4-String White LED Driver with Boost Regulator

General Description
The RT8575 is a high efficiency LED driver with 40V I/O support. It is designed for LCD panel that employs an array of LEDs as the lighting source. An integrated switch current mode Boost controller drives four strings in parallel and supports up to 18 pieces of LEDs per string. The internal current sinks support typical ±1% current mismatching for excellent brightness uniformity in each LED string. To provide enough headroom for the operating of current sink, Boost controller monitors the minimum voltage of feedback pins and regulates an optimized output voltage for power efficiency.

The RT8575 has a wide input voltage operating range from 4.2V to 24V and provides adjustable 50mA to 150mA LED current. The internal 150mΩ, 60V power switch with current-mode control provides cycle-by-cycle over current protection. RT8575 also integrates PWM dimming function for accurate LED current control. The input PWM dimming frequency can operate from 120Hz to 1kHz without inducing any inrush current in LEDs or inductor. The switching frequency of RT8575 is adjustable from 150kHz to 500kHz, which allows the trade-off between efficiency and component size.

The RT8575 is available in WDFN-16L 5x5 and DIP-16 (BW) packages to achieve optimized solution for PCB space.

Features
- Input Operating Voltage Range 4.2V to 24V
- 60V Maximum Output Voltage
- Adjustable Switching Frequency : 150kHz to 500kHz
- Support Up to 4 LED Strings
- 50mA to 150mA LED Current Per Channel
- 1% Typical LED Current Accuracy
- 1% Typical LED Current Matching
- Programmable Over Voltage Protection
- Built-in Soft-Start, OTP
- LED Short/Open Detection
- RoHS Compliant and Halogen Free

Applications
- White LED Backlighting

Ordering Information
<table>
<thead>
<tr>
<th>RT8575</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package Type</td>
</tr>
<tr>
<td>QW : WDFN-16L 5x5 (W-Type)</td>
</tr>
<tr>
<td>N : DIP-16 (BW)</td>
</tr>
<tr>
<td>Lead Plating System</td>
</tr>
<tr>
<td>G : Green (Halogen Free and Pb Free)</td>
</tr>
</tbody>
</table>

Note:
Richtek products are:
- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Simplified Application Circuit
Functional Pin Description

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Pin Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDFN-16L 5x5</td>
<td>DIP-16 (BW)</td>
<td></td>
</tr>
<tr>
<td>1 to 4</td>
<td>6 to 9</td>
<td>CH1 to CH4</td>
</tr>
<tr>
<td>5</td>
<td>--</td>
<td>AGND</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>ISET</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>COMP</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>RT</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>PWM</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>EN</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>VIN</td>
</tr>
<tr>
<td>12, 13</td>
<td>3</td>
<td>LX</td>
</tr>
<tr>
<td>14, 15, 17 (Exposed Pad)</td>
<td>--</td>
<td>PGND</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>OVP</td>
</tr>
<tr>
<td>--</td>
<td>4, 11</td>
<td>GND</td>
</tr>
</tbody>
</table>
Operation

The RT8575 integrates 4 linear LED drivers and a Boost converter. When EN is High and V_{IN} is higher than the voltage of UVLO, the RT8575 will start operation and detect which channels are using. If the channel is connected to ground, it would be defined as un-used channel. And the driver of this channel will be turned off after the un-used checking.

Then, RT8575 will enter the soft-start mode. V_{ISET} will increase to be 1V slowly, which represents that the I_{LED} also increases slowly. Beside that the OCP is clamped at lower level, just prevents a large inrush current. RT8575 will choose the min. value of V_{LED} as the feedback voltage of Boost converter, the un-used channel is out of the list.

During normal operation, when LED string is defined as short, the driver of that channel will be turned off. In order to protect the system, “SHORT” status of the channel should only be released by re-start of the system. When LED string is defined as open, the driver of that channel will be turned off, and auto-recovery when “OPEN” is released.
Absolute Maximum Ratings (Note 1)
- Supply Input Voltage, VIN to GND -0.3V to 44V
- EN, ISET, COMP, OVP, RT to GND -0.3V to 44V
- CH1 to CH4, LX to GND -0.3V to 66V
- Power Dissipation, PD @ TA = 25°C
 WDFN-16L 5x5 3.47W
 DIP-16 (BW) 1.8W
- Package Thermal Resistance (Note 2)
 WDFN-16L 5x5, θJA 28.8°C/W
 WDFN-16L 5x5, θJC 4.4°C/W
 DIP-16 (BW), θJA 55.7°C/W
 DIP-16 (BW), θJC 8.3°C/W
- Lead Temperature (Soldering, 10 sec.) 260°C
- Junction Temperature 150°C
- Storage Temperature Range −65°C to 150°C
- ESD Susceptibility (Note 3)
 HBM (Human Body Model) 2kV
 MM (Machine Model) 200V

