Documentation

Evaluation Boards

Sample &Buy

<u>RICHTEK®</u>

36V, 3A, 500kHz Synchronous Buck Converter

Technical

1 General Description

The RT7272A is a high efficiency, current mode synchronous buck converter that can deliver up to 3A output current over a wide input voltage range from 4.5V to 36V. The RT7272A integrates a 150m Ω onresistance of high-side MOSFET and an 80m Ω onresistance of low-side MOSFET to achieve high conversion efficiency up to 95%. The current mode control architecture supports fast transient response and simple compensation circuit.

A cycle-by-cycle current-limit function provides protection against shorted output and an internal softstart eliminates input current surge during start-up. The RT7272A provides complete protection functions such as input undervoltage-lockout, output undervoltage protection, over-current protection, and overtemperature protection.

The RT7272A is available in the thermal enhanced SOP-8 (Exposed Pad) package. The recommended junction temperature range is -40° C to 125° C, and the ambient temperature range is -40° C to 85° C.

2 Features

- 4.5V to 36V Input Voltage Range
- 3A Output Current
- Internal N-MOSFETs
- Current Mode Control
- Fixed Switching Frequency Operation: 500kHz
- Adjustable Output Voltage from 0.8V to 30V
- High Efficiency Up to 95%
- Stable with Low ESR Ceramic Output Capacitors
- Cycle-by-Cycle Current Limit
- Input Undervoltage-Lockout
- Output Undervoltage Protection
- Over-Temperature Protection
- Adjustable Current Limit

3 Applications

- Distributed Power Systems
- Pre-Regulator for Linear Regulators
- Notebook Computers
- Point of Load Regulator in Distributed Power Systems
- Digital Set-Top Boxes
- Personal Digital Recorders
- Broadband Communications
- Flat Panel TVs and Monitors
- Vehicle Electronics

4 Simplified Application Circuit

5 Ordering Information

RT7272A

Package Type⁽¹⁾ SP: SOP-8 (Exposed Pad) (Exposed Pad-Option 2)

-Lead Plating System

G: Richtek Green Policy Compliant (2)

Note 1.

- Marked with ⁽¹⁾ indicated: Compatible with the current requirements of IPC/JEDEC J-STD-020.
- Marked with ⁽²⁾ indicated: Richtek products are Richtek Green Policy compliant.

6 Marking Information

```
RT7272A
GSPYMDNN
```

RT7272AGSP : Product Code YMDNN : Date Code

Table of Contents

1	General	Description	. 1
2	Feature	S	. 1
3	Applica	tions	. 1
4	Simplifi	ed Application Circuit	. 1
5	Ordering	g Information	.2
6	Marking	Information	. 2
7	Pin Con	figuration	4
8	Functio	nal Pin Description	4
9	Functio	nal Block Diagram	4
10	Absolut	e Maximum Ratings	. 5
11	ESD Rat	tings	. 5
12	Recomm	nended Operating Conditions	. 5
13	Therma	I Information	. 5
14	Electric	al Characteristics	6
15	Typical <i>J</i>	Application Circuit	.7
16	Typical	Operating Characteristics	8
17	Operatio	on	10
	17.1	Error Amplifier	10
	17.2	Oscillator	10
	17.3	Internal Regulator	10
	17.4	Soft-Start (SS)	10
	17.5	Current Setting	10
	17.6	Undervoltage (UV) Comparator	10
	17.7	Over-Temperature Protection	10

18	Applic	ation Information	11
	18.1	Output Voltage Setting	11
	18.2	External Bootstrap Diode	11
	18.3	Chip Enable Operation	11
	18.4	Undervoltage Protection	
	18.5	Over-Temperature Protection	
	18.6	Inductor Selection	12
	18.7	Input Capacitor and Output Capacitor	
		Selection	13
	18.8	Thermal Considerations	14
	18.9	Layout Considerations	15
19	Outlin	e Dimension	17
20	Footp	rint Information	18
21	Packir	ng Information	19
	21.1	Tape and Reel Data	19
	21.2	Tape and Reel Packing	
	21.3	Packing Material Anti-ESD Property	
22	Datas	heet Revision History	22
		-	

