500mA, Low Dropout, Low Noise Ultra-Fast Without Bypass Capacitor CMOS LDO Regulator

General Description
The RT9049 is a high-performance, 500mA LDO regulator, offering extremely high PSRR and ultra-low dropout. The RT9049 is designed for portable RF and wireless applications with demanding performance and space requirements. The RT9049 quiescent current is as low as 115μA, further prolonging the battery life. The RT9049 also works with low-ESR ceramic capacitors, reducing the amount of board space necessary which is critical for power applications in hand-held wireless devices. The RT9049 consumes typical 1.35μA in shutdown mode and has fast turn-on time less than 40μs. The other features include ultra-low dropout voltage, high output accuracy, current limiting protection, and high ripple rejection ratio. The RT9049 is available in the SOT-23-5 package.

Ordering Information
- **Package Type**
 - B : SOT-23-5
- **Lead Plating System**
 - G : Green (Halogen Free and Pb Free)
- **Fixed Output Voltage**
 - 12 : 1.2V

Note: Richtek products are:
- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Marking Information
For marking information, contact our sales representative directly or through a Richtek distributor located in your area.

Features
- Wide Operating Voltage Ranges : 2.2V to 5.5V
- Low Dropout : 250mV at 500mA
- Ultra-Low-Noise for RF Application
- Ultra-Fast Response in Line/Load Transient
- Current Limiting Protection
- Thermal Shutdown Protection
- High Power Supply Rejection Ratio
- Only 10μF Output Capacitor Required for Stability
- 1.35μA Shutdown Current
- TTL-Logic-Controlled Shutdown Input
- RoHS Compliant and Halogen Free

Applications
- CDMA/GSM Cellular Handsets
- Portable Information Appliances
- Laptop, Palmtops, Notebook Computers
- HandHold Instruments
- Mini PCI & PCI-Express Cards
- PCMCIA & New Cards

Pin Configurations
(TOP VIEW)

```
VIN  GND  EN
2  3  4
6  NC
8

SOT-23-5
```

Typical Application Circuit
Function Block Diagram

![Function Block Diagram](image)

Functional Pin Description

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Pin Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VIN</td>
<td>Supply Input.</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Common Ground.</td>
</tr>
<tr>
<td>3</td>
<td>EN</td>
<td>Chip Enable (Active High). When the EN goes to a logic low, the device will be in shutdown mode.</td>
</tr>
<tr>
<td>4</td>
<td>NC</td>
<td>No Internal Connection.</td>
</tr>
<tr>
<td>5</td>
<td>VOUT</td>
<td>Regulator Output.</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings (Note 1)
- Input Voltage, V_{IN}: 2.2 to 5.5 V
- V_{EN}: -- to 5.5 V
- Output Noise Voltage, V_{ON}: -- to 30 μVRMS
- Output Voltage Accuracy: ΔV_{OUT}, $I_{OUT} = 10mA$: -2% to 0%, $+2\%$
- Quiescent Current, I_Q: $I_{OUT} = 0mA$, -2% to 0%, $+2\%$
- Shutdown Current, I_{SHDN}, $V_{EN} = 0V$: $-115\mu A$ to $125\mu A$
- Current Limit: I_{LIM}, $R_{LOAD} = 0\Omega$: $0.5\mu A$ to $0.85\mu A$
- Load Regulation: ΔV_{LOAD}, $1mA < I_{OUT} < 400mA$: -0.2% to -0.6%
- EN Threshold Voltage, V_{IH}, V_{IL}: Logic-High, Logic-Low: 1.6% to $--$
- Enable Pin Current, I_{EN}: -0.1% to $1\mu A$
- Power Supply Rejection Rate, $PSRR$: $I_{OUT} = 100mA$, $f = 10kHz$: -50% to $--$
- Line Regulation: ΔV_{LINE}, $V_{IN} = 2.2V$ to $5.5V$, $I_{OUT} = 1mA$: 0.01% to 0.2%
- Thermal Shutdown Temperature, T_{SD}: $170^\circ C$ to $--$
- Thermal Shutdown Hysteresis, ΔT_{SD}: $30^\circ C$ to $--$

Recommended Operating Conditions (Note 4)
- Junction Temperature Range: $-40^\circ C$ to $125^\circ C$
- Ambient Temperature Range: $-40^\circ C$ to $85^\circ C$

