
Sample & Buy

RT8843C

Multi-Phase PWM Controller with PWM-VID Reference

Technical Documentation

1 General Description

The RT8843C is a 3/2/1 multi-phase synchronous buck controller optimized for high-performance graphic microprocessors and supports the nVidia OVR3i+ specification with a PWM-VID interface. It can support both DrMOS with current output and DCR current sensing. The RT8843C adopts AC G-NAVPTM (Green Native AVP), which is Richtek's proprietary topology derived from the finite DC gain of the internal GM amplifier with current mode control. By utilizing the AC G-NAVPTM top ology, the operating frequency of the RT8843C varies with VID, load, and input voltage to further enhance efficiency, even in CCM (Continuous Conduction Mode). Moreover, the AC G-NAVP[™] with CCRCOT (Constant Current Ripple COT) technology provides superior output voltage ripple over the entire input/output range.

The RT8843C features an external reference input and PWM-VID dynamic output voltage control, where the output voltage is regulated and tracks the external input reference voltage. The RT8843C can set the internal RAMP amplitude through the PINSETx pin, optimizing stability and load transient performance. The RT8843C also provides complete fault protection functions, including Overvoltage Protection (OVP), Undervoltage Protection (UVP), Per-phase Current Limit, and Over-Temperature Protection (OTP). The recommended junction temperature range is from -40° C to 125° C.

2 Features

- Multi-Phase PWM Controller
- PWM-VID Dynamic Output Voltage Control
- Support 1.8V PWM-VID Interface
- Power State Indicator
 - 1-Phase-DEM, Full-Phase DEM, Full-Phase CCM
- External Reference Input Control
- 3/2/1-Phase Hardware Setting
- Adjustable Soft-Start Time
- Adjustable Per-Phase Current-Limit Threshold
- Adjustable Switching Frequency
- Protections: UVP, OVP, OTP
- Power-Good Indicator

3 Applications

• GPU Core Power for OVR3i+ Specification

4 Simplified Application Circuit

5 Ordering Information

RT8843C

Package Type⁽¹⁾ QW: WQFN-20L 3x3 (W-Type)

-Lead Plating System

G: Richtek Green Policy Compliant⁽²⁾

Note 1.

- Marked with (1) indicated: Compatible with the current requirements of IPC/JEDEC J-STD-020.
- Marked with (2) indicated: Richtek products are Richtek Green Policy compliant.

Marking Information 6

VY=YM DNN VY=: Product Code YMDNN : Date Code

2

Table of Contents

1	Gener	al Description	1
2	Featur	·es	1
3	Applic	ations	1
4	Simpli	fied Application Circuit	1
5	Orderi	ng Information	2
6	Markir	ng Information	2
7	Pin Co	onfiguration	4
8	Functi	onal Pin Description	4
9	Functi	onal Block Diagram	5
10	Absol	ute Maximum Ratings	6
11	Recon	nmended Operating Conditions	6
12	Electri	cal Characteristics	6
13	Туріса	I Application Circuit	9
14	Туріса	I Operating Characteristics	11
15	Applic	ation Information	14
	15.1	Power-On Reset (POR), UVLO	14
	15.2	Enable and Disable	14
	15.3	Power-Good Indicator (PG)	14
	15.4	Operation Mode Setting	14
	15.5	PWM-VID Dynamic Output Voltage	
		Control	15
	15.6	BOOT Mode	15
	15.7	Standby Mode	16
	15.8	Normal Mode	16
	15.9	VID Slew Rate Control	17
	15.10	Remote Sense Setting	17

	15.11	Multi-Function Pin Setting	18
	15.12	Soft-Start	23
	15.13	Switching Frequency Setting	23
	15.14	Ramp Setting	24
	15.15	Current Sensing	24
	15.16	DCR Current Sensing	24
	15.17	SPS Current Sensing	26
	15.18	Auto-Zero Crossing Detection	
		(Auto-ZCD)	27
	15.19	Current Balance	27
	15.20	Per-Phase Current Limit	28
	15.21	AC Droop	29
	15.22	Overvoltage Protection	30
	15.23	Undervoltage Protection	30
	15.24	Inductor Selection	31
	15.25	Output Capacitor Selection	31
	15.26	Thermal Considerations	32
	15.27	Layout Considerations	33
16	Outlin	e Dimension	34
17	Footp	rint Information	35
18	Packir	ng Information	36
	18.1	Tape and Reel Data	36
	18.2	Tape and Reel Packing	37
	18.3	Packing Material Anti-ESD Property	38
19	Datasl	neet Revision History	39

7 Pin Configuration

WQFN-20L 3x3

8 Functional Pin Description

Pin No.	Pin Name	Pin Function
1	PG	Power-Good indicator output. Active high open-drain output. A 10k pull high resistor is needed.
2	EN	Enable control input. Active high input.
3	PSI	Controller power state setting input. H: full-phase CCM. MID: full-phase DEM. L:1-phase DEM.
4	PWMVID	Programming output voltage control input. Refer to <u>PWM-VID Dynamic Output</u> <u>Voltage Control</u> .
5	REFADJ	Reference adjustment output. Refer to <u>PWM-VID Dynamic Output Voltage</u> <u>Control</u> .
6	REFIN	External reference input.
7	VREF	Reference voltage output. This is a high-precision reference voltage (2V) from the VREF pin to the FBRTN pin. A ceramic capacitor connected between this pin and FBRTN should be 0.1μ F.
8	VIN	Connect an RTON resistor from this pin to the input voltage to set the frequency. Do not place a decoupling capacitor on this pin.
9	FBRTN	Return ground. This pin is the negative input of the output voltage differential remote sense.
10	VSEN	Voltage sense input. This pin is connected to the output voltage terminal.
11	PINSET1	Soft-start, internal ramp, and OCSET setting input. Do not place a decoupling capacitor on this pin
12	PINSET2	DrMOS IMON function, Auto-ZCD (Auto-Zero Crossing Detection) function, and Internal compensation setting input. Do not place a decoupling capacitor on this pin.
13	CSN	Output 1.36V when the DrMOS IMON function is enabled.
14, 15, 16	ISEN[3:1]	Current sense inputs of phases 1, 2, and 3. These pins can also be used for hardware setting of the multi-phase number. When an ISENx pin is pulled up to VCC with a 100k Ω resistor, the PHASEx is disabled and the maximum phase number reduces to x-1. For example, if the ISEN2 pin is pulled up to VCC, the maximum phase number is 1. Both PHASE2 and PHASE3 are disabled.
17	VCC	Supply voltage input. Connect this pin to a 5V bias supply. Place a high-quality bypass capacitor from this pin to GND.

