step 20.48mA/step. DCS = 10x) fo	an be		

Register Address	0x	25	Register Name		-	OCP4_Settino)			
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Default	1	1	1	1	1	1	1	1		
Read/Write	RW	RW	RW RW RW RW RV							
Bits	Na	me	Description							
Bit 7 to Bit 0	OCP4_S	SETTING	OCP4 = — With input se simplified as (1) When 0x Range = (2) When 0x Range = (3) When 0x Range = (4) When 0x Range = (5) Default v OCP4 = 2	0F[3:2] = 00 (0.3554A (0x0 0F[3:2] = 01 (0.3554A (0x0 0F[3:2] = 10 (0.3554A (0x1 0F[3:2] = 11 (0.3554A (0x1 alue = 0xFF w 20.6715A. um OCP4 set	GAIN_IC R R29 = 10mΩ, GAIN_ICS = 7 7) to 20.6715 GAIN_ICS = 2 F) to 10.1858 GAIN_ICS = 3 7) to 6.6905A GAIN_ICS = 4 F) to 4.9429A vith 0x0F[3:2	the OCP4 set 10x): A (0xFF) with 20x): A (0xFF) with 30x): (0xFF) with 2 40x): (0xFF) with 2 21 = 00 (GAIN	ting range car 81.92mA/step 40.96mA/step 27.307mA/step 20.48mA/step LICS = 10x) fo	n be c. c. c. default		

Register Address	0x	26	Register Name	UCPT Delay Time					
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	0	0	0	0	1	1	0	1	
Read/Write	RW	RW	RW RW RW RW						
Bits	Na	me	Description						
Bit 7	OCP1_T	IME_LSB	Time step se 0 : 8ms	election for OC	CP1 delay time	e: 1:32ms			
Bit 6 to Bit 0	OCP1_	TIMING	With 0x26[7], OCP1 delay time can be set as below: OCP1 Delay Time = OCP1_TIMING[6:0](Decimal) x Δt (1) When 0x26[7] = 0: Range = 0ms (0x00) to 1.016s (0x7F) with Δt = 8ms/step. (2) When 0x26[7] = 1: Range = 0ms (0x80) to 4.064s (0xFF) with Δt = 32ms/step. (3) Default value = 0x0D for default OCP1 delay time = 104ms.						

Register Address	0x	0x27 Register Name OCP2 Delay Time						
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Default	0	0	0	0	0	0	0	0
Read/Write	RW	RW	RW RW RW RW					RW
Bits	Na	me	Description					
Bit 7	OCP2_T	IME_LSB	Time step set 0:8ms	election for OC	CP2 delay time	e: 1:32ms		
Bit 6 to Bit 0	OCP2_	TIMING	With 0x27[7], OCP2 delay time can be set as below: OCP2 Delay Time = OCP2_TIMING[6:0](Decimal) x Δt (1) When 0x27[7] = 0 : Range = 0ms (0x00) to 1.016s (0x7F) with Δt = 8ms/step. (2) When 0x27[7] = 1 : Range = 0ms (0x80) to 4.064s (0xFF) with Δt = 32ms/step. (3) Default value = 0x00 for default OCP2 delay time = 0ms.					

Register Address	0x	28	Register Name	OCP Enable					
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	0	0	0	0	0	0	0	0	
Read/Write	RW	RW	RW	RW	RW	RW	RW	RW	
Bits	Na	me			Descr	iption			
Bit 7	OCB	4_EN	Enable or dis	sable OCP4.					
DIL 7	OCP ²	4_EIN	0 : Disable			1 : Enable			
Bit 6	OCB	3_EN	Enable or dis	sable OCP3.					
Dit 0	OCF.	O_EIN	0 : Disable			1 : Enable			
Bit 5	OCD	o EN	Enable or dis	sable OCP2.					
Bit 5	OCP.	2_EN	0 : Disable			1 : Enable			
Bit 4	OCB	1_EN	Enable or dis	Enable or disable OCP1.					
DIL 4	OCF	I_EIN	0 : Disable			1 : Enable			
			OCP4 delay	time setting:					
Bit 3 to Bit 2	CP4_T	IMING	00 : 50ms (E	Default)		10:200ms 11:400ms			
			01 : 100ms	time cotting:		11 · 400fffS			
Bit 1 to Bit 0	СР3 Т	IMING	OCP3 delay			10 : 10			
Dit I to Dit 0	01 3_1	IIVIII VO	00:0ms (De 01:5ms	erault)		10:10ms 11:20ms			