Recommended Operating Conditions (Note 4)
- Supply Input Voltage, VIN 4.2V to 24V
- Junction Temperature Range −40°C to 125°C
- Ambient Temperature Range −40°C to 85°C

Electrical Characteristics
(VIN = 19V, CIN2 = 1μF, TA = 25°C, unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Supply Voltage</td>
<td>VIN</td>
<td>VIN Rising</td>
<td>4.2</td>
<td>--</td>
<td>24</td>
<td>V</td>
</tr>
<tr>
<td>Under Voltage Lockout Threshold</td>
<td>VUVLO</td>
<td></td>
<td>--</td>
<td>3.8</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td>Under Voltage Lockout Hysteresis</td>
<td>DVUVLO</td>
<td></td>
<td>--</td>
<td>500</td>
<td>--</td>
<td>mV</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>IVCC</td>
<td>COMP = 0V, Not Switching</td>
<td>--</td>
<td>2.5</td>
<td>--</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>IVCC_SW</td>
<td>COMP = 2V, Switching</td>
<td></td>
<td>3.3</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Shutdown Current</td>
<td>ISHDN</td>
<td>VIN = 4.5V, EN = 0</td>
<td>--</td>
<td>--</td>
<td>20</td>
<td>μA</td>
</tr>
<tr>
<td>EN, PWM Input Voltage</td>
<td></td>
<td>Logic-High</td>
<td></td>
<td>2</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Logic-Low</td>
<td></td>
<td></td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>PWM Dimming Frequency</td>
<td>FPWM</td>
<td></td>
<td>120</td>
<td>--</td>
<td>1k</td>
<td>Hz</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>FOSC</td>
<td>RSW = 51.1kΩ</td>
<td>224</td>
<td>280</td>
<td>336</td>
<td>kHz</td>
</tr>
<tr>
<td>LX On-Resistance (N-MOSFET)</td>
<td>RLX</td>
<td>VIN > 4.5V</td>
<td>--</td>
<td>0.15</td>
<td>--</td>
<td>Ω</td>
</tr>
<tr>
<td>Minimum On-Time</td>
<td>TMON</td>
<td></td>
<td>--</td>
<td>220</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Maximum Duty</td>
<td>DMAX</td>
<td>VCOMP = 2V, Switching</td>
<td>--</td>
<td>92</td>
<td>--</td>
<td>%</td>
</tr>
<tr>
<td>LX Current Limit</td>
<td>LIM</td>
<td></td>
<td>2.8</td>
<td>3.3</td>
<td>3.8</td>
<td>A</td>
</tr>
<tr>
<td>Parameter</td>
<td>Symbol</td>
<td>Test Conditions</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Unit</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---------</td>
<td>--------------------------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>LED Current Accuracy</td>
<td>ILEDA</td>
<td>0.4V < CHx < 2V, Riset = 7.5kΩ</td>
<td>116.4</td>
<td>120</td>
<td>123.6</td>
<td>mA</td>
</tr>
<tr>
<td>LED Current Matching</td>
<td>ILEDM</td>
<td>0.4V < CHx < 2V, Riset = 7.5kΩ</td>
<td>--</td>
<td>±1</td>
<td>±3</td>
<td>%</td>
</tr>
<tr>
<td>ISET Pin Voltage</td>
<td>VISET</td>
<td>--</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td>OVP Threshold</td>
<td>VOVP</td>
<td>--</td>
<td>1.17</td>
<td>1.2</td>
<td>1.23</td>
<td>V</td>
</tr>
<tr>
<td>Thermal Shutdown Temperature</td>
<td>TOTP</td>
<td>--</td>
<td>150</td>
<td>--</td>
<td>--</td>
<td>°C</td>
</tr>
<tr>
<td>Thermal Shutdown Hysteresis</td>
<td>TOTP_hys</td>
<td>--</td>
<td>20</td>
<td>--</td>
<td>--</td>
<td>°C</td>
</tr>
<tr>
<td>Un-Connected LED Detection</td>
<td>VUSE</td>
<td>Un-Connection</td>
<td>--</td>
<td>0.2</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td>Opened LED Protection</td>
<td>VOLP</td>
<td>--</td>
<td>--</td>
<td>0.1</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td>Shorted LED Protection</td>
<td>VSLP</td>
<td>--</td>
<td>--</td>
<td>5.6</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td>Shutdown Delay Time</td>
<td>TSD</td>
<td>fOSC = 280kHz</td>
<td>--</td>
<td>28</td>
<td>--</td>
<td>ms</td>
</tr>
</tbody>
</table>