Pin No.	Pin Name	Pin Function
18, 19, 20	PWM[3:1]	PWM outputs.
21 (Exposed Pad)	GND	Ground. The exposed pad should be soldered to a large PCB and connected to GND for maximum thermal dissipation.

9 Functional Block Diagram

Figure 1. Functional Block Diagram

10 Absolute Maximum Ratings

(<u>Note 2</u>)

VIN to GND	–0.3 to 28V
VCC to GND	–0.3 to 6V
FBRTN to GND	–0.3 to 0.3V
Other Pins	–0.3 to 6V
 Power Dissipation, PD @ TA = 25°C 	
WQFN-20L 3x3	3.33W
Package Thermal Resistance (<u>Note 3</u>)	
WQFN-20L 3x3, θJA	30°C/W
WQFN-20L 3x3, 0JC	7.5°C/W
• Lead Temperature (Soldering, 10 sec.)	260°C
• Junction Temperature	150°C
Storage Temperature Range	$-65^{\circ}C$ to $150^{\circ}C$
• ESD Susceptibility (<u>Note 4</u>)	
НВМ	2kV

Note 2. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Note 3. θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}C$ with the component mounted on a high effectivethermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θ_{JC} is measured at the bottom of the package.

Note 4. Devices are ESD sensitive. Handling precautions are recommended.

11 Recommended Operating Conditions

(<u>Note 5</u>)

•	Input Voltage, VIN	2.7 to 25V
•	Supply Voltage, Vvcc	4.5 to 5.5V
•	Junction Temperature Range	–40°C to 125°C

Note 5. The device is not guaranteed to function outside its operating conditions.

12 Electrical Characteristics

(VVCC = 5V, typical values are referenced to TA =TJ = 25°C, Min and Max values are referenced to TA = TJ from -10° C to 105°C, unless other noted.)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
PWM Controller						
VCC Supply Voltage	Vcc		4.5	5	5.5	V
VCC Supply Current	Ivcc	EN = high, not switching		6		mA
VCC Shutdown Current	ISHDN	EN = 0V			10	μA

Copyright © 2025 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation www.richtek.com RT8843C_DS-01 February 2025

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
VCC POR Threshold	Vcc_uvlo_r	VCC rising voltage		4.3		V
VCC UVLO Threshold	Vcc_uvlo_f	VCC falling voltage		4.1		V
POR Hysteresis	Vcc_uvlo_hys			200		mV
Reference Voltage	I		1		1	1
Reference Voltage	Vref		1.98	2	2.02	V
CSN Output Voltage	VCSN_OUT		1.3	1.375	1.45	V
PWMVID Input Voltage						
PWMVID Input Voltage Logic-High	Vpwmvid_h		1.2			V
PWMVID Input Voltage Logic-Low	Vpwmvid_L				0.6	V
Soft-Start Function						
Soft-Start Ramp Up Slew Rate	SR _{SS}	Slew rate set to 1mV/µs	0.9	1	1.1	mVμs
PG Blanking Time	tPG	From EN go high to PG go high			2	ms
EN and Logic Input						
EN Input Voltage Rising Threshold	Ven_r	Logic high level	0.7			V
EN Input Voltage Falling Threshold	Ven_f	Logic low level			0.3	V
Leakage Current of EN	Ien_ilk		-1		1	μA
Leakage Current of PG	Ipg_ilk		-1		1	μA
Leakage Current of PSI	Ipsi_ilk		-1		1	μA
PSI Input Voltage						
PSI Logic High Threshold	Vpsi_ih		1.6			V
PSI Logic Tri-State Threshold	Vpsi_hiz		0.8		1.2	V
PSI Logic Low Threshold	Vpsi_il				0.4	V
TON Setting						
ON-Time Setting	ton	ITON = $40\mu A$, VREFIN = 1V	190	210	230	ns
IPINSET						
PIN SET Current	IPINSET	VPINSET = 1V	79.2	80	80.8	μA
EA/GM Amplifier						
Input Offset	VEAOFS		-3		3	mV
CS Amplifier						
Input Offset	VEAOFS		-0.6		0.6	mV

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Protection Function						
Relative Overvoltage Protection Threshold	VROVP	$V_{REFIN} \ge 1.33V$	142.5	150	157.5	%
Absolute Overvoltage Protection Threshold	VABOVP	Vrefin < 1.33V,	1.9	2	2.1	V
OV Fault Delay	tDLY_OVP	FB forced above OV threshold		5		μS
Relative Undervoltage Protection Threshold	Vruvp		35	40	45	%
UV Fault Delay	tdly_uvp	FB forced above UV threshold		3		μS
Over-Temperature Protection Threshold	Тотр			150		°C
Voltage between ISENx	VISENX-CSN	VOCSET = 800mV, ISNEx – CSN, for DCR DrMOS Application	21	25	29	mV
and CSN Pins		VOCSET = 800mV, ISENx – CSN, for SPS DrMOS Application	70	77	84	mV
PWM Driving Capability						
PWM Source Resistance	Rpwm_src			30		Ω
PWM Sink Resistance	Rpwm_snk			10		Ω
PWM Tri-State Voltage (Note 6)	VPWM_Tri		1.65	1.95	2.2	V

Note 6. Pull the PWM to the HIZ voltage for 200ns when the PWM enters HIZ.

Copyright © 2025 Richtek Technology Corporation. All rights reserved.	RICHTEK	is a registered trademark of Richtek Technology Corporation

13 Typical Application Circuit

Figure 2. 3-Active Phase IMON Configuration

RICHTEK

Figure 3. 3-Active Phase DCR Configuration

14 Typical Operating Characteristics

RICHTEK

-50

-25

0

25

50

Temperature (°C)

75

100

Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation RT8843C DS-01 February 2025 www.richtek.com

125

Time (500µs/Div)

Time (20µs/Div)

RICHTEK Copyright © 2025 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation www.richtek.com RT8843C DS-01 February 2025

Time (20µs/Div)

is a registered trademark of Richtek Technology Corporation

15 Application Information

(<u>Note 8</u>)

The RT8843C is a multi-phase synchronous buck controller optimized for high-performance graphic microprocessors and computer applications.

