High PSRR, Low Dropout, 400mA Adjustable LDO Regulator

General Description

The RT9043 is a high-performance, 400mA LDO regulator, offering high PSRR and low dropout. The quiescent current is as low as 35μA, further prolonging the battery life. The RT9043 also works with low-ESR ceramic capacitors, reducing the amount of board space necessary for power applications, critical in handheld wireless devices.

The RT9043 consumes typical 0.7μA in shutdown mode. The other features include low dropout voltage, high output accuracy, current limit protection, and enable/shutdown control. The RT9043 is available in the SOT-23-5 package.

Features

- Adjustable Output Voltage
- Enable/Shutdown Control
- Wide Operating Voltage Range : 2.2V to 5.5V
- Low Dropout : 230mV at 400mA
- Low-Noise for RF Application
- Ultra-Fast Response in Line/Load Transient
- Current Limit Protection
- High Power Supply Rejection Ratio
- Output Only 1μF Capacitor Required for Stability
- RoHS Compliant and Halogen Free

Applications

- Mega SIM Card
- CDMA/GSM Cellular Handsets
- Portable Information Appliances
- Laptop, Palmtops, Notebook Computers
- Hand-Held Instruments
- Mini PCI & PCI-Express Cards
- PCMCIA & New Cards

Marking Information

For marking information, contact our sales representative directly or through a Richtek distributor located in your area.

Ordering Information

RT9043

- Package Type
 - B : SOT-23-5
- Lead Plating System
 - G : Green (Halogen Free and Pb Free)

Note :

Richtek products are :
- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Typical Application Circuit

![Typical Application Circuit Diagram](image)
Absolute Maximum Ratings (Note 1)
- Supply Input Voltage, V_{IN}: 6V
- EN Input Voltage: 6V
- Power Dissipation, P_D @ $T_A = 25°C$: 0.4W
- Package Thermal Resistance (Note 2): SOT-23-5, θ_{JA}: 250°C/W
- Lead Temperature (Soldering, 10 sec.): 260°C
- Junction Temperature: 150°C
- Storage Temperature Range: −65°C to 150°C
- ESD Susceptibility (Note 3):
 - HBM: 2kV
 - MM: 200V

Recommended Operating Conditions (Note 4)
- Junction Temperature Range: −40°C to 125°C
- Ambient Temperature Range: −40°C to 85°C

Functional Pin Description

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Pin Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VIN</td>
<td>Voltage Input.</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>3</td>
<td>EN</td>
<td>Chip Enable (Active High).</td>
</tr>
<tr>
<td>4</td>
<td>FB</td>
<td>Output Voltage Feedback.</td>
</tr>
<tr>
<td>5</td>
<td>VOUT</td>
<td>Voltage Output.</td>
</tr>
</tbody>
</table>

Function Block Diagram

- POR
- OTP
- Current Limit
- MOSFET Driver
- VOUT
- EN
- GND
- VIN
- FB
- +
- –
- VREF
- MOSFET
- Drivers
- Current Limit
- Voltage Input
- Ground
- Chip Enable
- Output Voltage Feedback
- Voltage Output
Electrical Characteristics