Electrical Characteristics
($V_{IN} = 2.7V$, $V_{EN} = V_{IN}$, $C_{IN} = 1\mu F$, $C_{OUT} = 10\mu F$ (Ceramic, X7R), $T_A = 25^\circ C$, unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage Range</td>
<td>V_{IN}</td>
<td></td>
<td>2.2</td>
<td>--</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Output Noise Voltage</td>
<td>V_{ON}</td>
<td></td>
<td>--</td>
<td>30</td>
<td>--</td>
<td>μVRMS</td>
</tr>
<tr>
<td>Output Voltage Accuracy</td>
<td>ΔV_{OUT}, $I_{OUT} = 10mA$</td>
<td>$-2%$ to $0%$, $+2%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quiescent Current (Note 5)</td>
<td>I_Q</td>
<td>$I_{OUT} = 0mA$</td>
<td>--</td>
<td>115</td>
<td>125</td>
<td>μA</td>
</tr>
<tr>
<td>Shutdown Current</td>
<td>I_{SHDN}, $V_{EN} = 0V$</td>
<td>--</td>
<td>1.35</td>
<td>2</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>Current Limit</td>
<td>I_{LIM}, $R_{LOAD} = 0\Omega$</td>
<td>0.5</td>
<td>0.6</td>
<td>0.85</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Load Regulation (Note 6)</td>
<td>ΔV_{LOAD}, $1mA < I_{OUT} < 400mA$</td>
<td>$-0.2%$ to $-0.6%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN Threshold Voltage</td>
<td>V_{IH}</td>
<td>$V_{IN} = 2.5V$</td>
<td>1.6</td>
<td>--</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td>Logic-Low</td>
<td>V_{IL}</td>
<td></td>
<td>--</td>
<td>--</td>
<td>0.6</td>
<td>μA</td>
</tr>
<tr>
<td>Enable Pin Current</td>
<td>I_{EN}</td>
<td></td>
<td>--</td>
<td>0.1</td>
<td>1</td>
<td>μA</td>
</tr>
<tr>
<td>Power Supply Rejection Rate</td>
<td>$PSRR$</td>
<td>$I_{OUT} = 100mA$, $f = 10kHz$</td>
<td>--</td>
<td>--</td>
<td>-50</td>
<td>dB</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>ΔV_{LINE}, $V_{IN} = 2.2V$ to $5.5V$, $I_{OUT} = 1mA$</td>
<td>$0.01%$ to $0.2%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Shutdown Temperature</td>
<td>T_{SD}</td>
<td></td>
<td>--</td>
<td>170</td>
<td>--</td>
<td>°C</td>
</tr>
<tr>
<td>Thermal Shutdown Hysteresis</td>
<td>ΔT_{SD}</td>
<td></td>
<td>--</td>
<td>30</td>
<td>--</td>
<td>°C</td>
</tr>
</tbody>
</table>
Note 1. Stresses listed as the above “Absolute Maximum Ratings” may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.

Note 2. θ_{JA} is measured in the natural convection at $T_A = 25^\circ$C on a low effective thermal conductivity single layer test board of JEDEC 51-3 thermal measurement standard. The case position of θ_{JC} is on the package top of the package.

Note 3. Devices are ESD sensitive. Handling precaution is recommended.

Note 4. The device is not guaranteed to function outside its operating conditions.

Note 5. Quiescent, or ground current, is the difference between input and output currents. It is defined by $I_Q = I_{IN} - I_{OUT}$ under no load condition ($I_{OUT} = 0mA$). The total current drawn from the supply is the sum of the load current plus the ground pin current.

Note 6. Regulation is measured at constant junction temperature by using a 2ms current pulse. Devices are tested for loadregulation in the load range from 10mA to 500mA.
Typical Operating Characteristics

Output Voltage vs. Temperature

VIN = 2.75V, VOUT = 1.2V, No Load

Quiescent Current vs. Temperature

VIN = 2.75V, VOUT = 1.2V, No Load

Power On-Off from EN

VIN = 2.75V, VOUT = 1.2V, IOUT = 50mA

Line Transient Response

VIN = 2.6V to 3.6V, VOUT = 1.2V, IOUT = 100mA

Load Transient Response

VIN = 2.75V, VOUT = 1.2V, IOUT = 10mA to 100mA
Applications Information

Like any low-dropout regulator, the external capacitors used with the RT9049 must be carefully selected for regulator stability and performance. Using a capacitor more than 1μF on the RT9049 is suitable. The input capacitor must be located at a distance of not more than 0.5 inch from the input pin of the IC and returned to a clean analog ground. The capacitor with larger value and lower ESR (equivalent series resistance) provides better PSRR and line-transient response.