The RT8843C adopts AC G-NAVPTM (Green Native Adaptive Voltage Positioning), which is Richtek's proprietary topology derived from the finite DC gain of the internal GM amplifier with current mode control. By utilizing the AC G-NAVPTM topology, the operating frequency of the RT8843C varies with VID, load, and input voltage to further enhance the efficiency, even in CCM. Moreover, the AC G-NAVPTM with CCRCOT (Constant Current Ripple COT) technology provides superior output voltage ripple over the entire input/output range.

The RT8843C features an external reference input and PWM-VID dynamic output voltage control, where the output voltage is regulated and tracks the external input reference voltage. In addition, the RT8843C integrates multiple functions, including Internal-Ramp-Setting, AI Gain Selection, Soft-Start Time Setting, SPS Current Sensing, Auto-Zero-Current Detection, and Per-phase Current Limit. These functions can be achieved through the PINSET voltage settings. The RT8843C also provides comprehensive protection including Overvoltage Protection (OVP), Undervoltage Protection (UVP), and Over-Temperature Protection (OTP).

15.1 Power-On Reset and UVLO

Power-On Reset (POR) occurs when V_{VCC} rises to approximately 4.3V (typical), and the RT8843C resets the fault latch circuit and prepares for PWM operation.

When the V_{VCC} is lower than 4.1V (typical), the PWMx signal is kept low to inhibit any switching through Undervoltage-Lockout (UVLO).

15.2 Enable and Disable Functions

The EN pin is a high-impedance input that allows power sequencing between the controller bias voltage and another voltage rail. The RT8843C remains in shutdown mode if the EN pin voltage is lower than 300mV. When the EN voltage rises above the 700mV high-level threshold, the RT8843C begins a new initialization and soft-start cycle. The EN timing must occur after VCC POR to ensure that the PINSET function can be set normally.

15.3 Power-Good Indicator

The PG pin is an open-drain output and requires a pull-up resistor. During the soft-start time period, PG remains low. When the output voltage reaches the REFIN voltage, PG is pulled high and latched. If OVP/UVP is triggered or EN goes low during operation, PG will be pulled low immediately.

15.4 Operation Mode Setting

The RT8843C provides three operation modes: 1-phase with DEM, multi-phase with DEM, and multi-phase with CCM. In DEM operation, the RT8843C automatically reduces the operation frequency under light-load conditions for saving power loss. The operating mode can be set by the voltage of the PSI pin, as listed in <u>Table 1</u>. Moreover, the PSI pin is valid after POR of VR.

Table 1					
Operation Mode	PSI Voltage Setting				
1-Phase with DEM	0V to 0.4V				
Multi-Phase with DEM (<u>Note 7)</u>	0.8V to 1.2V				
Multi-Phase with CCM (<u>Note 7)</u>	1.6V to 5.5V				

Note 7. Multi-phase number by hardware setting

15.5 PWM-VID Dynamic Output Voltage Control

The RT8843C features a PWM-VID input for dynamic output voltage control, as shown in <u>Figure 4</u>. This design reduces the number of device pins and enables a wide dynamic voltage range. The output voltage is determined by the applied voltage on the REFIN pin and the duty cycle of PWMVID.

Figure 4. PWM-VID Analog Circuit Diagram

Through utilizing the external circuit and the VID control signal, the controller provides three operation modes, as shown in <u>Figure 5</u>.

Figure 5. PWM-VID Time Diagram

15.6 BOOT Mode

When the PWMVID is not driven, the buffer output is in a tri-state condition. At this time, the PWM-VID circuit is working in BOOT mode, and Q1 is turned off. Furthermore, REFIN is connected to a resistor divider, as shown in Figure 4. The following equation expresses the VBOOT equation from REFIN and the divider resistors.

$$VBOOT = VVREF \times \left(\frac{RREF2}{RREF1 + RREF2 + RBOOT}\right)$$

where VVREF = 2V (typical)

Choose R_{REF2} to be approximately 10k Ω , and the R_{REF1} and R_{BOOT} can be calculated using the following equations:

RT88430

 $\mathsf{Rref1} + \mathsf{Rboot} = \frac{\mathsf{Rref2} \times (\mathsf{VVref} - \mathsf{Vboot})}{\mathsf{Voref}}$ $\mathsf{RREF1} = \frac{\mathsf{RREF2} \times (\mathsf{VVREF} - \mathsf{VBOOT})}{\mathsf{VBOOT}} - \mathsf{RBOOT}$ $RBOOT = \frac{RREF2 \times (VVERF - VBOOT)}{VBOOT} - RREF1$

15.7 Standby Mode

When the PWMVID control enters the standby mode, the standby voltage can be set via RSTANDBY and Q1, as shown in Figure 4. The standby voltage is set to a voltage that is lower than the PWMVID operating range. Assuming the PWMVID operating range is 0.3V to 1.3V, then the standby voltage will be set below 0.3V. However, if the REFIN voltage is lower than 0.2V, the controller will pull the PWM signal into a tri-state. Therefore, the standby voltage setting range is recommended from 0.2V to the lowest voltage of the PWMVID operation voltage.

The following conditions must be met when entering standby mode:

- The PWMVID pin is floating.
- Q1 is enabled.