Note 1. Stresses beyond those listed “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Note 2. θ_{JA} is measured at $T_A = 25^\circ$C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θ_{JC} is measured at the exposed pad of the package.

Note 3. Devices are ESD sensitive. Handling precaution is recommended.

Note 4. The device is not guaranteed to function outside its operating conditions.
Typical Application Circuit

- **VIN**: 4.2V to 24V
- **VOUT**: 60V (MAX)
- **ILED**: 150mA (MAX)

Components:
- **VIN**: 47µF/35V
- **CIN1**: 1µF
- **CIN2**: 1µF
- **L1**: 22µH
- **D1**: 1µF
- **COUT**: 47µF/100V
- **ROVP1**: 300k
- **ROVP2**: 6.2k
- **RCOMP**: 100nF
- **CCOMP**: 100nF
- **RSET**: 7.5k
- **RISET**: 51.1k
- **R8W**: 7.5k
- **EN**: Chip Enable
- **PWM**: PWM Signal
- **COMP**: PWM Signal
- **ISET**: PWM Signal
- **LX**: RT8575
- **COVP**: 100pF
- **LX**: RT8575
- **CIN2**: 1µF
- **COUT**: 47µF/100V
- **GND**: AGND
- **RT**: AGND
- **CH1**: AGND
- **CH2**: CH3
- **CH3**: CH4
- **CH4**: AGND

Copyright ©2013 Richtek Technology Corporation. All rights reserved. Richtek is a registered trademark of Richtek Technology Corporation.

www.richtek.com DS8575-00 January 2013
Typical Operating Characteristics

Efficiency vs. Input Voltage

- **14S4P, $V_{IN} = 19V$, $f_{OSC} = 280kHz$, $PWM = 3.3V$**

- **6S4P, $I_{LEDx} = 120mA$, $f_{OSC} = 280kHz$, $PWM = 3.3V$**

LED Current vs. Input Voltage

- **14 LEDs per channel, $R_{SET} = 7.5k\Omega$, $f_{OSC} = 280kHz$, $PWM = 3.3V$**

- **6 LEDs per channel, $R_{SET} = 7.5k\Omega$, $f_{OSC} = 280kHz$, $PWM = 3.3V$**

LED Current vs. Temperature

- **14S4P, $R_{SET} = 7.5k\Omega$, $f_{OSC} = 280kHz$, $V_{IN} = 19V$, $PWM = 3.3V$**

LED Current vs. Dimming Duty

- **200Hz, 500Hz, 1kHz**

Copyright © 2013 Richtek Technology Corporation. All rights reserved. Richtek is a registered trademark of Richtek Technology Corporation.

DS8575-00 January 2013

www.richtek.com
OVP Voltage vs. Input Voltage

Quiescent Current vs. Input Voltage

Quiescent Current vs. Temperature

LED Current vs. RSET

Switching Frequency vs. RSW

Line Transient Response
Application Information

The RT8575 is a general purpose 4-CH LED driver capable of delivering an adjustable 50mA to 150mA LED current. The IC is a current mode Boost converter integrated with a 60V/4A power switch and can cover a wide VIN range from 4.2V to 24V. The switching frequency is adjustable by an external resistor from 150kHz to 500kHz. The part integrates built-in soft-start, with PWM dimming control; moreover, it provides over voltage, over temperature, short LED and cycle-by-cycle over current protection features.

Supply Voltage Capacitor Selection

The RT8575 equips a built-in LDO linear regulator to provide the internal logic of IC power. The output of LDO is the pin out of VIN. The VIN pin is recommended to connect at least a 1μF/25V bypass capacitor. The bypass capacitor should be used with X5R or X7R type, to assure the bypass capacitance remains stable in over voltage or over temperature.

