

DDR Termination Regulator

1 General Description

The RT9088A is a sink/source tracking termination regulator. It is specifically designed for low-cost and low-external component count systems. The RT9088A features a high-speed operational amplifier that provides a fast load transient response and only requires a minimum 30µF ceramic output capacitor. The RT9088A supports remote sensing functions and includes all features required to power the DDRIII and Low Power DDRIII/DDRIV VTT bus termination according to the JEDEC specification. In addition, the RT9088A provides an open-drain PG signal to monitor the output regulation and an EN signal that can be used to discharge VTT during S3 (suspend to RAM) for DDR applications.

The RT9088A is available in the thermal efficient package, WDFN-10L 3x3. The recommended junction temperature range is -40°C to 125°C, and the ambient temperature range is -40°C to 85°C.

2 Ordering Information

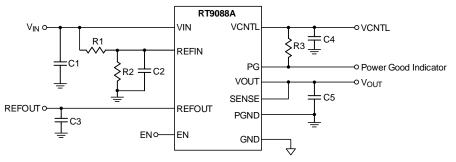
Note 1.

- Marked with ⁽¹⁾ indicated: Compatible with the current requirements of IPC/JEDEC J-STD-020.
- Marked with ⁽²⁾ indicated: Richtek products are Richtek Green Policy compliant.

3 Features

- VIN Input Voltage Range: 1.1V to 3.5V
 VCNTL Input Voltage Range: 2.9V to 5.5V
- Support Ceramic Capacitors
- Power-Good Indicator
- 10mA Source/Sink Reference Output
- Meet DDRI, DDRII JEDEC Spec
- Support DDRIII, Low Power DDRIII/DDRIV VTT Applications
- Soft-Start Function
- UVLO (Undervoltage Lockout) and OCP (Overcurrent Protection)
- Over-Temperature Protection

4 Applications


- Notebooks/Desktops/Servers
- Telecom/Datacom Systems
- GSM Base Stations
- LCD-TVs/PDP-TVs
- Copiers/Printers
- Set-Top Boxes

5 Marking Information

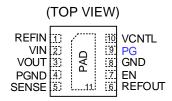
8J=: Product Code YMDAN: Date Code

6 Simplified Application Circuit

Copyright © 2025 Richtek Technology Corporation. All rights reserved.

RICHTEK

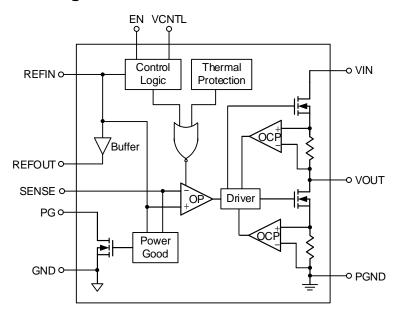
is a registered trademark of Richtek Technology Corporation


Table of Contents

1		al Description	
2	Order	ing Information	1
3	Featu	res	1
4	Applic	cations	1
5		ng Information	
6	Simpl	ified Application Circuit	1
7	Pin Co	onfiguration	3
8		ional Pin Description	
9	Funct	ional Block Diagram	3
10	Absol	ute Maximum Ratings	4
11		nmended Operating Conditions	
12	Electr	ical Characteristics	5
13	Typica	al Application Circuit	7
14		al Operating Characteristics	
15	Opera	ition	10
	15.1	Current Monitoring and Overcurrent	
		tion	
	15.2	Buffer	10

	15.5	Power-Good marcator	10
	15.4	Control Logic	10
	15.5	Thermal Protection	10
16	Appli	cation Information	11
	16.1	Capacitor Selection	11
	16.2	Thermal Considerations	11
17	Outlin	ne Dimension	13
18	Footp	rint Information	14
19	Packi	ng Information	15
	19.1	Tape and Reel Data	15
	19.2	Tape and Reel Packing	16
	19.3	Packing Material Anti-ESD Property	17
20	Datas	heet Revision History	18