Furthermore, the desired value can be set using the following equation:

RREF2//**RSTANDBY** $VSTANDBY = VVREF \times \frac{RREF2/(RSTANDBY)}{RREF1 + RBOOT + (RREF2//RSTANDBY)}$

By choosing RREF1, RREF2, and RBOOT, the RSTANDBY can be calculated using the following equation: RSTANDBY=

VSTANDBY × RREF2 × (RREF1 + RBOOT) VVREF × RREF2 - VSTANDBY × (RREF1 + RREF2 + RBOOT)

15.8 **Normal Mode**

If the PWMVID pin is driven by a PWM signal and switch Q1 is disabled, as shown in Figure 4. The VREFIN can be adjusted from Vmin to Vmax, where Vmin is the voltage at zero percent PWM duty cycle, and Vmax is the voltage at one hundred percent PWM duty cycle. Vmin and Vmax can be set using the following equations:

 $V_{min} = VVREF \times \frac{RREF2}{RREF2 + RBOOT}$ **R**REF2 $\times \frac{\text{Rrefadj//(Rboot + Rref2)}}{\text{Rref1 + }\left[\left(\text{Rrefadj//(Rboot + Rref2)}\right)\right]}$ $V_{max} = VVREF \times \frac{RREF2}{(RREF1//RREFADJ) + RBOOT + RREF2}$

By choosing RREF1, RREF2, and RBOOT, the RREFADJ can be calculated using the following equation:

 $\mathsf{RREFADJ} = \frac{\mathsf{RREF1} \times \mathsf{Vmin}}{\mathsf{Vmax} - \mathsf{Vmin}}$

The relationship between PWMVID duty and VREFIN is shown in Figure 6, and VOUT can be set according to the following equation:

Copyright © 2025 Richtek Technology Corporation. All rights reserved.	RICHTEK	is a registered trademark of Richtek Technolo	ogy Corporation	
www.richtek.com		RT8843C_DS-01	February	2025

 $VOUT = Vmin + N \times VSTEP$

where VSTEP is the resolution of each voltage step:

$$VSTEP = \frac{Vmax - Vmin}{Nmax}$$

where N_{max} is the total number of available voltage steps, and N is the number of steps at a specific V_{OUT}. The dynamic voltage VID period ($T_{vid} = T_u \times N_{max}$) is determined by the unit pulse width (T_u), and the available step number (N_{max}). The recommended T_u is 27ns.

Figure 6. PWM-VID Analog Output

15.9 VID Slew Rate Control

In the RT8843C, the VREFIN slew rate is proportional to the PWM-VID duty, and the rising time and falling time are the same. In normal mode, the VREFIN slew rate SR can be estimated by CREFADJ using the following equation:

 $SR = \frac{(VREFIN_Final - VREFIN_Initial) \times 80\%}{2.2 \times RSR \times CREFADJ}$ $RSR = \left\lceil (RREF1 / / RREFADJ) \right\rceil / / (RBOOT + RREF2)$

15.10 Remote Sense Setting

To accurately detect the load voltage and avoid the voltage drop from the output to the load, the RT8843C uses a high-accuracy differential amplifier to directly detect the voltage at the end of the GPU through the VSEN and FBRTN pins. The Vout sensing network from the controller to the load and output needs to be specially designed according to different load conditions. The output voltage detection circuit has two loops: the remote sense path (from the controller to the load end of the GPU) and the local sense path (from the controller to the output capacitor), as shown in Figure 7. When the load is the GPU, in order to make the GPU voltage consistent with REFIN, the R_{Remote} must be set to 0Ω . At this time, the purpose of the local sense path is to avoid the output overvoltage caused by an open GPU. Therefore, R_{Local} must be placed with a 10Ω to 100Ω resistor. If the GPU is not used and the load is from the end of Vout, the R_{Local} must be set to 0Ω to avoid PWM jitter caused by a delayed output voltage signal. Considering the component placement, it is recommended to place all the detecting resistors on the controller side. This setting minimizes the local sense path and makes system debugging easier as any noise coupling occurring on the sensing path.

Figure 7. Output Voltage Sensing

15.11 Multi-Function Pin Setting

To reduce the total number of pins required for the package, the RT8843C utilizes a multi-function pin setting mechanism through PINSET1 and PINSET2 pins. <u>Table 2</u> summarizes the overall pin setting functions. <u>Figure 8</u> shows the Pin Setting Circuit. The voltage divider for each PINSET pin is used to set the desired function. The setting voltage of each PINSET pin can be represented as follows:

$$\begin{split} V_{\text{PINSET1}} &= V_{\text{REF}}(2V) \times \frac{R3 + R4}{R1 + R2 + R3 + R4} \\ V_{\text{PINSET2}_V} &= V_{\text{VCC}}(5V) \times \frac{R3 + R4}{R1 + R2 + R3 + R4} \\ V_{\text{PINSET2}_I} &= 80\mu \times \frac{(R1 + R2) \times (R3 + R4)}{R1 + R2 + R3 + R4} \end{split}$$

<u>Table 3, Table 4, and Table 5</u> show the pin setting functions. <u>Table 6</u> shows an example of the ramp configuration for a typical 300kHz application.

RT8843C

	Table 2. Pin Set Table											
	Function 1	Function 2	Function 2	Function 3	Function 4							
PINSET1	Soft-Start Slew Rate	Ramp Amplitude <2:0>	N/A	N/A	N/A							
PINSET2	Ramp Valley	Ramp Amplitude <3>	Dr.IMON Enable/Disable	Auto-ZCD Enable/Disable	AI Gain							

Table 3. PINSET1 Pin Setting for Soft-Start Slew Rate and Ramp Amplitude

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	R3 + R4						
SS Slew Rate (mV/us)		<u>30000×(16–</u>	RAMP <3:0>)	VPINSET	$1 = V_{\text{REF}}(2V)$	[×] R1 + R2 +	R3 + R4
	'KAIVIP_AIVIP	1	ſs	Min	Тур	Мах	Unit
	0	0	0	0	15.625	18.125	mV
	0	0	1	44.375	46.875	49.375	mV
	0	1	0	75.625	78.125	80.625	mV
1	0	1	1	106.875	109.375	111.875	mV
I	1	0	0	138.125	140.625	143.125	mV
	1	0	1	169.375	171.875	174.375	mV
	1	1	0	200.625	203.125	205.625	mV
	1	1	1	231.875	234.375	236.875	mV
	0	0	0	263.125	265.625	268.125	mV mV
	0	0	1	294.375	296.875	299.375	mV
	0	1	0	325.625	328.125	330.625	mV
2	0	1	1	356.875	359.375	361.875	mV
2	1	0	0	388.125	390.625	393.125	mV
	1	0	1	419.375	421.875	424.375	mV
	1	1	0	450.625	453.125	455.625	mV
	1	1	1	481.875	484.375	486.875	mV
	0	0	0	513.125	515.625	518.125	mV
	0	0	1	544.375	546.875	549.375	mV
	0	1	0	575.625	578.125	580.625	mV
6	0	1	1	606.875	609.375	611.875	mV
6	1	0	0	638.125	640.625	643.125	mV
	1	0	1	669.375	671.875	674.375	mV
	1	1	0	700.625	703.125	705.625	mV
	1	1	1	731.875	734.375	736.875	mV