Register Address	0x	29	Register Name			Setting5			
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	0	0	0	0	0	0	0	0	
Read/Write	RW	RW	RW	RW	RW	RW	RW	RW	
Bits	Na	me			Descr	iption			
Bit 7	PROTECT	_PATH_C	0 : Turn off p	C status when power path C priginal status	by GPC.		ith A.		
Bit 6	PROTECT	_PATH_A	0 : Turn off p	Power path A status when fault happens on power path C. 0: Turn off power path A by GPA. 1: Remain original status of power path A.					
Bit 5	PROTECT	T_PATH_1	0 : Turn off e	All power path status when fault happens. 0 : Turn off each power path by GPC and GPA. 1 : Remain original status of each power path.					
Bit 4	PATH_FI	LOATING	All power pa 0 : Keep orig 1 : Floating		by making G	PC and GPA	to tri-state.		
Bit 3	DATH (C_TYPE	External MO	S type for pov	ver path C.				
DIL 3	PAIN_C	J_11PE	0: N-MOS			1: P-MOS			
Bit 2	DATH A	A_TYPE	External MO	S type for pov	ver path A.				
Bit 2	FAIII_/		0: N-MOS			1: P-MOS			
Bit 1	POWER I	POWER_PATH_GC Enable or disable GPC pin.							
Dit 1	I OVVEI		0 : Disable			1 : Enable			
Bit 0	POWER	PATH_GA	Enable or dis	sable GPA pin	1.				
Dit 0	I OWER_	TATILOA	0 : Disable			1 : Enable			

Register Address	0x:	2B	Register Name	PPS					
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	1	1	0	0	0	0	0	0	
Read/Write	RW	RW	R	R R R R R					
Bits	Na	me		Description					
Dit 7	DIC AL	NDM LO	Disable VBU	ISC alarm low	detection.				
Bit 7	DIS_ALF	ARM_LO	0 : Enable			1 : Disable			
Dit C	DIC AI	ADM UI	Disable VBU	ISC alarm hig	h detection.				
Bit 6	DIS_AL	AKIVI_HI	0 : Enable	0 : Enable 1 : Disable					
Bit 5 to Bit 0	Rese	erved	Reserved bit	S					

Register Address	0x	2C	Register Name	VBUSC Alarm High Infeshold					
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	1	1	1	1	1	1	1	1	
Read/Write	RW	RW	RW	RW RW RW RW RW					
Bits	Na	me	Description						
Bit 7 to Bit 0	ALARM	_HI[7:0]	Lower 8 bits of 11-bit ALARM_HI[10:0] for VBUSC Alarm High threshold sett VBUSC Alarm Hi = ALARM_HI[10:0](Decimal) x Δ V (1) When 0x11[5] = 0, VOUT ratio = 0.08V/V: Range = 3V (0x0F0) to 25.5875V (0x7FF) with Δ V = 12.5mV/step. (2) When 0x11[5] = 1, VOUT ratio = 0.05V/V: Range = 3V (0x096) to 36V (0x708) with Δ V = 20mV/step. (3) Default value = 0x7FF with VOUT ratio = 0.08V/V for default VBUSC Ala. High threshold = 25.5875V.						