7 Pin Configuration



WDFN-10L 3x3

8 Functional Pin Description

Pin No.	Pin Name	Pin Function
1	REFIN	Reference input.
2	VIN	Power input of the regulator.
3	VOUT	Power output of the regulator.
4	PGND	Power ground of the regulator.
5	SENSE	Voltage sense input for the regulator. Connect to the positive terminal of the output capacitor or the load.
6	REFOUT	Reference output. Connect to GND through a 0.1µF ceramic capacitor.
7	EN	Enable control input. For DDR VTT applications, connect EN to SLP_S3. For other applications, use EN as the ON/OFF function.
8	GND	Analog ground. Connect to the negative terminal of the output capacitor.
9	PG	Power good open-drain output. Connect a pull-up resistor between this pin and VCNTL pin.
10	VCNTL	Control voltage input. Connect this pin to the 3.3V or 5V power supply. A $4.7\mu F$ ceramic decoupling capacitor is required.
11 (Exposed Pad)	PAD	Exposed pad. The exposed pad is internally unconnected and must be soldered to a large PGND plane. Connect this PGND plane to other layers with thermal vias to help dissipate heat from the device.

9 Functional Block Diagram

Copyright © 2025 Richtek Technology Corporation. All rights reserved.

RICHTEK

is a registered trademark of Richtek Technology Corporation

10 Absolute Maximum Ratings

(Note 2)

Supply Voltage, VIN, VCNTL	0.3V to 6V
Input Voltage, EN, REFIN, SENSE	0.3V to 6V
Output Voltage, VOUT, REFOUT, PG	−0.3V to 6V
Package Thermal Resistance	
 Power Dissipation, PD @ TA = 25°C 	
WDFN-10L 3x3	3.27W
• Package Thermal Resistance (Note 3)	
WDFN-10L 3x3, θJA	30.5°°C/W
WDFN-10L 3x3, θJC	7.5°C/W
• Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	65°C to 150°C
• ESD Susceptibility (Note 4)	
HBM (Human Body Model)	±2kV

- Note 2. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 3. θ_{JA} is simulated at T_A = 25°C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θ_{JC} is measured at the exposed pad of the package.
- Note 4. Devices are ESD sensitive. Handling precautions are recommended.

11 Recommended Operating Conditions

(Note 5)

Control Input Voltage, VCNTL	- 2.9V to 5.5V
Supply Input Voltage, VIN	- 1.1V to 3.5V
Ambient Temperature Range	40°C to 125°C
Junction Temperature Range	40°C to 85°C

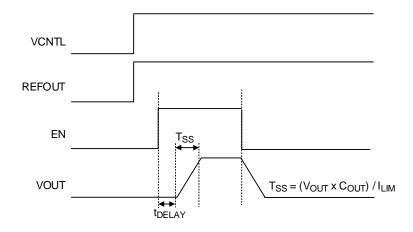
Note 5. The device is not guaranteed to function outside its operating conditions.