(V_{IN} = 3.7V, C_{IN} = C_{OUT} = 1μF, I_{OUT} = 20mA, T_A = 25°C, unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage Range</td>
<td>V<sub>IN</sub></td>
<td></td>
<td>2.2</td>
<td>–</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Reference Voltage</td>
<td>V<sub>REF</sub></td>
<td></td>
<td>1.188</td>
<td>1.200</td>
<td>1.212</td>
<td>V</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>I<sub>Q</sub></td>
<td>I<sub>OUT</sub> = 0mA</td>
<td>--</td>
<td>35</td>
<td>50</td>
<td>μA</td>
</tr>
<tr>
<td>Shutdown Current</td>
<td>I<sub>SHDN</sub></td>
<td>V<sub>EN</sub> = 0V</td>
<td>--</td>
<td>0.7</td>
<td>1.5</td>
<td>μA</td>
</tr>
<tr>
<td>Current Limit</td>
<td>I<sub>LIM</sub></td>
<td>R<sub>LOAD</sub> = 0Ω, 2.2V ≤ V<sub>IN</sub> < 5.5V</td>
<td>400</td>
<td>650</td>
<td>--</td>
<td>mA</td>
</tr>
<tr>
<td>Dropout Voltage</td>
<td>V<sub>DROP</sub></td>
<td>I<sub>OUT</sub> = 400mA</td>
<td>--</td>
<td>230</td>
<td>350</td>
<td>mV</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>ΔV<sub>LOAD</sub></td>
<td>1mA < I<sub>OUT</sub> < 400mA, 2.2V ≤ V<sub>IN</sub> < 5.5V</td>
<td>--</td>
<td>–</td>
<td>1</td>
<td>%</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>ΔV<sub>LINE</sub></td>
<td>V<sub>IN</sub> = (V<sub>OUT</sub> + 0.5V) to 5.5V, I<sub>OUT</sub> = 1mA</td>
<td>--</td>
<td>0.01</td>
<td>0.2</td>
<td>%/V</td>
</tr>
<tr>
<td>Logic-Low Voltage</td>
<td>V<sub>IL</sub></td>
<td></td>
<td>0</td>
<td>–</td>
<td>0.6</td>
<td>V</td>
</tr>
<tr>
<td>Logic-High Voltage</td>
<td>V<sub>IH</sub></td>
<td></td>
<td>1.6</td>
<td>–</td>
<td>5.5</td>
<td>μA</td>
</tr>
<tr>
<td>EN Pin Current</td>
<td>I<sub>EN</sub></td>
<td></td>
<td>--</td>
<td>0.1</td>
<td>1</td>
<td>μA</td>
</tr>
<tr>
<td>FB Pin Current</td>
<td>I<sub>FB</sub></td>
<td></td>
<td>--</td>
<td>0.1</td>
<td>1</td>
<td>μA</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>PSRR</td>
<td>f = 1kHz, I<sub>OUT</sub> = 10mA</td>
<td>--</td>
<td>67</td>
<td>--</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f = 10kHz, I<sub>OUT</sub> = 10mA</td>
<td>--</td>
<td>56</td>
<td>--</td>
<td>dB</td>
</tr>
<tr>
<td>Output Noise Voltage</td>
<td>V<sub>ON</sub></td>
<td>V<sub>OUT</sub> = 1.5V, C<sub>OUT</sub> = 1μF, I<sub>OUT</sub> = 0mA</td>
<td>--</td>
<td>30</td>
<td>--</td>
<td>μV<sub>RMS</sub></td>
</tr>
<tr>
<td>Thermal Shutdown Temperature</td>
<td>T<sub>SD</sub></td>
<td></td>
<td>--</td>
<td>160</td>
<td>--</td>
<td>°C</td>
</tr>
<tr>
<td>Thermal Shutdown Recovery Temperature</td>
<td></td>
<td></td>
<td>--</td>
<td>110</td>
<td>--</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.

Note 2. θ_{JA} is measured in the natural convection at T_A = 25°C on a low effective thermal conductivity test board of JEDEC 51-3 thermal measurement standard.

Note 3. Devices are ESD sensitive. Handling precaution is recommended.

Note 4. The device is not guaranteed to function outside its operating conditions.
Typical Operating Characteristics

Reference Voltage vs. Temperature

VIN = VEN = 3.3V, No Load

Quiescent Current vs. Temperature

VIN = VEN = 3.3V, VOUT = 2.5V, No Load

Dropout Voltage vs. Load Current

VIN = VEN = 3.3V, VOUT = 2.5V

EN Threshold vs. Temperature

VIN = 3.3V, No Load

Current Limit vs. Input Voltage

VIN = 3.3V, VOUT = 1.8V

Current Limit vs. Temperature

VIN = 3.3V, VOUT = 1.8V
Load Transient Response

\[V_{\text{IN}} = 4V \text{ to } 5V, \quad V_{\text{OUT}} = 2.5V, \quad I_{\text{LOAD}} = 1mA, \quad C_{\text{OUT}} = 1\mu F/X7R \]

Time (500μs/Div)

PSRR

\[I_{\text{LOAD}} = 10mA, \quad C_{\text{IN}} = C_{\text{OUT}} = 1\mu F/X7R \]

Frequency (Hz)

Enable/Shutdown Response

\[V_{\text{IN}} = 5V, \quad V_{\text{OUT}} = 2.5V, \quad I_{\text{LOAD}} = 10mA \]

Time (500μs/Div)

Power On from EN

\[V_{\text{IN}} = 3.3V, \quad V_{\text{OUT}} = 2.5V, \quad \text{No Load} \]

Time (5μs/Div)

Line Transient Response

\[V_{\text{IN}} = 5V, \quad V_{\text{OUT}} = 2.5V, \quad I_{\text{LOAD}} = 1mA, \quad C_{\text{OUT}} = 1\mu F/X7R \]

Time (50μs/Div)

Load Transient Response

\[V_{\text{IN}} = 3.3V, \quad V_{\text{OUT}} = 2.5V, \quad I_{\text{LOAD}} = 1mA \text{ to } 400mA, \quad C_{\text{IN}} = C_{\text{OUT}} = 1\mu F/X7R \]

Time (100μs/Div)

Load Transient Response

\[V_{\text{IN}} = 3.3V, \quad V_{\text{OUT}} = 2.5V, \quad I_{\text{LOAD}} = 200mA \text{ to } 400mA, \quad C_{\text{IN}} = C_{\text{OUT}} = 1\mu F/X7R \]

Time (100μs/Div)
Application Information

Input Capacitor Selection
Like any low-dropout linear regulator, the external capacitors used with the RT9043 must be carefully selected for stability and performance. The input capacitance is recommended to be at least 1μF, and can be increased without limit. The input capacitor must be located at a distance of less than 0.5 inch from the input pin of the IC and returned to a clean ground plane. Any high-quality ceramic capacitor or tantalum capacitor can be used for the input capacitor. Using input capacitor with larger capacitance and lower ESR (equivalent series resistance) can obtain better PSRR and line transient response.