7 Pin Configuration

SOP-8(Exposed Pad)

8 Functional Pin Description

Pin No.	Pin Name	Pin Function
1	SW	Switch node. Connect to an external L-C filter.
2	воот	Bootstrap supply for high-side gate drive. A 100nF or greater capacitor is recommended to connect from the BOOT pin to the SW pin.
3	EN	Enable control input. A logic-high enables the converter; a logic-low forces the device into shutdown mode.
4, 9 (Exposed Pad)	GND	Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum thermal dissipation.
5	FB	Feedback input pin. The FB pin is connected to the converter output. It is used to set the output of the converter to regulate to the specific output voltage via a resistive divider.
6	COMP	Compensation node. The COMP pin is used to compensate the regulation control loop. Connect a series RC network from COMP to GND.
7	RLIM	Current limit setting. Connect a resistor from the RLIM pin to ground to set the current limit.
8	VIN	Power input. The input voltage range is from 4.5V to 36V. Must bypass with a suitable large ceramic capacitor.

9 Functional Block Diagram

Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. www.richtek.com RT7272A_DS-11 April 2025

10 Absolute Maximum Ratings

(Note 2)	
Supply Input Voltage, VIN	-0.3V to 40V
Switch Voltage, SW	–0.3V to 40.3V
SW (t < 10ns)	-5V to 46V
• VBOOT - VSW	–0.3V to 6V
Other Pins Voltage	-0.3V to 40V
• Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	–65°C to 150°C

Note 2. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

11 ESD Ratings

(<u>Note 3</u>)

(Note 2)

•	ESD Susceptibility	
	HBM (Human Body Model)	2kV

Note 3. Devices are ESD sensitive. Handling precautions are recommended.

12 Recommended Operating Conditions

(<u>Note 4</u>)

•	Supply Input Voltage, VIN	4.5V to 36V
•	Junction Temperature Range	–40°C to 125°C
•	Ambient Temperature Range	–40°C to 85°C

Note 4. The device is not guaranteed to function outside its operating conditions.

13 Thermal Information

(Note 5 and Note 6)

	Thermal Parameter	SOP-8 (Exposed Pad)	Unit	
θја	Junction-to-ambient thermal resistance (JEDEC standard)	39	°C/W	
θJC(Top)	Junction-to-case (top) thermal resistance 61.5			
θ JC(Bottom)	Junction-to-case (bottom) thermal resistance	2.94	°C/W	
θJA(EVB)	Junction-to-ambient thermal resistance (specific EVB) (Note 5)	37.97	°C/W	
ΨJC(Top) Junction-to-top characterization parameter (Note 6)		8.78	°C/W	
ΨЈВ	Junction-to-board characterization parameter (Note 6)	21.94	°C/W	

Note 5. For more information about thermal parameter, see the Application and Definition of Thermal Resistances report, <u>AN061</u>.

Note 6. $\theta_{JA(EVB)}$, $\Psi_{JC(TOP)}$, and Ψ_{JB} are simulated on a high effective-thermal-conductivity four-layer test board which is in size of 67mm x 47mm; furthermore, all layers with 1 oz. Cu. Thermal resistance/parameter values may vary depending on the PCB material, layout, and test environmental conditions.