Register Address	0x	2D	Register Name	VBUSC Alarm High Threshold				
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Default	0	0	0	0	0	1	1	1
Read/Write	R	R	R	R R R RW RW RV				
Bits	Na	me			Descr	iption		
Bit 7 to Bit 3	Rese	erved	Reserved bit	S				
Bit 2 to Bit 0	ALARM_	_HI[10:8]	Upper 3 bits of 11-bit ALARM_HI[10:0] for VBUSC Alarm High thresho Refer to 0x2C register for detailed description.					shold setting.

Register Address	0x2E Register VBUSC Alarm Low Threshold							
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Default	0	0	0 0 0 0					0
Read/Write	RW	RW	RW RW RW RW R					
Bits	Na	me	Description					
Bit 7 to Bit 0	ALARM <u>.</u>	_LO[7:0]	VBUSC Alar (1) When 0x Range = (2) When 0x Range = (3) Default v	m Lo = ALAR 11[5] = 0, VOI 3V (0x0F0) to 11[5] = 1, VOI 3V (0x096) to	M_LO[10:0](D UT ratio = 0.06 25.5875V (0:0 UT ratio = 0.09 36V (0x708)	ecimal) x Δ V 8V/V : α 7FF) with Δ V 5V/V : with Δ V = 20n	arm Low thres = 12.5mV/ste nV/step. for default VB	ep.

Register Address	0x	2F	Register VBUSC Alarm Low Threshold					
Bits	Bit 7	Bit 6	Bit 5 Bit 4 Bit 3 Bit 2				Bit 1	Bit 0
Default	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R R RW RW				
Bits	Na	me			Descr	iption		
Bit 7 to Bit 3	Rese	erved	Reserved bits					
Bit 2 to Bit 0	ALARM_	LO[10:8]			RM_LO[10:0] detailed descr		arm Low thres	shold setting.

Register Address	0x	30	Register Name	Vyatchdod					
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Default	0	0	0	0	0	0	0	0	
Read/Write	R	RW	RW RW R RW RW					RW	
Bits	Na	me	Description						
Bit 7, Bit 3	Rese	erved	Reserved bit						
Bit 6 to Bit 4	TIMER	1_SEL	Timer1 timed The ALERT 000 : Disable 001 : 0.5s 010 : 1s 011 : 2s	pin will go low	when Timer1	finished cour 100: 3s 101: 4s 110: 6s 111: 8s	nting.		
Bit 2 to Bit 0	WATCHE	OOG_SEL	_		counting if ALI	ERT pin goes 100 : 3s 101 : 4s 110 : 6s 111 : 8s	low, and it wi	Il be reset by	

Register Address	0x	32	Register Name	VBUSC, VOITAGE ADC.					
Bits	Bit 7	Bit 6	Bit 5	Bit 4 Bit 3 Bit 2 Bit 1 Bi					
Default	1	1	0	0	0	0	0	0	
Read/Write	RW	RW	R	R R R R					
Bits	Na	me			Descr	iption			
Bit 7 to Bit 2 Bit 0	Rese	erved	Reserved bit	s					
Bit 1	VBUS	C ADC	Enable ADC	OC function for VBUSC Voltage.					
			0 : Disable	Disable 1 : Enable					

Register Address	0x	33	Register Name	VBUSC_Voltage						
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Default	0	0	0	0	0	0	0	0		
Read/Write	R	R	R	R R R R						
Bits	Na	me		Description						
Bit 7 to Bit 0	VBUSC_VO	PLTAGE[7:0]	VBUSC Rep (1) When 0x Range = (2) When 0x	orting = VBUS 11[5] = 0, VOI 3V (0x0F0) to 11[5] = 1, VOI	SC_VOLTAGE UT ratio = 0.00 0 25.5875V (0:00 UT ratio = 0.00	E[10:0](Decim 8V/V: x7FF) with ΔV	= 12.5mV/ste			

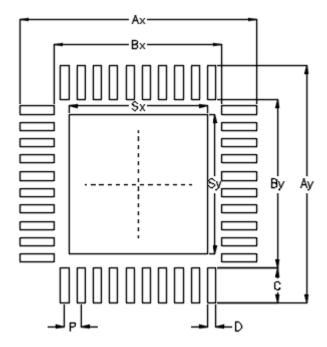
Register Address	0x	34	Register Name		V	BUSC_Voltag	је	
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Default	0	0	0	0	0	0	0	1
Read/Write	R	R	R	R	R	RW	RW	RW
Bits	Na	me			Descr	iption		
Bit 7 to Bit 3	Rese	erved	Reserved bit	S				
Bit 2 to Bit 0	VBUSC_\				ISC_VOLTAG		BUSC voltage	reporting.