Soft-Start

The RT8575 equips a soft-start feature to prevent high inrush current during start-up. The soft-start function prevents excessive input current and input voltage droop during power on state.

LED Current Setting

LED current of each channel can be calculated by following equation:

\[I_{LED} = \frac{900}{R_{ISET}} \]

Where the RSET resistor is connected between the ISET pin and GND. This setting is the reference for the LED current at the LED pin and represents the sensed LED current for each string. The LED driver regulates the LED current according to the setting.

Switching Frequency

The LED driver switching frequency is adjusted by the external resistor, RSW. The switching frequency can be calculated by the following equation:

\[f_{OSC} = \frac{14.3 \times 10^9}{R_{SW}} \]

Compensation

The regulator loop can be compensated by adjusting the external components connected to the COMP pin. The COMP pin is the output of the internal error amplifier. The compensation capacitor will adjust the integrator zero to maintain stability and the resistor value will adjust the frequency integrator gain for fast transient response. Typical values of the compensation components are \(R_{COMP} = 0\Omega, C_{COMP} = 100\text{nF} \).

LED Connection

The RT8575 equips 4-CH LED drivers and each channel supports up to 18 LEDs (\(V_f = 3V \)). The LED strings are connected from the output of the Boost converter to pin CHx (x = 1 to 4) respectively. If one of the current sink channels is not used, the CHx pin should be connected to GND. If the un-used channel is not connected to GND, it will be considered that the LED string is opened, the channel will turn light when the LED string is recovering connected.

Over Voltage Protection

The RT8575 integrates over voltage protection. When the voltage at the OVP pin rises above the threshold voltage of approximately 1.2V, The internal switch will be turned off. Once the voltage of OVP pin drop below its threshold voltage, the internal switch will be turned on again. The output voltage can be clamped at a certain voltage level and can be calculated by the following equations:

\[V_{OUT(OVP)} = V_{OVP} \times \left(1 + \frac{R_{OVP1}}{R_{OVP2}} \right) \]

where \(V_{OVP} = 1.2V \) (typ.).

\(R_{OVP1} \) and \(R_{OVP2} \) are the resistors in the voltage divider connected to the OVP pin. If at least one string is in normal operation, the controller will automatically ignore the open strings and continue to regulate the current for the strings in normal operation. It is suggested to use near 300kΩ for \(R_{OVP1} \), and use a 100pF bypass capacitor at \(R_{OVP2} \).

Current Limit Protection

The RT8575 can limit the peak current to achieve over current protection. The RT8575 senses the inductor current during the “ON” period that flows through the LX
pin. The duty cycle depends on the current signal and internal slope compensation in comparison with the error signal. The internal switch of Boost converter will be turned off when the peak current value of inductor current is larger than the threshold current 3.3A (typ.). In the “OFF” period, the inductor current will be decreased until the internal switch is turned on by the oscillator.

Brightness Control
The RT8575 features a digital dimming control scheme. A very high contrast ratio true digital PWM dimming is achieved by driving the PWM pin with a PWM signal. The recommended PWM frequency is 120Hz to 1kHz. The LED current can be approximately 100% proportional to duty cycle, but the linearity is not ideal on the high frequency and lower duty ratio.

Over Temperature Protection
The RT8575 has over temperature protection function to prevent the IC from overheating due to excessive power dissipation. The OTP function will shut down the IC when junction temperature exceeds 150°C. When junction temperature cools down to 130°C (\(T_{OTP,hys} = 20^\circ C\)), the LED driver will return to normal work.

Short LED Protection
The RT8575 integrates Short LED Protection (SLP). If one or more of the CH1 to CH4 pin voltages exceeds the threshold of approximately 5.6V during normal operation, the channels will be closed and latch. If the LED of all channels is shorted circuit, the internal switch of Boost converter will be turned off.

Open LED Protection
If the CHx pin voltage is low at 0.1V, the LED driver will determine whether the channel is open. The CHx pin voltage will not be regulated and not latch, until the CHx pin is recovering connected, the CHx pin will start normal work again. If all CHx pins are open (floating), the output voltage will be clamped to the setting voltage of OVP (\(V_{OVP}\)).

Power On/Off Sequence
LED driver is without power sequence concern. Mode1, Mode2 and Mode3 are different power sequences respectively. There is no concern in the above condition.