Copyright © 2025 Richtek Technology Corporation. All rights reserved.	RICHTEK	is a registered trademark of Richtek Technology Corporation.
RT7272A_DS-11 April 2025		www.richtek.com

14 Electrical Characteristics

(V_IN = 12V, C_IN = 20 μ F, T_A = 25 °C, unless otherwise specified.)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Shutdown Current	ISHDN	VEN = 0V		0.5	3	μA
Quiescent Current	lq	Ven = 3V, Vfb = 0.9V		0.9	1.2	mA
Reference Voltage	V _{REF}	$4.5V \le V_{IN} \le 36V$	0.788	0.8	0.812	V
On-Resistance of High-Side MOSFET	Rdson_h			150		mΩ
On-Resistance of Low-Side MOSFET	RDSON_L			80		mΩ
High Side Switch Leakage Current		$V_{EN} = 0V, V_{SW} = 0V$		0	10	μA
High-Side Switch Current Limit Range	ILIM_H		1.9		7	А
High-Side Switch Current		Minimum duty cycle, $R_{LIM} = 57.6 k\Omega$	1.9	2.5	3.1	
Limit	ILIM_H	Minimum duty cycle, $R_{LIM} = 84.5 k\Omega$	2.7	3.5	4.2	А
(<u>Note 7</u>)		Minimum duty cycle, $R_{LIM} = 137 k\Omega$	4.8	5.5	6.3	
Low-Side Switch Current Limit	ILIM_L	From drain to source		1.5		А
Oscillator Frequency	fosc		450	500	550	kHz
Short Circuit Oscillation Frequency	fosc_sc	VFB = 0V		75		kHz
Maximum Duty Cycle	Dмах	VFB = 0.7V		90		%
Minimum On-Time	ton_min			100		ns
EN Input Voltage Rising Threshold	V _{EN_R}		1.4	1.65	2	V
EN Input Voltage Falling Threshold	V _{EN_F}		1.2	1.45	1.9	V
EN Threshold Hysteresis	Ven_hys			0.2		V
Undervoltage-Lockout Rising Threshold	Vuvlo_r	VIN rising	3.9	4.1	4.3	V
Undervoltage-Lockout Hysteresis	Vuvlo_hys			250		mV
Over-Temperature Protection Threshold	Тотр			150		°C
Over-Temperature Protection Hysteresis	TOTP_HYS			20		°C
COMP to Current Sense Transconductance	gcs	$\Delta I_{COMP} = \pm 10 \mu A$		4.7		A/V
Error Amplifier Transconductance	gm			1000		μA/V
Load Regulation	VLOAD_REG				0.05	%/A
Line Regulation	VLINE_REG	VIN = 4.5V to 36V			0.1	%

Note 7. R_{LIM} (k Ω) = [I_{LIM} + 24.14 x (1 + 0.024 x (I_{LIM} - 3.5)) - 1.3], where U_{OC} is desired upper switch peak current limit value.

15 Typical Application Circuit

Figure 2	1.	Typical	adA	lication	Circuit
i iguio	•••	rypicai	' 'PP	noution	onoun

Table 1. Suggested Component Values (<u>Note 8</u>)						
Vout (V)	R1 (k Ω)	R2 (k Ω)	R_C (kΩ)	L (μΗ)	C _C (nF)	C _{OUT} (μF)
12	47	3.35	47	10	2.7	22 x 2
8	27	3	36	8.2	2.7	22 x 2
5	62	11.8	24	6.8	2.7	22 x 2
3.3	75	24	16	4.7	2.7	22 x 2
2.5	25.5	12	12	3.6	2.7	22 x 2
1.2	30	60	6.8	2.2	2.7	22 x 2

Table 1 Suggested Component Values (Note 8)

Note 8. All input and output capacitors are the suggested values, referring to the effective capacitances, which may be subject to any de-rating effect, like a DC bias.

36

Vour = 3.3V, Iour = 0A

28

32

450

440

-50

-25

VIN = 12V $V_{IN} = 4.5V$

25

50

Temperature (°C)

0

Vouт = 3.3V, Iouт = 0A

100

125

75

460

450 4

8

12

16

20

Input Voltage (V)

24

RT7272A

Copyright © 2025 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation. www.richtek.com

17 Operation

The RT7272A is a constant frequency, current mode synchronous buck converter. In normal operation, the highside N-MOSFET is turned on when the S-R latch is set by the oscillator and turned off when the current comparator resets the S-R latch. While the high-side N-MOSFET is turned off, the low-side N-MOSFET is turned on to conduct the inductor current until the next cycle begins.