Register Address	0x	37	Register Name			Status3					
Bits	Bit 7	Bit 6	Bit 5	Bit 4 Bit 3 Bit 2 Bit 1							
Default	0	0	0	0 0 0 0							
Read/Write	R	R	R	R R R							
Bits	Na	me		Description							
Bit 7 to Bit 5 Bit 2	Rese	erved	Reserved bit	eserved bits							
Bit 4	ALAR	M_LO	(0x2B[7] = 0) 0 : VBUSC_	VBUSC alarm low indicator when VBUSC alarm low detection is (0x2B[7] = 0). 0: VBUSC_VOLTAGE[10:0] > ALARM_LO[10:0] 1: VBUSC_VOLTAGE[10:0] < ALARM_LO[10:0]							
Bit 3	ALARM_HI		(0x2B[6] = 0) 0 : VBUSC_). VOLTAGE[10	ator when Vi 0:0] < ALARM 0:0] > ALARM	_HI[10:0]	high detectio	n is enabled			
Bit 1	IN_U	JVLO	-	voltage < 2.7	V (typ.)						
Bit 0	_		01/10 : Rese	erved voltage > 3V	(typ.)						

Register Address	0x	38	Register Name	Alert3						
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 4 Bit 3 Bit 2		Bit 1	Bit 0		
Default	0	0	0	0	0 0		0	0		
Read/Write	R	R	R RW RW R RW							
Bits	Na	me			Descr	iption				
Bit 7 to Bit 5 Bit 2	Rese	erved	Reserved bit	·						
Bit 4	ALERT_ALARM_LO		Internal flag to detect VBUSC status when VBUSC alarm low detect enabled (0x2B[7] = 0). 0: VBUSC_VOLTAGE[10:0] > ALARM_LO[10:0] 1: VBUSC_VOLTAGE[10:0] < ALARM_LO[10:0] Note: After VBUSC_VOLTAGE[10:0] < ALARM_LO[10:0], this bit changed to "0" by writing this bit to "1" only.							
Bit 3	ALERT_A	LARM_HI	enabled (0x2 0 : VBUSC_ 1 : VBUSC_ Note: After V	2B[6] = 0). VOLTAGE[10 VOLTAGE[10	:0] < ALARM_ :0] > ALARM_ AGE[10:0] > A					
Bit 1	ALERT_IN	I_UVLO_F	0: VIN pin v 1: VIN pin v		(typ.) (typ.)	ing. bit can be cha	anged to "0" b	y writing this		
Bit 0	ALERT_IN	_UVLO_R	0: VIN pin v 1: VIN pin v	to detect VIN oltage < 3V (t oltage > 3V (t 'IN pin voltage	ур.) ур.)	ng. can be chanç	ged to "0" by v	vriting this bit		

Register Address	0x	39	Register Name			Mask3				
Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Default	0	0	0 0 0 0 0							
Read/Write	R	R	R	RW						
Bits	Na	me								
Bit 7 to Bit 5 Bit 2	Rese	erved	Reserved bit							
Bit 4	M_ALERT_	ALARM_LO	Mask internal flag output of VBUSC status when VBUSC alarm low det enabled (0x2B[7] = 0) to ALERT pin.							
			0 : Mask			1 : Not mask	(
Bit 3	M_ALERT_	ALARM_HI		al flag output o 2B[6] = 0) to A		us when VBU	SC alarm high	n detection is		
			0 : Mask			1 : Not mask	<			
Dit 4	M ALEDT	IN 111/10 F	Mask interna	l flag output c	of VIN pin UVL	O falling to A	LERT pin.			
Bit 1	W_ALERI_	IN_UVLO_F	0 : Mask			1 : Not mask	(
Dit 0	M ALERT	IN LIVILO D	Mask internal flag output of VIN pin UVLO rising to ALERT pin.							
Bit 0	W_ALERT_	IN_UVLO_R	0 : Mask			1 : Not mask	<			