RT9088A DS-06T01

12 Electrical Characteristics

 $(V_{IN} = 1.5V, V_{EN} = V_{CNTL} = 3.3V, V_{REFIN} = V_{SENSE} = 0.75V, C_{OUT} = 10 \mu F \ x \ 3, T_{A} = 25 ^{\circ}C, unless otherwise specified.)$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Current						
VCNTL Supply Current	IVCNTL	VEN = VCNTL, No Load	ŀ	0.7	1	mA
VCNTL Shutdown	NTL Shutdown ISHDN VCNTI		-	65	80	μΑ
Current	12HDN_VCN1L	VEN = 0V, VREFIN > 0.4V, No Load		200	400	μΑ
VIN Supply Current	IVIN	VEN = VCNTL, No Load		1	50	μΑ
VIN Shutdown Current	ISHDN_VIN	VEN = 0V, No Load		0.1	50	μΑ
Output						
		VIN = 1.5V, VREFIN = 0.75V, IOUT = 0A		0.75		V
VTT Output Voltage	Vout	VIN = 1.35V, VREFIN = 0.675V, IOUT = 0A		0.675		V
		VIN = 1.2V, VREFIN = 0.6V, IOUT = 0A		0.6		V
		IOUT = $\pm 2A$, VLDOIN = 1.5V, VREFOUT = 0.75V	-25		25	
REFIN, VTT Output Voltage Offset	VOFFSET	IOUT = $\pm 2A$, VLDOIN = 1.35V, VREFOUT = 0.675V	-25		25	mV
3		$I_{OUT} = \pm 2A$, $V_{LDOIN} = 1.2V$, $V_{REFOUT} = 0.6V$	-25		25	
VOUT Source Current Limit	ILIM_VOUT_SR	VOUT in PG Window	3.5		5.5	Α
VOUT Sink Current Limit	ILIM_VOUT_SK	VOUT in PG Window	3.5		5.5	Α
VOUT Discharge Resistance	RDISCHG	VREFIN = 0V, VOUT = 0.3V, VEN = 0V		18	25	Ω
Power-Good Compara	ator					
		VSENSE lower threshold with respect to REFOUT	-25	-20	-15	
PG Threshold	VPG	VSENSE upper threshold with respect to REFOUT	15	20	25	%
	Note	5				
PG Start-Up Delay	tDLY_PG1			2		ms
Output Low Voltage	VLOW_PG	IPG = 4mA			0.4	V
PG Falling Delay	tDLY_PG2	•		10		μs
Leakage Current	ILK_PG	impedance),			1	μА
REFIN and REFOUT						
REFIN Input Current	IREFIN	VEN = VCNTL			1	μΑ
REFIN Voltage Range	VREFIN		0.5		1.8	V

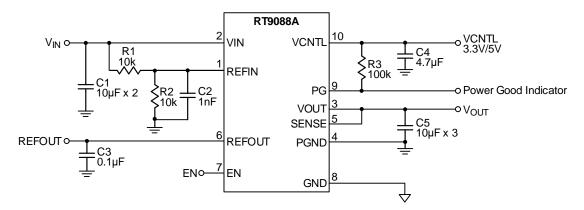

Copyright © 2025 Richtek Technology Corporation. All rights reserved.

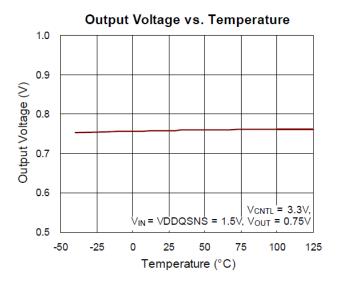
RT9088A_DS-06T01 June 2025

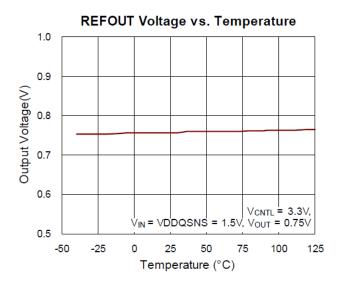
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
REFIN Undervoltage-	Vinua perm	REFIN Rising	360	390	420	mV
Lockout	Vuvlo_refin	Hysteresis		20		IIIV
		-10mA < I _{REFOUT} < 10mA, V _{REFIN} = 0.75V	-15		15	
REFOUT Voltage Tolerance to VREFIN	VTOL_REFOUT	-10mA < IREFOUT < 10mA, VREFIN = 0.675V	-13.5		13.5	mV
		-10mA < IREFOUT < 10mA, VREFIN = 0.6V	-12		12	
REFOUT Source Current Limit	ILIM_REFOUT_SR	VREFOUT = 0V	10	40		mA
REFOUT Sink Current Limit	ILIM_REFOUT_SK	VREFOUT = REFIN + 1V	10	40		mA
UVLO/EN						
UVLO Threshold	Mana A A A A A A A A A A A A A A A A A A	Rising	2.5	2.7	2.85	V
OVLO Tillestiold	VUVLO_VCNTL	Hysteresis		120		mV
EN Input Voltage Rising Threshold	VEN_R		1.7			V
EN Input Voltage Falling Threshold	VEN_F				0.3	V
EN Turn-On Delay	t _{DLY}	EN turn on to V _{OUT} rising (see Note 6)			7	μS
Over-Temperature Pr	otection					_
Over-Temperature	TOTP	Shutdown Temperature		160		°C
Protection	TOTP	Hysteresis		15		C