17.1 Error Amplifier

The error amplifier adjusts its output voltage by comparing the feedback signal (FB pin voltage, V_{FB}) with the internal 0.8V reference. When the load current increases, it causes a drop in the feedback voltage relative to the reference. The error amplifier's output voltage then rises to allow higher inductor current to match the load current.

17.2 Oscillator

The internal oscillator runs at fixed frequency 500kHz. In short circuit condition, the frequency is reduced to 75kHz for low power consumption.

17.3 Internal Regulator

The regulator provides low voltage power to supply the internal control circuits and the bootstrap power for the high-side gate driver.

17.4 Soft-Start (SS)

An internal current source charges an internal capacitor to build a soft-start ramp voltage. The FB pin voltage will track the internal ramp voltage during the soft-start interval. The typical soft-start time is 2ms.

17.5 Current Setting

The current limit of the high-side MOSFET is adjustable by an external resistor connected to the RLIM pin. The current limit range is from 1.9A to 7A. When the inductor current reaches the current limit threshold, the COMP pin voltage will be clamped to limit the inductor current.

17.6 Undervoltage (UV) Comparator

If the feedback voltage (VFB) is lower than 0.4V, the UV Comparator will go high to turn off the high-side MOSFET. The output undervoltage protection is designed to operate in hiccup mode. When the UV condition is removed, the converter will resume switching.

17.7 Over-Temperature Protection

The over-temperature protection will shut down the switching operation when the junction temperature exceeds 150°C. Once the junction temperature cools down by approximately 20°C, the converter will automatically resume switching.

18 Application Information

(<u>Note 9</u>)

18.1 Output Voltage Setting

The resistive divider allows the FB pin to sense the output voltage, as shown in Figure 2.

Figure 2. Output Voltage Setting

The output voltage is set by an external resistive voltage divider according to the following equation:

$$V_{OUT} = V_{REF} \left(1 + \frac{R1}{R2} \right)$$

where VREF is the internal reference voltage (typically 0.8V).

18.2 External Bootstrap Diode

Connect a 100nF low ESR ceramic capacitor between the BOOT pin and the SW pin, as shown in <u>Figure 3</u>. This capacitor provides the gate driver voltage for the high-side MOSFET. It is recommended to add an external bootstrap diode between an external 5V and the BOOT pin to improve efficiency when the input voltage is lower than 5.5V or the duty ratio is higher than 65%. Select the bootstrap diode with fast switching features, such as the IN4148 or BAT54. The external 5V can be a 5V fixed input from the system or a 5V output from the RT7272A. Note that the external boot voltage must be lower than 5.5V.

Figure 3. External Bootstrap Diode

18.3 Chip Enable Operation

The EN pin is used for the RT7272A enable control. When the EN pin voltage (VEN) is pulled to logic-low voltage (VEN_L), the RT7272A shuts down and enters a low quiescent current state about 3μ A. The RT7272A starts switching again once the VEN is pulled to logic-high voltage (VEN_H). For external timing control, the EN pin can also be externally pulled high by adding a REN resistor and a CEN capacitor from the VIN pin (see Figure 4).

Figure 4. Enable Timing Control

An external MOSFET can be added to implement digital control on the EN pin when no system voltage above 2.5V is available, as shown in <u>Figure 5</u>. In this case, a $100k\Omega$ pull-up resistor, REN, is connected between VIN and the EN pin. MOSFET Q1 will be under logic control to pull down the EN pin.

Figure 5. Digital Enable Control Circuit

18.4 Undervoltage Protection

The RT7272A provides Undervoltage Protection (UVP) with hiccup mode. When the V_{FB} voltage drops below 0.4V, the UVP function will be triggered to shut down the switching operation. If the UVP condition remains for a period, the RT7272A will restart automatically and the UVP is disabled during the soft-start period, as shown in <u>Figure 6</u>. When the UVP condition is removed, the converter will return to operate normally.