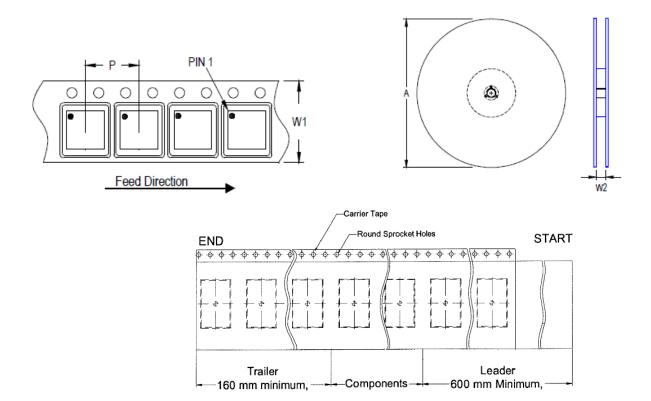
Outline Dimension


Note: The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

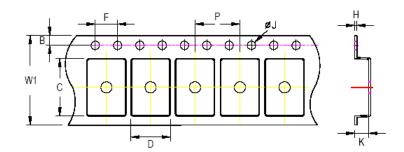
Sumbal	Dimensions I	In Millimeters	Dimension	s In Inches
Symbol	Min	Max	Min	Max
А	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
A3	0.175	0.250	0.007	0.010
b	0.150	0.250	0.006	0.010
D	4.950	5.050	0.195	0.199
D2	3.250	3.500	0.128	0.138
Е	4.950	5.050	0.195	0.199
E2	3.250	3.500	0.128	0.138
е	0.4	100	0.0)16
L	0.350	0.450	0.014	0.018

W-Type 40L QFN 5x5 Package

Footprint Information



	Number of		Footprint Dimension (mm)									
Package	Pin	Р	Ax	Ay	Вх	Ву	С	D	Sx	Sy	Tolerance	
V/W/U/XQFN5*5-40	40	0.40	5.80	5.80	4.10	4.10	0.85	0.20	3.40	3.40	±0.05	



Packing Information

Tape and Reel Data

Package Type	Tape Size (W1) (mm)	Pocket Pitch (P) (mm)			Units per Reel	Trailer (mm)	Leader (mm)	Reel Width (W2) Min./Max. (mm)
QFN/DFN 5x5	12	8	180	7	1,500	160	600	12.4/14.4

- C, D and K are determined by component size. The clearance between the components and the cavity is as follows:
- For 12mm carrier tape: 0.5mm max.

Tape Size	W1	F	Р		В		F		Ø٦	
Tape Size	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
12mm	12.3mm	7.9mm	8.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1	Reel 7"	4	RICHTEK MAKE AND
2	HIC & Desiccant (1 Unit) inside	5	12 inner boxes per outer box
3	Caution label is on backside of Al bag	6	Outer box Carton A

Container	R	eel		Вох			Carton			
Package	Size	Units	Item	Size(cm)	Reels	Units	Item	Size(cm)	Boxes	Unit
OEN/DEN EVE	7"	4 500	Box A	18.3*18.3*8.0	3	4,500	Carton A	38.3*27.2*38.3	12	54,000
QFN/DFN 5x5	/	1,500	Box E	18.6*18.6*3.5	1	1,500		For Combined or Pa	rtial Reel.	

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω /cm 2	10 ⁴ to 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries

Copyright © 2023 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Datasheet Revision History

Version	Date	Description	Item
00	2023/12/1	Final	

Copyright © 2023 Richtek Technology Corporation. All rights reserved.