RAMP Valley	RAMP Amplitude <3> (mV) 30000×(16-RAMP <3:0>)	$V_{\text{PINSET2}_V} = V_{\text{VCC}}(5\text{V}) \times \frac{\text{R3} + \text{R4}}{\text{R1} + \text{R2} + \text{R3} + \text{R4}}$					
(mV)	$V_{\text{RAMP}_{\text{AMP}}} = \frac{f_{\text{S}}}{f_{\text{S}}}$	Min	Тур	Max	Unit		
100	0	0	25	27.5	mV		
100	1	72.5	75	77.5	mV		
150	0	122.5	125	127.5	mV		
150	1	172.5	175	177.5	mV		
200	0	222.5	225	227.5	mV		
200	1	272.5	275	277.5	mV		
250	0	322.5	325	327.5	m\/		
250	1	372.5	375	377.5	m\/		
300	0	12.5	425	427.5	m\/		
300	1	422.5	425	427.5	m\/		
350	1	472.0 522.5	475 525	477.5 527.5	m\/		
350	0	522.5	525	527.5	m)/		
350	1	572.5	575	577.5	mv		
400	0	622.5	625	627.5	mv		
400	1	672.5	675	677.5	mV		
450	0	/22.5	725	/2/.5	mV		
450	1	772.5	775	777.5	mV		
500	0	822.5	825	827.5	mV		
500	1	872.5	875	877.5	mV		
550	0	922.5	925	927.5	mV		
550	1	972.5	975	977.5	mV		
600	0	1022.5	1025	1027.5	mV		
600	1	1072.5	1075	1077.5	mV		
650	0	1122.5	1125	1127.5	mV		
650	1	1172.5	1175	1177.5	mV		
700	0	1222.5	1225	1227.5	mV		
700	1	1272.5	1275	1277.5	mV		
750	0	1322.5	1325	1327.5	mV		
750	1	1372.5	1375	1377.5	mV		
800	0	1422.5	1425	1427.5	mV		
800	1	1472.5	1475	1477.5	mV		
850	0	1522.5	1525	1527.5	mV		
850	1	1572.5	1575	1577.5	mV		

Copyright © 2025 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation

Dr.IMON Auto_ZCD#		Al Gain	$V_{PINSET2_I} = 80\mu \times \frac{(R1 + R2) \times (R3 + R4)}{R1 + R2 + R3 + R4}$						
			Min	Тур	Max	Unit			
		Disable	0	50	55	mV			
Dischlo	Diaghla	1X	145	150	155	mV			
Disable	Disable	2X	245	250	255	mV			
		4X	345	350	355	mV			
		Disable	445	450	455	mV			
Distant	Enable	1X	545	550	555	mV			
Disable		2X	645	650	655	mV			
		4X	745	750	755	mV			
		Disable	845	850	855	mV			
Frabla	Diachla	1X	945	950	955	mV			
Enable	Disable	2X	1045	1050	1055	mV			
		4X	1145	1150	1155	mV			
		Disable	1245	1250	1255	mV			
Enable	Enabla	1X	1345	1350	1355	mV			
Enable	Enable	2X	1445	1450	1455	mV			
		4X	1545	1550	1555	mV			

Copyright © 2025 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation www.richtek.com

	Table 6. Ramp Amplitude Example for 300kHz Frequency											
		Code <3:0>			Ramp Amplitude (mV)							
3 (PINSET2)	2	1	0	DEC								
0	0	0	0	0	1600							
0	0	0	1	1	1500							
0	0	1	0	2	1400							
0	0	1	1	3	1300							
0	1	0	0	4	1200							
0	1	0	1	5	1100							
0	1	1	0	6	1000							
0	1	1	1	7	900							
1	0	0	0	8	800							
1	0	0	1	9	700							
1	0	1	0	10	600							
1	0	1	1	11	500							
1	1	0	0	12	400							
1	1	0	1	13	300							
1	1	1	0	14	200							
1	1	1	1	15	100							

RT8843C

15.12 Soft-Start Function

The RT8843C provides the soft-start function that is used to prevent large inrush currents and output voltage overshoot while the converter is being powered up. The soft-start sequence is shown in Figure 9. When EN goes high, the RT8843C enters the internal circuit initialization and pinset function setting. The soft-start circuit starts after the IC initialization is completed. During the soft-start period, the output voltage follows the internal soft-start ramp up. The soft-start slew rate has 3 stages that can be adjusted through the PINSET1 pin, as shown in the Table 3. And the soft-start time can be calculated as follows:

 $Tss = 900\mu s + \frac{VOUT}{SR}$

where VOUT is the target output voltage and SR is the soft-start slew rate.

Figure 9. Soft-Start Sequence

15.13 Switching Frequency Setting

Connecting a resistor RTON between the input terminal and the VIN pin to set the on-time width. The RTON can be calculated using the following formula:

$$RTON = \frac{VIN-0.9}{8.8 \times 10^{-12} \times VIN \times fs} \quad (VOUT > 0.9V)$$

$$RTON = \frac{VOUT}{VIN} \times \frac{VIN-VOUT}{7.9 \times 10^{-12} \times fs} \quad (0.9V < VOUT < 0.5V)$$

$$RTON = \frac{VOUT}{VIN} \times \frac{VIN-0.5}{7.9 \times 10^{-12} \times fs} \quad (VOUT < 0.5V)$$

When the load increases, the on-time keeps constant. The off-time width will be reduced, allowing the input terminal to provide more power to the output to regulate the output voltage. Hence, higher load current will result in a higher switching frequency.

The higher switching frequency operation can reduce the size of power components and PCB space, but the high switching frequency will increase the switching loss. Therefore, the frequency setting must be traded-off between the component size and overall efficiency.