Figure 6. Hiccup Mode Undervoltage Protection

18.5 Over-Temperature Protection

The RT7272A features an Over-Temperature Protection (OTP) to prevent the device from overheating due to excessive power dissipation. The OTP will shut down the switching operation when the junction temperature exceeds 150°C. Once the junction temperature cools down by approximately 20°C, the converter will resume operation. To maintain continuous operation, the maximum junction temperature should be lower than 125°C.

Note that the over-temperature protection is intended to protect the device during momentary overload conditions. The protection is activated outside of the absolute maximum range of the operation as a secondary fail-safe and therefore should not be relied upon operationally. Continuous operation above the specified absolute maximum operating junction temperature may impair device reliability or permanently damage the device.

18.6 Inductor Selection

The inductor value and operating frequency determine the ripple current according to a specific input and output voltages. The ripple current ΔI_L increases with higher V_{IN} and decreases with higher inductance.

$$\Delta I_{L} = \left(\frac{V_{OUT}}{f \times L}\right) \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

Having a lower ripple current reduces not only the ESR losses in the output capacitors but also the output voltage ripple. High frequency with small ripple current can achieve the highest efficiency operation. However, it requires a large inductor to achieve this goal.

For the ripple current selection, the value of $\Delta I_L = 0.24(I_{MAX})$ will be a reasonable starting point. The largest ripple current occurs at the highest VIN. To guarantee that the ripple current stays below the specified maximum, the inductor value should be chosen according to the following equation:

$$L = \left(\frac{V_{OUT}}{f \times 0.24 \times I_{(MAX)}}\right) \times \left(1 - \frac{V_{OUT}}{V_{IN(MAX)}}\right)$$

The inductor's current rating (causing a 40°C temperature rise from 25°C ambient temperature) should be greater than the maximum load current and its saturation current should be greater than the short circuit peak current limit. See <u>Table 2</u> for the inductor selection reference.

Table 2. Suggested inductors for Typical Application Oricult							
Component Supplier	Series	Dimensions(mm)					
TDK	VLF10045	10 x 9.7 x 4.5					
TDK	SLF12565	12.5 x 12.5 x 6.5					
TAIYO YUDEN	NR8040	8 x 8 x 4					

Table 2. Suggested Inductors for Typical Application Circuit

18.7 Input Capacitor and Output Capacitor Selection

The input capacitance, CIN, is needed to filter the trapezoidal current at the Source of the high-side MOSFET. To prevent large ripple current, a low ESR input capacitor sized for the maximum RMS current should be used. The approximate RMS current equation is given:

$$I_{RMS} = I_{OUT}(MAX) \frac{V_{OUT}}{V_{IN}} \sqrt{\frac{V_{IN}}{V_{OUT}} - 1}$$

This formula has a maximum at $V_{IN} = 2 \times V_{OUT}$, where $I_{RMS} = I_{OUT} / 2$. The worst-case condition is commonly used for design because even significant deviations do not offer much relief. Choose a capacitor rated at a higher temperature than required. Several capacitors may also be paralleled to meet size or height requirements in the design. For the input capacitor, two 10μ F low ESR ceramic capacitors are suggested. For the suggested capacitor, refer to <u>Table 3</u> for more details. The selection of COUT is determined by the required ESR to minimize voltage ripple. Moreover, the amount of bulk capacitance is also a key factor for COUT selection to ensure that the control loop is stable. Loop stability can be checked by viewing the load transient response as described in a later section.

The output ripple, $\Delta \text{Vout,}$ is determined by:

$$\Delta V_{OUT} \leq \Delta I_L \left(\text{ESR} + \frac{1}{8 f C_{OUT}} \right)$$

The output ripple will be the highest at the maximum input voltage since ΔI_L increases with input voltage. Multiple capacitors placed in parallel may be needed to meet the ESR and RMS current handling requirements. Higher values, lower cost ceramic capacitors are now becoming available in smaller case sizes. Their high ripple current, high voltage rating and low ESR make them ideal for switching regulator applications. However, care must be taken when these capacitors are used at the input and output. When a ceramic capacitor is used at the input and the power is supplied by a wall adapter through long wires, a load step at the output can induce ringing at the input, VIN. At best, this ringing can couple to the output and be mistaken as loop instability. At worst, a sudden inrush of current through the long wires can potentially cause a voltage spike at VIN large enough to damage the part.