VIN

VOUT

EN

PWM

Power On Mode1

Power Off Mode1

Power On Mode2

Power Off Mode2
Shutdown Delay Time
The EN shutdown delay is about 32ms, it is in intended to prevent the glitch of EN. When EN has glitch happening (T_{glitch} < 32ms), the IC will not need to recover soft-start again. But the LED current sources will be closed immediately. And after about 32ms, the IC will be shut down. Please refer to the Figure 2.

Inductor Selection
The value of the inductance, L, can be approximated by the following equation, where the transition is from Discontinuous Conduction Mode (DCM) to Continuous Conduction Mode (CCM):
\[
L = \frac{D \times (1-D)^2 \times V_{OUT}}{2 \times f_{OSC} \times I_{OUT}}
\]
The duty cycle, D, can be calculated as the following equation:
\[
D = \frac{V_{OUT} - V_{IN}}{V_{OUT}}
\]
Where \(V_{OUT}\) is the maximum output voltage, \(V_{IN}\) is the minimum input voltage, \(f_{OSC}\) is the operating frequency, and \(I_{OUT}\) is the sum of current from all LED strings. The Boost converter operates in DCM over the entire input voltage range when the inductor value is less than this value, L. With an inductance greater than L, the converter operates in CCM at the minimum input voltage and may be discontinuous at higher voltages.

The inductor must be selected with a saturated current rating that is greater than the peak current as provided by the following equation:
\[
I_{PEAK} = V_{OUT} \times I_{OUT} + \frac{V_{IN} \times D \times T_{OSC}}{2 \times L}
\]
where \(\eta\) is the efficiency of the power converter.

Diode Selection
Schottky diodes are recommended for most applications because of their fast recovery time and low forward voltage. Power dissipation, reverse voltage rating, and pulsating
peak current are important parameters for consideration when making a Schottky diode selection. Make sure that the diode’s peak current rating exceeds I_{PEAK} and reverse voltage rating exceeds the maximum output voltage.

Input Capacitor Selection

Low ESR electrolytic capacitors are recommended for input capacitor applications. Low ESR will effectively reduce the input voltage ripple caused by switching operation. A $47\mu F/35V$ is sufficient for most applications. Nevertheless, this value can be decreased for lower output current requirement. Another consideration is the voltage rating of the input capacitor must be greater than the maximum input voltage.

Output Capacitor Selection

Output ripple voltage is an important index for estimating the performance. This portion consists of two parts, one is the ESR voltage of output capacitor, the other part is formed by charging and discharging process of output capacitor. Refer to Figure 3, evaluate ΔV_{OUT} by ideal energy equalization. According to the definition of Q, the Q value can be calculated as following equation:

$$Q = \frac{1}{2} \left[\left(\frac{I_{IN}}{2} + \frac{1}{2} \Delta I_{L} - I_{OUT} \right) + \left(\frac{I_{IN}}{2} - \frac{1}{2} \Delta I_{L} - I_{OUT} \right) \right] \times \frac{V_{IN}}{V_{OUT}} \times \frac{1}{f_{OSC}} = C_{OUT} \times \Delta V_{OUT1}$$

where f_{OSC} is the switching frequency, and ΔI_{L} is the inductor ripple current. Move C_{OUT} to the left side to estimate the value of ΔV_{OUT1} as the following equation:

$$\Delta V_{OUT1} = \frac{D \times I_{OUT}}{\eta \times C_{OUT} \times f_{OSC}}$$

Then, take the ESR into consideration, the ESR voltage can be determined as the following equation:

$$\Delta V_{ESR} = \left(\frac{I_{OUT}}{1-D} + \frac{V_{IN} \times D \times f_{OSC}}{2L} \right) \times R_{ESR}$$

Finally, the total output ripple ΔV_{OUT} is combined from the ΔV_{OUT1} and ΔV_{ESR}. In the general application, the output capacitor is recommended to use a $47\mu F/63V$ electrolytic capacitor.