The recommended frequency setting range is 150kHz to 1.5MHz. And the minimum ToN cannot be less than 70ns; otherwise, the frequency will be lower than the desired value.

Figure 10. Switching Frequency with Different VOUT

15.14 Ramp Setting

The RT8843C provides an internal ramp that effectively suppresses PWM signal jitter in small output ripple applications. The ramp amplitude and valley can be set through the PINSET1 and PINSET2 pins, as shown in <u>Table 3</u> and <u>Table 4</u>. The ramp amplitude can be set in a total of 16 steps. Furthermore, the value according to the different switching frequency can be calculated using the following formula:

$$VRAMP_AMP = \frac{30000 \times (16\text{-}RAMP \langle 3:0 \rangle)}{fs}$$

<u>Table 6</u> is a calculation example of a ramp amplitude with a switching frequency of 300kHz. A higher amplitude has better suppression of jitter, but it will reflect poor load transient performance. Therefore, the design of the ramp amplitude needs to be traded-off between stability and transient performance. To ensure that the PWM jitter rate is below 15% and the load transient response can meet $V_{OUT} - 10\% / +20\%$ of system specifications, the default setting of ramp amplitude is recommended to choose approximately 300mV. In addition, in order to ensure the stability at DEM (the multi-pulse phenomenon does not occur), the ramp valley is recommended to be chosen 50mV larger than ramp amplitude.

Figure 11. Mode Transition Behavior

15.15 Current Sensing

The RT8843C provides a per-phase current sensing amplifier for different current sensing topologies, including DCR current sensing and SPS current sensing. This current signal is used for loop control, zero current detection, current balance, and per-phase current limit.

15.16 DCR Current Sensing

The RT8843C can support inductor DCR current sensing to get each phase current signal, as illustrated in <u>Figure</u> <u>12</u>. An external low-pass filter Rx_1 and Cx reconstruct the current signal. The low-pass filter time constant $Rx_1 x$

RT8843C

Cx should match time constant L/DCR of the inductance and DCR. The Rx and Cx can be fine-tuned for transient performance. If the RC network time constant is smaller than the inductor time constant L/DCR, the Vcs current signal leads the inductor current signal, triggering early per-phase current limits during load transients. If the RC network time constant is larger than the inductor time constant L/DCR, the Vcs current signal has a sluggish rise and delays triggering per-phase current limits during load transients. If the RC network time constant L/DCR, the trigger level of the per-phase current limit will meet the desired value. Rx1 is highly recommended as two 0603 size resistors in series to enhance the current signal accuracy. An X7R type capacitor is suggested for Cx in the application. Rx2 is optional for preventing Vcs from exceeding the current sense amplifier input range (-10mV to 90mV). The time constant of (Rx1 // Rx2) x Cx should match L/DCR. The current sense lines must be routed as a differential pair from the inductor to the controller on the same layer. When the DCR current sensing circuit is selected, the DrIMON enable/disable of the PINSET2 function must be set to Disable.

Figure 12. Inductor DCR Current Sensing Method

 Copyright © 2025 Richtek Technology Corporation. All rights reserved.
 RICHTEK
 is a registered trademark of Richtek Technology Corporation

 RT8843C_DS-01
 February
 2025
 www.richtek.com

DrIMON [0]	Enable/Disable								
0	Disable								
1	Enable								

Table 7. Pin Setting of DrIMON

15.17 SPS Current Sensing

The RT8843C current sensing circuit can also support SPS current sensing. SPS (Smart Power Stage) can accurately detect the internal MOSFET current for a reference of the PWM controller. The SPS current sensing circuit simplifies the quantity of components in the external circuit and provides a more accurate current signal unlike the DCR detection circuit. SPS has two kinds of current signals: current output and voltage output. Figure 15 shows the current reporting circuit of the different current signals. When the SPS current sensing is used, the DrIMON enable/disable of the PINSET2 function must be set to enable. After the DrIMON enable is set, the inverting input of the current-sense amplifier generates a 1.375V reference voltage for the SPS current sensing circuit. The current is reported to the controller as a differential voltage between the ISENx and CSN pins with a conversion gain to represent the inductor current IL, as shown in equations below:

 $VISENx-CSN = gain(A/A) \times IL \times RIMON$

...(Current Type Signal)

 $VISENx-CSN = gain(V/A) \times IL \times \frac{RIMON2}{RIMON1 + RIMON2}$

...(Voltage Type Signal)

For a larger current sense gain as a voltage type, it is recommended to place a voltage divider resistor between the IOUT and REFIN pins to avoid the controller's current-sense amplifier input voltage range from exceeding -10mV to 90mV.

Voltage Type Current Signal

15.18 Auto-Zero Crossing Detection

The RT8843C can support the system to use the ZCD threshold of DrMOS under light-load conditions. The ZCD function of DrMOS can be enabled by pulling down the ZCD# pin of DrMOS. When using the Auto-ZCD (Auto-Zero Crossing Detection) function, the Auto-ZCD# function of PINSET2 must be set to enable. Once the Auto-ZCD function is enabled, PINSET2 turns on the external NMOS and pulls the ZCD# voltage of DrMOS low, as shown in Figure 8. The Auto-ZCD function only works at the status of ZCD# = L, PWM = L, and GH = L. At this status, if the inductor current IL > 0A, then GL = H. Conversely, if the inductor current IL < 0A, then GL = L. In addition, once Auto-ZCD is enabled, the controller only operates in FCCM regardless of the PSI setting voltage.

15.19 Current Balance

The per-phase current sense signal of the RT8843C is compared with the sensed average current. The comparison result adjusts each phase PWM width to optimize current and thermal balance. When the PCB layout makes the parasitic impedance inconsistent from the inductor to the output, that will affect the performance of the current balance. Figure 16 shows a method to eliminate the parasitic impedance. Place two RCB resistors in each phase of the DCR sensing circuit to cancel the RPCB effect and improve current balance. The value of RCBx can be calculated using the following equation:

$$R_{CBx} = R_{Xx} = N x \frac{L}{DCR x C_{Xx}}$$

where N is the phase number.