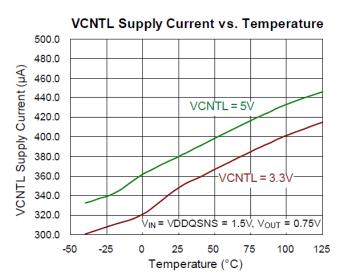
Note 6. t_{DLY} is the period from when EN is turned on to when V_{OUT} begins to rise, as shown in the following diagram. T_{SS} is the rising period of V_{OUT} . The formula used to calculate this rising period is $T_{SS} = (V_{OUT} \times C_{OUT})/I_{LIM}$. It is based on the value of the output capacitor C_{OUT}, the settled output voltage V_{OUT}, and the output current limit I_{LIM}.

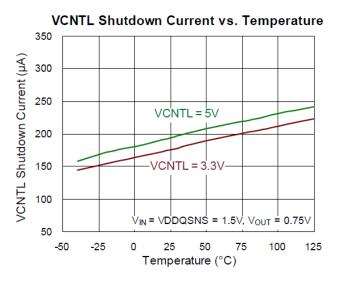
13 Typical Application Circuit

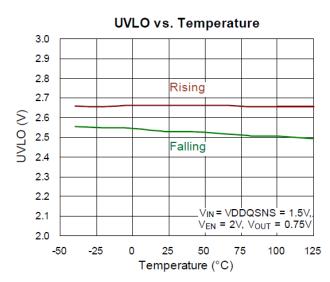


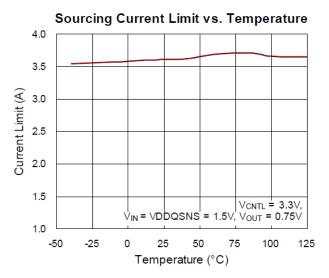

Table 1. Boost Converter Mode (P Type Isolation MOSFET)

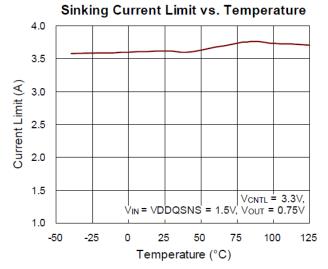

Component	Description	Vendor P/N
C1, C5	10μF, 6.3V, X7R, 0805	GRM21BR70J106KE76L (Murata) CGA4J1X7R0J106K125AC (TDK)
C2	1nF, 50V, X7R, 0603	GCD188R71H102KA01D (Murata) CGA3E2X7R1H102K080AA (TDK)
C3	0.1μF, 16V, X7R, 0603	GCJ188R71C104KA01D (Murata)
C4	4.7μF, 6.3V, X5R, 0603	GRT188R60J475ME01D (Murata) CGB3B3X5R0J475M055AB(TDK)

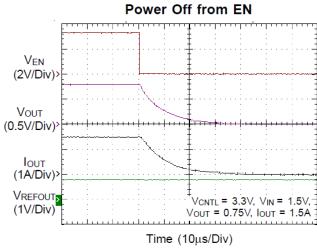

RT9088A_DS-06T01 June 2025 www.richtek.com

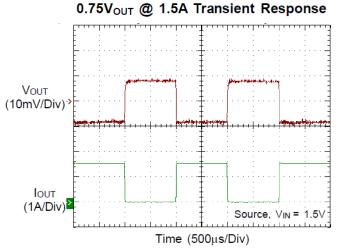


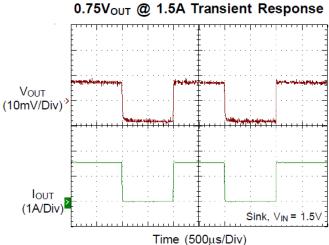

14 Typical Operating Characteristics











RT9088A DS-06T01 June 2025 www.richtek.com

15 Operation

The RT9088A is a linear sink/source DDR termination regulator with current capability up to 3A. The RT9088A builds in a high-side N-MOSFET which provides current sourcing and a low-side N-MOSFET for current sinking. All the control circuits are supplied by the power VCNTL. In normal operation, the error amplifier OP adjusts the gate driving voltage of the power MOSFET to achieve the SENSE voltage well tracks the REFIN voltage.