RT7272A

18.8 Thermal Considerations

For continuous operation, do not exceed the maximum operation junction temperature 125°C. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, the rate of surrounding airflow, and the temperature difference between the junction to the ambient. The maximum power dissipation can be calculated using the following formula:

$PD(MAX) = (TJ(MAX) - TA) / \theta JA(EFFECTIVE)$

where $T_{J(MAX)}$ is the maximum operation junction temperature, T_A is the ambient temperature, and the θ_{JA} is the junction to ambient thermal resistance.

For recommended operating conditions of the RT7272A, the maximum junction temperature is 125° C. The junction to ambient thermal resistance θ_{JA} is layout dependent. For SOP-8 (Exposed Pad) package, the thermal resistance θ_{JA} is 75°C/W on the standard JEDEC 51-7 four-layers thermal test board. The maximum power dissipation at TA = 25°C can be calculated using the following formula:

 $PD(MAX) = (125^{\circ}C - 25^{\circ}C) / (75^{\circ}C/W) = 1.333W$ (minimum copper area PCB layout)

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (49^{\circ}C/W) = 2.04W (70mm^{2} \text{ copper area PCB layout})$

The thermal resistance θ_{JA} of SOP-8 (Exposed Pad) is determined by the package architecture design and the PCB layout design. However, the package architecture design had been designed. If possible, it's useful to increase thermal performance through the PCB layout copper design. The thermal resistance θ_{JA} can be decreased by adding copper area under the exposed pad of the SOP-8 (Exposed Pad) package. As shown in Figure 7, the amount of copper area to which the SOP-8 (Exposed Pad) is mounted affects thermal performance. When mounted to the standard SOP-8 (Exposed Pad) pad (Figure 7.a), θ_{JA} is 75°C/W. Adding copper area of the pad under the SOP-8 (Exposed Pad) pad (Figure 7.b) reduces the θ_{JA} to 64° C/W. Even further, increasing the copper area of pad to 70mm² (Figure 7.e) reduces the θ_{JA} to 49° C/W. The maximum power dissipation depends on the operating ambient temperature for a fixed T_J(MAX) and thermal resistance θ_{JA} . Figure 8 of the derating curves allows the designer to see the effect of rising ambient temperature on the maximum power dissipation allowed.

Figure 7. Thermal Resistance vs. Copper Area Layout Design

Figure 8. Derating Curves of Maximum Power Dissipation

18.9 Layout Considerations

Layout is very important in high-frequency switching converter design. If designed improperly, the PCB can radiate excessive noise and contribute to the converter instability. The following points must be considered before starting a layout for the RT7272A.

- The input capacitor must be placed as close to the IC as possible.
- SW should be connected to the inductor with a wide and short trace.

 Copyright © 2025 Richtek Technology Corporation. All rights reserved.
 RICHTEK
 is a registered trademark of Richtek Technology Corporation.

 RT7272A_DS-11
 April 2025
 www.richtek.com

RT7272A

• The RL resistor, compensator, and feedback components must be connected as close to the device as possible. <u>Figure 9</u> shows the layout example for the RT7272A.

Figure 9. PCB Layout Guide

Tabla 3	. Suggested	Canacitore	for Cu	and Cou	-
lanie o	. Suggesteu	Capacitors		anu cou	I.