The output capacitor must meet both requirements for minimum capacitance and ESR in all LDOs application. The RT9049 is designed specifically to work with low ESR ceramic output capacitor in space-saving and performance consideration. Using a ceramic capacitor whose value is at least 10μF with ESR is > 45mΩ on the RT9049 output ensures stability. The RT9049 still works well with output capacitor of other types due to the wide stable ESR range. Figure 1. shows the curves of allowable ESR range as a function of load current for various output capacitor values. Output capacitor of larger capacitance can reduce noise and improve load transient response, stability, and PSRR. The output capacitor should be located at less than 0.5 inch from the VOUT pin of the RT9049 and returned to a clean analog ground.

Enable

The RT9049 goes into sleep mode when the Enable pin is in a logic low condition. During this condition, the pass transistor, error amplifier, and bandgap are turned off, reducing the supply current to 1.35μA typical. The Enable pin may be directly tied to VIN to keep the part on. The Enable input is CMOS logic and cannot be left floating.

PSRR

The power supply rejection ratio (PSRR) is defined as the gain from the input to output divided by the gain from the supply to the output. The PSRR is found to be

\[
\text{PSRR} = 20 \times \log\left(\frac{\Delta \text{Gain}_{\text{Error}}}{\Delta \text{Supply}}\right)
\]

Note that when heavy load measuring, ΔSupply will cause Δtemperature. And Δtemperature will cause Δoutput voltage. So the heavy load PSRR measuring is includes temperature effect.

Current Limit

The RT9049 contains an independent current limiter, which monitors and controls the pass transistor’s gate voltage, limiting the output current to 0.6A (typ.). The output can be shorted to ground indefinitely without damaging the part.

Thermal Considerations

For continuous operation, do not exceed absolute maximum operation junction temperature. The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula:

\[
P_{D\text{(MAX)}} = \left(T_{J\text{(MAX)}} - T_A \right) / \theta_{JA}
\]

Where \(T_{J\text{(MAX)}} \) is the maximum operation junction temperature, \(T_A \) is the ambient temperature and the \(\theta_{JA} \) is the junction to ambient thermal resistance.

For recommended operating conditions specification of RT9049, the maximum junction temperature is 125°C. The junction to ambient thermal resistance \(\theta_{JA} \) is layout dependent. For SOT-23-5 package, the thermal resistance
θ_{JA} is 250°C/W on the standard JEDEC 51-3 single layer thermal test board. The maximum power dissipation at \(T_A = 25°C \) can be calculated by following formula:

\[
P_{D\,(\text{MAX})} = \frac{(125°C - 25°C)}{(250°C/W)} = 0.4W \text{ for SOT-23-5 package}
\]

The maximum power dissipation depends on operating ambient temperature for fixed \(T_{J\,(\text{MAX})} \) and thermal resistance \(\theta_{JA} \). For RT9049 package, the Figure 2 of derating curves allows the designer to see the effect of rising ambient temperature on the maximum power dissipation allowed.

![Figure 2. Derating Curves for RT9049 Package](image)
Outline Dimension

Dimensions in Millimeters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.889</td>
<td>1.295</td>
</tr>
<tr>
<td>A1</td>
<td>0.000</td>
<td>0.152</td>
</tr>
<tr>
<td>B</td>
<td>1.397</td>
<td>1.803</td>
</tr>
<tr>
<td>b</td>
<td>0.356</td>
<td>0.559</td>
</tr>
<tr>
<td>C</td>
<td>2.591</td>
<td>2.997</td>
</tr>
<tr>
<td>D</td>
<td>2.692</td>
<td>3.099</td>
</tr>
<tr>
<td>e</td>
<td>0.838</td>
<td>1.041</td>
</tr>
<tr>
<td>H</td>
<td>0.080</td>
<td>0.254</td>
</tr>
<tr>
<td>L</td>
<td>0.300</td>
<td>0.610</td>
</tr>
</tbody>
</table>

Dimensions in Inches

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.035</td>
<td>0.051</td>
</tr>
<tr>
<td>A1</td>
<td>0.000</td>
<td>0.006</td>
</tr>
<tr>
<td>B</td>
<td>0.055</td>
<td>0.071</td>
</tr>
<tr>
<td>b</td>
<td>0.014</td>
<td>0.022</td>
</tr>
<tr>
<td>C</td>
<td>0.102</td>
<td>0.118</td>
</tr>
<tr>
<td>D</td>
<td>0.106</td>
<td>0.122</td>
</tr>
<tr>
<td>e</td>
<td>0.033</td>
<td>0.041</td>
</tr>
<tr>
<td>H</td>
<td>0.003</td>
<td>0.010</td>
</tr>
<tr>
<td>L</td>
<td>0.012</td>
<td>0.024</td>
</tr>
</tbody>
</table>

SOT-23-5 Surface Mount Package

Richtek Technology Corporation

Headquarter
5F, No. 20, Taiyuen Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611

Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.