Figure 16. Current Balance Improving

15.20 Per-Phase Current Limit

The RT8843C incorporates a per-phase current limit mechanism to prevent overcurrent event. The per-phase current-limit circuit employs a unique "valley" current sensing algorithm. If the magnitude of the current sense signal is above the current-limit threshold, the PWM is not allowed to initiate a new cycle. The per-phase current-limit threshold can be set by the PINSET1 pin. When the DCR sensing circuit is selected, in order to ensure the accuracy of the current signal over a wide temperature range, it is recommended to use the NTC compensation circuit, as shown in Figure 8. The current-limit threshold can be calculated according to the following equation:

$$VOCSET = VREF - \left(VREF \times \frac{R3 + R4}{R1 + R2 + R3 + R4} + 80\mu \\ \times \left[(R5//RNTC) + (R1 + R2)//(R3 + R4) \right] \right)$$
$$= VISENx-CSN \times 32 = DCR \times ILIM \times 32$$

where the ILIM is the desired pre-phase current limit threshold.

On the other hand, when the SPS current sensing is selected, as shown in <u>Figure 17</u>, and the current-limit threshold can be calculated using the following equation:

$$VOCSET = VREF - \begin{pmatrix} VREF \times \frac{R3 + R4}{R1 + R2 + R3 + R4} + 80\mu \\ \times [(R1 + R2)//(R3 + R4)] \end{pmatrix}$$

= VISENx - CSN×32/3.08

- = I_{MON_SLOPE} x R_{IMON} × (IL_OC + Δ I_L × t_{CSA_delay} × f_{SW}) × 32/3.08 (Current Type DRMOS)
- = V_{MON_SLOPE} x R_{IMON2}/(R_{IMON1}+R_{IMON2})×(IL_OC + Δ I_L×t_{CSA_delay}×f_{SW})×32/3.08 (Voltage Type DRMOS)

where ΔI_L is the peak-to-peak inductor ripple current, t_{CSA_delay} is the delay time of the current-sense amplifier, which is shown in <u>Figure 15</u>, and f_{SW} is the switching frequency.

Richtek provides a Microsoft Excel-based design tool to help design desired per-phase current-limit threshold.

Figure 17. PINSET1 without NTC Network

15.21 AC Droop

The RT8843C adopts a new feature, AC-droop, to effectively suppress load transient ring-back and control overshoot for zero load line application. Figure 18 shows the condition without AC-droop control. The output voltage without AC-droop control has extra ring back $\Delta V2$ due to C area charge.

Figure 19 shows the condition with AC-droop control. While loading occurs, the controller temporarily changes the VID target to the short-term voltage target. The short-term voltage target is related to the transient loading current Δ Icc and can be represented as follows:

Short_Term_Voltage_Target = Vcs x 9 x AI

Where the Vcs is the current sensing signal from DCR sensing or SPS current sensing. For DCR sensing, Vcs = Icc_MAX x DCR. The current gain (AI) can be set by the Pin Setting of AI Gain. Users can select AI gain according to Table 8 to set the desired short-term voltage target. The short-term voltage target reverts to the VID target slowly after approximately 100 μ s. The short-term voltage target can help the inductor current not to exceed the loading current too much, and then the ring back can be suppressed. As shown in Figure 19, the overshoot amplitude is reduced to only Δ V3.

Figure 18. Zero Load Line without AC-Droop Control

Figure 19. Zero Load Line with AC-Droop Control

Table 8. Pin Se	Table 8. Pin Setting of Al Gain									
AI Gain [1:0]	Gain Value									
00	Disable									
01	1/16									
10	2/16									
11	4/16									

- ~

RICHTEK

15.22 Overvoltage Protection

The output voltage can be continuously monitored through the VSEN pin for overvoltage protection. If the REFIN voltage is lower than 1.33V, the overvoltage threshold follows the absolute overvoltage 2V. If the REFIN voltage is higher than 1.33V, the overvoltage threshold follows the relative overvoltage 1.5 x VREFIN. The overvoltage protection mechanism is illustrated in Figure 20. When OVP is triggered with 5µs filter time, the controller deasserts PG and starts the NVP function. After NVP is enabled, the controller controls the PWM as low when VSEN is higher than VID. When VSEN is lower than VID, the PWM is controlled in tri-state to prevent large negative inductor current that may damage MOSFETs or drivers. After 45µs from the OVP trigger, VID starts to ramp down to 0V with a slow slew rate. During this period, PWMx is not allowed to turn on. The controller controls PWMx to be low or tri-state to pull down the output voltage with VID. The OVP is in latch mode protection, and it can be released by VCC or EN power-on reset.

Figure 20. Overvoltage Protection Mechanism

The RT8843C reduces the on-time by pulling the PWM low when VSEN is higher than REFIN + 28mV to prevent overcharging of the output capacitor. Therefore, output voltage overshoot is reduced. When zero current (ZC) is detected, the on-time reduction threshold increases to REFIN + 36mV.

15.23 Undervoltage Protection

The output voltage can be continuously monitored through the VSEN pin for undervoltage protection. When the output voltage is less than the UVP threshold with 3µs filter time, the controller de-asserts PG and controls all PWMs to tri-state to turn off the high-side and low-side power MOSFETs. During soft-start, the UVP blanking time is equal to the PG blanking time.

Figure 21. Undervoltage Protection Mechanism

15.24 Inductor Selection

The switching frequency and ripple current determine the inductor value as follows:

 $L(MIN) = \frac{VIN - VOUT}{IRIPPLE(MAX)} \times TON$

where TON is the UGATE turn-on period.

Higher inductance results in lower ripple current, which means lower power loss. However, the inductor current rising time increases with inductance value. This means the transient response will be slower. Therefore, the inductor design is a trade-off between performance, size and cost.

The RT8843C supports inductor DCR sensing for loop control, zero-current-detection, current balance, and perphase current limiting. To ensure the accuracy of the DCR sensing signal, the minimum DC resistance of the inductor must be greater than $0.2m\Omega$. The core must be large enough to prevent inductor saturation under heavy load conditions.