15.1 Current Monitoring and Overcurrent Protection

Both the source and sink currents are detected by the internal sensing resistor, and the OCP function limits the current to a designed value when overload happens. Furthermore, the current will be reduced to half if VOUT is out of the power-good window.

15.2 Buffer

This function provides a REFOUT output level equal to the REFIN level, with 10mA source/sink current capability.

15.3 Power-Good Indicator

When the SENSE voltage is in the power-good window and lasts for a certain delay time, then the PG pin will be high impedance and the PG voltage will be pulled high by the external resistor.

15.4 Control Logic

This block includes VCNTL UVLO, REFIN UVLO, and Enable/Disable functions, and provides logic control to the whole chip.

15.5 Thermal Protection

Both the high-side and low-side power MOSFETs will be turned off when the junction temperature is higher than typically 160°C and be released to normal operation when junction temperature falls below 120°C typically.

16 Application Information

(Note 7)

The RT9088A is a 3A sink/source tracking termination regulator. It is specifically designed for low-cost systems with minimal external components, such as notebook or PC applications. The RT9088A features a high-speed operational amplifier that provides a fast load transient response and only requires two $10\mu F$ ceramic input capacitors and three $10\mu F$ ceramic output capacitors.

16.1 Capacitor Selection

Good bypassing from VIN to GND is recommended to improve AC performance. A $10\mu F$ or larger input capacitor should be placed as close as possible to the IC, ideally within 0.5 inches of the VIN pin.

The $1\mu F$ ceramic capacitor should be added close to the VCNTL pin and kept free away from any parasitic impedance from the supply power. For stable operation, the total capacitance of the ceramic capacitors at the VOUT output terminal must be larger than $30\mu F$. The RT9088A is designed to work specifically with low ESR ceramic output capacitors for space-saving and performance consideration. Larger output capacitance can reduce the noise and improve load transient response, stability, and PSRR. The output capacitor should be located as close as possible to the VOUT output terminal pin.

16.2 Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula:

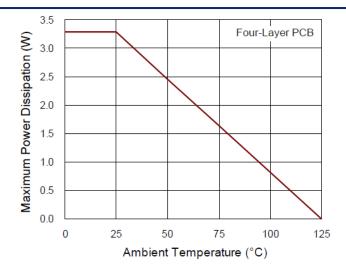
 $PD(MAX) = (TJ(MAX) - TA) / \theta JA$

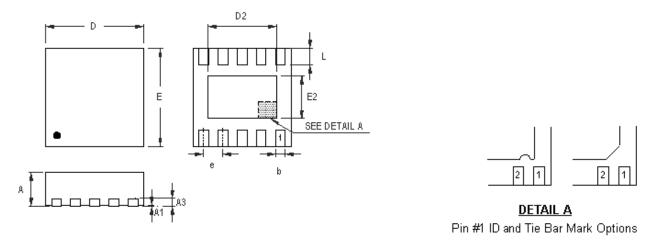
where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is 125°C. The junction to ambient thermal resistance, θ_{JA} , is layout dependent. For WDFN-10L 3x3 package, the thermal resistance, θ_{JA} , is 30.5°C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at $T_A = 25$ °C can be calculated by the following formula:

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (30.5^{\circ}C/W) = 3.27W$ for WDFN-10L 3x3 package

The maximum power dissipation depends on the operating ambient temperature for fixed $T_{J(MAX)}$ and thermal resistance, θ_{JA} . The derating curve in <u>Figure 1</u> allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.



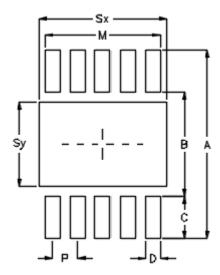

Figure 1. Derating Curve of Maximum Power Dissipation

Note 7. The information provided in this section is for reference only. The customer is solely responsible for designing, validating, and testing any applications incorporating Richtek's product(s). The customer is also responsible for applicable standards and any safety, security, or other requirements.