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula:

$$P_{D(MAX)} = \frac{(T_{J(MAX)} - T_{A})}{\theta_{JA}}$$

where $T_{J(MAX)}$ is the maximum junction temperature, T_{A} is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is $125^\circ C$. The junction to ambient thermal resistance, θ_{JA}, is layout dependent. For WDFN-16L 5x5 package, the thermal resistance, θ_{JA}, is $28.8^\circ C/W$ on a standard JEDEC 51-7 four-layer thermal test board. For DIP-16 (BW) package, the thermal resistance, θ_{JA}, is $55.7^\circ C/W$ on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at $T_{A} = 25^\circ C$ can be calculated by the following formula:

$$P_{D(MAX)} = \frac{(125^\circ C - 25^\circ C)}{(28.8^\circ C/W)} = 3.47W$$

for WDFN-16L 5x5 package.
The maximum power dissipation depends on the operating ambient temperature for fixed \(T_{J(MAX)} \) and thermal resistance, \(\theta_{JA} \). The derating curve in Figure 4 allow the designer to see the effect of rising ambient temperature on the maximum power dissipation.

\[
P_{D(MAX)} = \frac{(125°C - 25°C)}{(55.7°C/W)} = 1.8W \text{ for DIP-16 (BW) package}
\]

PCB layout is very important for designing switching power converter circuits. The following layout guides should be strictly followed for best performance of the RT8575.

- The power components, L1, D1, \(C_{IN1} \) and \(C_{OUT} \) must be placed as close as possible to reduce power loop. The PCB trace between power components must be as short and wide as possible.
- Place L1 and D1 as close as possible to LX pin. The trace should be as short and wide as possible.
- The compensation circuit (\(R_{COMP}, C_{COMP} \)) should be kept away from the power loops and should be shielded with a ground trace to prevent any noise coupling. Place the compensation components as close as possible to COMP pin.
- The LED current setting resistor (\(R_{ISET} \)) should be kept away from the power loops and should be shielded with a ground trace. Place the LED current resistor as close as possible to ISET pin.
Figure 6. PCB Layout Guide for WDFN-16L 5x5 Package

The compensation circuit and R_{SET} resistor should be kept away from the power loops and should be shielded with a ground trace to prevent any noise coupling.

Separate power ground (PGND) and analog ground (AGND). Connect AGND and PGND islands at a single end. Make sure there are no other connections between these separate ground planes.

The exposed pad of the chip should be connected to ground plane for thermal consideration.

Locate the C_{IN2} as close to VIN as possible.

Place the power components as close as possible. The traces should be wide and short especially for the high-current loop.

The traces should be wide and short especially for the high-current loop.

Copyright © 2013 Richtek Technology Corporation. All rights reserved. Richtek is a registered trademark of Richtek Technology Corporation.
Outline Dimension

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions In Millimeters</th>
<th>Dimensions In Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>A</td>
<td>3.700</td>
<td>4.320</td>
</tr>
<tr>
<td>A1</td>
<td>0.381</td>
<td>0.710</td>
</tr>
<tr>
<td>A2</td>
<td>3.200</td>
<td>3.600</td>
</tr>
<tr>
<td>b</td>
<td>0.360</td>
<td>0.560</td>
</tr>
<tr>
<td>b1</td>
<td>1.143</td>
<td>1.778</td>
</tr>
<tr>
<td>b2</td>
<td>2.920</td>
<td>3.100</td>
</tr>
<tr>
<td>C</td>
<td>0.204</td>
<td>0.360</td>
</tr>
<tr>
<td>D</td>
<td>18.800</td>
<td>19.300</td>
</tr>
<tr>
<td>E</td>
<td>6.200</td>
<td>6.600</td>
</tr>
<tr>
<td>E1</td>
<td>7.320</td>
<td>7.920</td>
</tr>
<tr>
<td>E2</td>
<td>8.350</td>
<td>9.250</td>
</tr>
<tr>
<td>e</td>
<td>2.540</td>
<td>0.100</td>
</tr>
<tr>
<td>L</td>
<td>3.000</td>
<td>3.600</td>
</tr>
</tbody>
</table>

16-Lead DIP (BW) Plastic Package
### Symbol Dimensions in Millimeters	Symbol Dimensions in Inches
A | 0.700 | 0.800 | 0.028 | 0.031
A1 | 0.000 | 0.050 | 0.000 | 0.002
A3 | 0.175 | 0.250 | 0.007 | 0.010
b | 0.200 | 0.300 | 0.008 | 0.012
D | 4.900 | 5.100 | 0.193 | 0.201
D2 | 4.350 | 4.450 | 0.171 | 0.175
E | 4.900 | 5.100 | 0.193 | 0.201
E2 | 3.650 | 3.750 | 0.144 | 0.148
\(e\) | 0.500 | 0.020
L | 0.350 | 0.450 | 0.014 | 0.018

Note: The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

W-Type 16L DFN 5x5 Package