Output Capacitor Selection
The output capacitor must meet both the requirements for minimum capacitance and minimum ESR value in all applications. The RT9043 is designed specifically to work with low ESR ceramic output capacitor to save board space and have better performance. Figure 1 shows the allowable ESR range for stable operation as a function of load current and output capacitance value. Use at least 1μF ceramic output capacitor which ESR is within the stable operation range to ensure stability. Larger capacitance can reduce noise and improve load transient response, stability, and PSRR. The RT9043 can operate with other types of output capacitor due to its wide stable operation range. The output capacitor should be placed less than 0.5 inch from the VOUT and returned to a clean ground plane.

Output Voltage Setting
The output voltage divider R1 and R2 allows to adjust the output voltage for various application as shown in Figure 2.

\[V_{OUT} = V_{FB} \left(1 + \frac{R1}{R2}\right) \]

Where \(V_{FB} \) is the feedback reference voltage (1.2V typical).

Enable Function
The RT9043 features enable/shutdown function. The voltage at the EN pin determines the enable/shutdown state of the regulator. To ensure the regulator will switch on, the enable control voltage must be greater than 1.6V. The regulator will enter shutdown mode when the voltage at EN pin falls below 0.6 volt. If the enable function is not needed, EN pin should be pulled high or simply tied to VIN to keep the regulator in on state.
PSRR

RT9043 features high power supply rejection ratio (PSRR), which is defined as the ratio of output voltage change against input voltage change.

\[\text{PSRR} = 20 \times \log \left(\frac{\Delta V_{\text{out}}}{\Delta V_{\text{in}}} \right) \]

A low-dropout regulator with higher PSRR can provide better line transient performance.

Current Limit

The RT9043 implements an independent current limit circuit, which monitors and controls the pass element’s gate voltage to limit the output current at 650mA (typ.). If the current limit condition lasts for a long time, the regulator temperature may increase high enough to damage the regulator itself. Therefore, RT9043 implements current limit function and thermal protection function to prevent the regulator from damaging when the output is shorted to ground.

Thermal Considerations

For continuous operation, do not exceed absolute maximum operation junction temperature. The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula:

\[P_{D(\text{MAX})} = \frac{(T_{J(\text{MAX})} - T_A)}{\theta_{JA}} \]

Where \(T_{J(\text{MAX})} \) is the maximum operation junction temperature, \(T_A \) is the ambient temperature and the \(\theta_{JA} \) is the junction to ambient thermal resistance.

For recommended operating conditions specification of RT9043, the maximum junction temperature is 125°C. The junction to ambient thermal resistance \(\theta_{JA} \) is layout dependent. For SOT-23-5 packages, the thermal resistance \(\theta_{JA} \) is 250°C/W on the standard JEDEC 51-3 single layer thermal test board. The maximum power dissipation at \(T_A = 25^\circ\text{C} \) can be calculated by following formula:

\[P_{D(\text{MAX})} = \frac{(125^\circ\text{C} - 25^\circ\text{C})}{250^\circ\text{C/W}} = 0.4\text{W} \text{ for SOT-23-5 packages} \]

The maximum power dissipation depends on operating ambient temperature for fixed \(T_{J(\text{MAX})} \) and thermal resistance \(\theta_{JA} \). For RT9043 packages, the Figure 3 of derating curves allows the designer to see the effect of rising ambient temperature on the maximum power allowed.

Figure 3. Derating Curves for RT9043 Packages
Outline Dimension

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions In Millimeters</th>
<th>Dimensions In Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>A</td>
<td>0.889</td>
<td>1.295</td>
</tr>
<tr>
<td>A1</td>
<td>0.000</td>
<td>0.152</td>
</tr>
<tr>
<td>B</td>
<td>1.397</td>
<td>1.803</td>
</tr>
<tr>
<td>b</td>
<td>0.356</td>
<td>0.559</td>
</tr>
<tr>
<td>C</td>
<td>2.591</td>
<td>2.997</td>
</tr>
<tr>
<td>D</td>
<td>2.692</td>
<td>3.099</td>
</tr>
<tr>
<td>e</td>
<td>0.838</td>
<td>1.041</td>
</tr>
<tr>
<td>H</td>
<td>0.080</td>
<td>0.254</td>
</tr>
<tr>
<td>L</td>
<td>0.300</td>
<td>0.610</td>
</tr>
</tbody>
</table>

SOT-23-5 Surface Mount Package