15.25 Output Capacitor Selection

The selection of COUT is determined by considering the voltage ripple and transient loads, and ensuring that the control loop is stable. Loop stability can be checked by viewing the load transient response. The peak-to-peak output ripple, Δ VOUT, is characterized by two components: ESR ripple Δ VP-P_ESR and capacitive ripple Δ VP-P_C, which can be expressed as follows:

 $\Delta VOUT = \Delta VP - P_ESR + \Delta VP - P_C$ $\Delta VP - P_ESR = \Delta IL \times RESR$

 $\Delta V P - P_C = \frac{\Delta IL}{8 \times COUT \times fSW}$

where RESR is the equivalent series resistance of COUT. The output ripple reaches at the maximum input voltage since the ΔI_L increases with the input voltage. Multiple capacitors placed in parallel may be needed to meet the ESR and RMS current handling requirements.

Regarding transient loads, the V_{SAG} and V_{SOAR} requirements should be taken into consideration for choosing the output capacitance value. The amount of the output sag is a function of the maximum duty factor, which can be calculated from the on-time and minimum off-time.

 $tON = \frac{VOUT}{VIN \times fSW}$

 $\mathsf{DMAX} = \frac{\mathsf{tON}}{\mathsf{tON} + \mathsf{tOFF}_\mathsf{MIN}}$

The worst-case output sag voltage can be determined by using the following equation:

$$\Delta VOUT_SAG = \frac{L \times (IL_PEAK)^2}{2 \times COUT \times (VIN \times DMAX - VOUT)}$$

When the load is removed, the amount of overshoot due to stored inductor energy can be calculated as follows:

$$\Delta V_{OUT_SOAR} = \frac{L \times (I_{L_PEAK})^2}{2 \times C_{OUT} \times V_{OUT}}$$

Ceramic capacitors have very low equivalent series resistance (ESR) and provide the best ripple performance. Choose X5R and X7R dielectric formulations. These dielectrics have the best temperature and voltage characteristics of all the ceramics for a given value and size. Be careful to consider the voltage coefficient of ceramic capacitors when choosing the value and case size. Most ceramic capacitors lose 50% or more of their rated value when used near their rated voltage.

15.26 Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature $T_{J(MAX)}$, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

 $\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}) / \theta_{\mathsf{J}\mathsf{A}}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 105°C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a WQFN-20L 3x3 package, the thermal resistance, θ_{JA} , is 30°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at TA = 25°C can be calculated as follows:

 $P_{D(MAX)} = (105^{\circ}C - 25^{\circ}C) / (30^{\circ}C/W) = 3.33W$ for a WQFN-20L 3x3 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curve in <u>Figure 22</u> allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Figure 22. Derating Curve of Maximum Power Dissipation

15.27 Layout Considerations

Careful PCB layout is critical to achieving low switching losses and clean, stable operation. The switching power stage requires particular attention. If possible, mount all of the power components on the top side of the board with their ground terminals flush against one another. Follow these guidelines for optimum PCB layout:

- Keep the high-current paths short, especially at the ground terminals.
- Keep the power traces and load connections short. This is essential for high efficiency.
- When trade-offs in trace lengths must be made, it is preferable to allow the inductor charging path to be longer than the discharging path.
- Place the current sense components close to the controller. ISENx and CSN connections for current limit and voltage positioning must be made using Kelvin sense connections to guarantee the current sense accuracy. The PCB trace from the sense nodes should be paralleled back to the controller.
- Route high-speed switching nodes away from sensitive analog areas such as PINSETx, ISENx, CSN, VSEN, FBRTN, and among others.

Note 8. The information provided in this section is for reference only. The customer is solely responsible for the designing, validating, and testing your product incorporating Richtek's product and ensure such product meets applicable standards and any safety, security, or other requirements.

Copyright © 2025 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation

16 Outline Dimension

Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Currence I	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min Max		Min	Мах		
А	0.700	0.800	0.028	0.031		
A1	0.000	0.050	0.000	0.002		
A3	0.175	0.250	0.007	0.010		
b	0.150	0.250	0.006	0.010		
D	2.900	3.100	0.114	0.122		
D2	1.650	1.750	0.065	0.069		
E	2.900	3.100	0.114	0.122		
E2	1.650	1.750	0.065	0.069		
е	0.4	00	0.0)16		
L	0.350	0.450	0.014	0.018		

W-Type 20L QFN 3x3 Package

17 Footprint Information

Package	Number of			F	ootprint	Dimen	sion (m	m)			Tolerance
	Pin	Р	Ax	Ay	Bx	Ву	С	D	Sx	Sy	
V/W/U/XQFN3*3-20	20	0.40	3.80	3.80	2.10	2.10	0.85	0.20	1.70	1.70	±0.05

RICHTEK

18 Packing Information

18.1 Tape and Reel Data

Package Type	Tape Size	Pocket Pitch	Reel Size (A)		Units	Trailer	Leader	Reel Width (W2)	
	(W1) (mm)	(P) (mm)	(mm)	(in)	per Reel	(mm)	(mm)	Min/Max (mm)	
(V, W) QFN/DFN 3x3	12	8	180	7	1,500	160	600	12.4/14.4	

C, D, and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 12mm carrier tape: 0.5mm max.

Tape Size	W1	Р		В		F		ØJ		К		Н
	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Max
12mm	12.3mm	7.9mm	8.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	1.0mm	1.3mm	0.6mm

18.2 Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description		
1	Reel 7"	4	3 reels per inner box Box A		
2	HIC & Desiccant (1 Unit) inside	5	12 inner boxes per outer box		
3	Caution label is on backside of Al bag		Outer box Carton A		

Container	Reel			Box		Carton		
Package	Size	Units	Item	Reels	Units	Item	Boxes	Unit
(V, W)	7"	4 500	Box A	3	4,500	Carton A	12	54,000
QFN & DFN 3x3		1,500	Box E	1	1,500	For Combined or Partial Reel.		

Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation

18.3 Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω/cm^2	10 ⁴ to 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation

www.richtek.com

RT8843C

19 Datasheet Revision History

Version	Date	Description	Item
00	2023/7/10	Final	
01	2025/2/20	Modify	General Description on page 1 Features on page 1 Simplified Application Circuit on page 1 Functional Pin Description on page 4 Ordering Information on page 2 Functional Pin Description on page 4 Electrical Characteristics on page 6, 7, 8 Application Information on page 14, 33 Packing Information on page 36, 37 - Added Tape Size "K"