Location	Component Supplier	Part No.	Capacitance (μF)	Case Size
Cin	MURATA	GRM32ER71H475K	4.7	1206
CIN	TAIYO YUDEN	UMK325BJ475MM-T	4.7	1206
CIN	MURATA	GRM31CR61E106K	10	1206
CIN	TDK	C3225X5R1E106K	10	1206
CIN	TAIYO YUDEN	TMK316BJ106ML	10	1206
Соит	MURATA	GRM31CR60J476M	47	1206
Соит	TDK	C3225X5R0J476M	47	1210
Соит	MURATA	GRM32ER71C226M	22	1210
Соит	TDK	C3225X5R1C22M	22	1210

Note 9. The information provided in this section is for reference only. The customer is solely responsible for the designing, validating, and testing your product incorporating Richtek's product and ensure such product meets applicable standards and any safety, security, or other requirements.

Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

19 Outline Dimension

Ormah	- 1	Dimensions	n Millimeters	Dimension	s In Inches
Symbo	DI	Min	Мах	Min	Мах
А		4.801	5.004	0.189	0.197
В		3.810	4.000	0.150	0.157
С		1.346	1.753	0.053	0.069
D		0.330	0.510	0.013	0.020
F		1.194	1.346	0.047	0.053
Н		0.170	0.254	0.007	0.010
I		0.000	0.152	0.000	0.006
J		5.791	6.200	0.228	0.244
М		0.406	1.270	0.016	0.050
Option 1	Х	2.000	2.300	0.079	0.091
Option 1	Υ	2.000	2.300	0.079	0.091
Option 2	Х	2.100	2.500	0.083	0.098
Option 2	Υ	3.000	3.500	0.118	0.138

8-Lead SOP (Exposed Pad) Plastic Package

Note 10. The package of the RT7272A uses Option 2.

20 Footprint Information

Deal		Footprint Dimension (mm)									Talaranaa
Package		Number of Pin	Р	А	В	С	D	Sx	Sy	М	Tolerance
PSOP-8	Option1	0	1 07	6 90	4 20	1 20	0.70	2.30	2.30	1 5 1	.0.10
P30P-0	Option2	o	1.27	6.80	4.20	1.30	0.70	3.40	2.40	4.51	±0.10

Note 11. The package of the RT7272A uses Option 2.

Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

21 Packing Information

21.1 Tape and Reel Data

	Tape Size	Pocket Pitch	Reel Si	ze (A)	Units	Trailer	Leader	Reel Width (W2)	
Package Type	(W1) (mm)	(P) (mm)	(mm) (in)		per Reel	(mm)	(mm)	Min/Max (mm)	
PSOP-8	12	8	330	13	2,500	160	600	12.4/14.4	

C, D, and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 12mm carrier tape: 0.5mm maximum

Tape Size	W1	F	C	В		F		ØJ		К		Н
p. 0.10	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Max
12mm	12.3mm	7.9mm	8.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	1.9mm	2.3mm	0.6mm

21.2 Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1		4	
	Reel 13"		1 reel per inner box Box G
2		5	
	HIC & Desiccant (2 Unit) inside		6 inner boxes per outer box
3		6	RICHTEK IZ 74 IZZE RECTOR
	Caution label is on backside of Al bag		Outer box Carton A

Container	Reel			Box		Carton		
Package	Size	Units	Item	Reels	Units	Item	Boxes	Units
PSOP-8	13"	2,500	Box G	1	2,500	Carton A	6	15,000

Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

21.3 Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω/cm^2	10 ⁴ to 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2025 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

22 Datasheet Revision History

Version	Date	Description	Item
10	2025/5/20	Modify	Ordering Information on page 2 Marking Information on page 2 Absolute Maximum Ratings on page 6 Recommended Operating Conditions on page 6 Thermal Information on page 6 Electrical Characteristics on page 7 Operation on page 11 Application Information on page 17 Footprint Information on page 19 Packing Information on page 20, 21, 22
11	2025/1/23	Modify	General Description on page 1 Changed the Step-Down to Buck Ordering Information on page 2 Thermal Information on page 6 Electrical Characteristics on page 6 Packing Information on page 20 - Added Tape Size "K"

Copyright © 2025 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation. www.richtek.com