RT9088A_DS-06T01

17 Outline Dimension

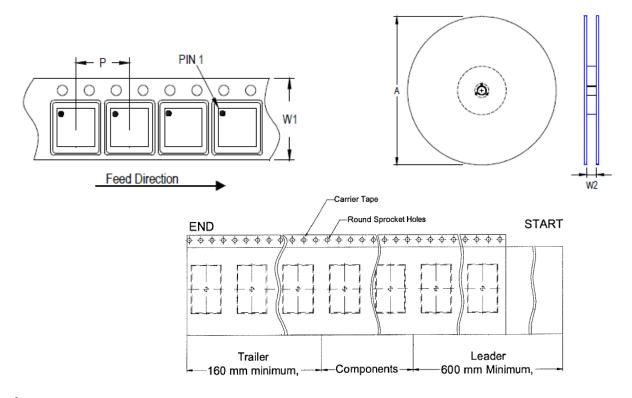
Note: The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.


Comple of	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
А	0.700	0.800	0.028	0.031		
A1	0.000	0.050	0.000	0.002		
A3	0.175	0.250	0.007	0.010		
b	0.180	0.300	0.007	0.012		
D	2.950	3.050	0.116	0.120		
D2	2.300	2.650	0.091	0.104		
Е	2.950	3.050	0.116	0.120		
E2	1.500	1.750	0.059	0.069		
е	0.5	500	0.020			
L	0.350	0.450	0.014	0.018		

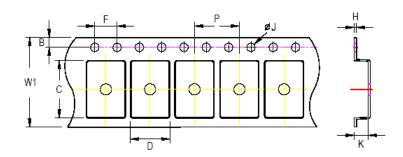
W-Type 10L DFN 3x3 Package

RT9088A_DS-06T01 June 2025 www.richtek.com

18 Footprint Information



Dookogo	Number of Pin		Tolerance							
Package		Р	Α	В	С	D	Sx	Sy	М	
V/W/U/X/ZDFN3*3-10	10	0.50	3.80	2.10	0.85	0.30	2.55	1.70	2.30	±0.05



19 Packing Information

19.1 Tape and Reel Data

	Tape Size	Pocket Pitch	Reel Si	ze (A)	Units	Trailer	Leader	Reel Width (W2)
Package Type	(W1) (mm)	(P) (mm)	(mm)	(in)	per Reel	(mm)	(mm)	Min/Max (mm)
(V, W) QFN/DFN 3x3	12	8	180	7	1,500	160	600	12.4/14.4

- C, D, and K are determined by component size. The clearance between the components and the cavity is as follows:
- For 12mm carrier tape: 0.5mm maximum

Tape Size	W1	F	0	Е	3	F	=	Ø	IJ	k	(Н
	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Max
12mm	12.3mm	7.9mm	8.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	1.0mm	1.3mm	0.6mm

Copyright © 2025 Richtek Technology Corporation. All rights reserved.

Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1	Reel 7"	4	3 reels per inner box Box A
2	HIC & Desiccant (1 Unit) inside	5	12 inner boxes per outer box
3	Caution label is on backside of Al bag	6	Outer box Carton A

Container	Reel		Вох			Carton		
Package	Size	Units	Item	Reels	Units	Item	Boxes	Unit
(V, W)	7"	1,500	Box A	3	4,500	Carton A	12	54,000
QFN & DFN 3x3	<i>(</i> "		Box E	1	1,500	For Combined or Partial Reel.		

19.3 Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω /cm 2	10 ⁴ to 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2025 Richtek Technology Corporation. All rights reserved.

RT9088A_DS-06T01 June 2025 www.richtek.com

20 Datasheet Revision History

Version	Date	Description	Item	
			Changed the names PGOOD to PG General Description on page 1	
			Features on page 1	
I			Ordering Information on page 2	
06	2025/6/24	Modify	Electrical Characteristics on page 5, 6	
			Footprint Information on page 14	
			- Added Footprint Information	
			Packing Information on page 15 to 17	
			- Added packing information	