100mA, 4μA Quiescent Current CMOS LDO Regulator

General Description
The RT9169/H series are 100mA ultra-low quiescent current CMOS low dropout (LDO) regulator designed for battery-powered equipments. The output voltages range from 1.2V to 5V with 0.1V per step.

The other features include 4μA ultra-low quiescent, low dropout voltage, high output accuracy, current limiting protection, and high ripple rejection ratio.

Features
- Ultra-Low Quiescent Current: 4μA
- Low Dropout: 450mV at 100mA
- Wide Operating Voltage Ranges: 2V to 6V
- Current Limiting Protection
- Only 1μF Output Capacitor Required for Stability
- High Power Supply Rejection Ratio
- RoHS Compliant and 100% Lead (Pb)-Free

Applications
- Battery-Powered Equipment
- Palmtops, Notebook Computers
- Hand-held Instruments
- PCMCIA Cards

Pin Configurations

Ordering Information

<table>
<thead>
<tr>
<th>Package Type</th>
<th>ZL : TO-92 (L-Type)</th>
<th>ZT : TO-92 (T-Type)</th>
<th>X : SOT-89</th>
<th>V : SOT-23-3</th>
<th>VL : SOT-23-3 (L-Type)</th>
<th>B : SOT-23-5</th>
</tr>
</thead>
</table>

- Lead Plating System
 - P : Pb Free
 - G : Green (Halogen Free and Pb Free)

- Output Voltage
 - 12 : 1.2V
 - 13 : 1.3V
 - ...
 - 49 : 4.9V
 - 50 : 5.0V

- Chip Enable High (SOT-23-5 Only)
- Chip Enable Low

Note:
1. RT9169H package type is available in SOT-23-5 only.
2. Richtek products are:
 - RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
 - Suitable for use in SnPb or Pb-free soldering processes.

Marking Information
For marking information, contact our sales representative directly or through a Richtek distributor located in your area.

Applications
- Battery-Powered Equipment
- Palmtops, Notebook Computers
- Hand-held Instruments
- PCMCIA Cards

Pin Configurations

Ordering Information

<table>
<thead>
<tr>
<th>Package Type</th>
<th>ZL : TO-92 (L-Type)</th>
<th>ZT : TO-92 (T-Type)</th>
<th>X : SOT-89</th>
<th>V : SOT-23-3</th>
<th>VL : SOT-23-3 (L-Type)</th>
<th>B : SOT-23-5</th>
</tr>
</thead>
</table>

- Lead Plating System
 - P : Pb Free
 - G : Green (Halogen Free and Pb Free)

- Output Voltage
 - 12 : 1.2V
 - 13 : 1.3V
 - ...
 - 49 : 4.9V
 - 50 : 5.0V

- Chip Enable High (SOT-23-5 Only)
- Chip Enable Low

Note:
1. RT9169H package type is available in SOT-23-5 only.
2. Richtek products are:
 - RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
 - Suitable for use in SnPb or Pb-free soldering processes.

Marking Information
For marking information, contact our sales representative directly or through a Richtek distributor located in your area.
Absolute Maximum Ratings
Note 1

- **Input Voltage**
 - 7V
- **Power Dissipation, \(P_D @ T_A = 25°C \)**
 - SOT-23-3: 0.4W
 - SOT-23-5: 0.4W
 - SOT-89: 0.571W
 - TO-92: 0.625W
- **Junction Temperature**
 - 150°C
- **Lead Temperature (Soldering, 10 sec.)**
 - 260°C
- **Storage Temperature Range**
 - −65°C to 150°C
- **Package Thermal Resistance
 *Note 2***
 - SOT-23-3, \(\theta_{JA} \)
 - 250°C/W
 - SOT-23-5, \(\theta_{JA} \)
 - 250°C/W
 - SOT-89, \(\theta_{JA} \)
 - 175°C/W
 - TO-92, \(\theta_{JA} \)
 - 160°C/W
- **ESD Susceptibility
 *Note 3***
 - HBM (Human Body Mode): 2kV
 - MM (Machine Mode): 200V

Recommended Operating Conditions
Note 4

- **Junction Temperature Range**
 - −40°C to 125°C
- **Ambient Temperature Range**
 - −40°C to 85°C
Electrical Characteristics

(V\textsubscript{IN} = 5.5V, C\textsubscript{IN} = 1\,\mu F, C\textsubscript{OUT} = 1\,\mu F, T\textsubscript{A} = 25°C, unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage Range</td>
<td>V\textsubscript{IN}</td>
<td></td>
<td>2</td>
<td>--</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage Accuracy</td>
<td>\Delta V\textsubscript{OUT}</td>
<td>I\textsubscript{L} = 1mA</td>
<td>-2</td>
<td>--</td>
<td>+2</td>
<td>%</td>
</tr>
<tr>
<td>Maximum Output Current</td>
<td>I\textsubscript{MAX}</td>
<td>V\textsubscript{IN} = V\textsubscript{OUT} + 0.6V, V\textsubscript{IN} \geq 3.6V</td>
<td>100</td>
<td>--</td>
<td>--</td>
<td>mA</td>
</tr>
<tr>
<td>Current Limit</td>
<td>I\textsubscript{LIM}</td>
<td>I\textsubscript{L} = 100mA</td>
<td>150</td>
<td>250</td>
<td>--</td>
<td>mA</td>
</tr>
<tr>
<td>GND Pin Current</td>
<td>I\textsubscript{G}</td>
<td>No Load</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>\mu A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I\textsubscript{OUT} = 100mA</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>\mu A</td>
</tr>
<tr>
<td>Dropout Voltage</td>
<td>V\textsubscript{DROP}</td>
<td>I\textsubscript{OUT} = 1mA, V\textsubscript{IN} \geq 3.6V</td>
<td>--</td>
<td>4</td>
<td>10</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I\textsubscript{OUT} = 50mA, V\textsubscript{IN} \geq 3.6V</td>
<td>--</td>
<td>200</td>
<td>300</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I\textsubscript{OUT} = 100mA, V\textsubscript{IN} \geq 3.6V</td>
<td>--</td>
<td>450</td>
<td>600</td>
<td>mV</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>\Delta V\textsubscript{LINE}</td>
<td>V\textsubscript{IN} = (V\textsubscript{OUT} + 0.3V) to 6V, V\textsubscript{IN} \geq 3.6V, I\textsubscript{OUT} = 1mA</td>
<td>-0.2</td>
<td>--</td>
<td>+0.2</td>
<td>%/V</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>\Delta V\textsubscript{LOAD}</td>
<td>I\textsubscript{OUT} = 0mA to 100mA</td>
<td>--</td>
<td>0.01</td>
<td>0.04</td>
<td>%/mA</td>
</tr>
<tr>
<td>Output Noise</td>
<td>e\textsubscript{NO}</td>
<td>BW = 100Hz to 50kHz, C\textsubscript{OUT} = 10,\mu F</td>
<td>--</td>
<td>250</td>
<td>--</td>
<td>\mu V</td>
</tr>
<tr>
<td>Ripple Rejection</td>
<td>PSRR</td>
<td>F = 1kHz, C\textsubscript{OUT} = 1,\mu F</td>
<td>--</td>
<td>30</td>
<td>--</td>
<td>dB</td>
</tr>
<tr>
<td>Standby Current</td>
<td></td>
<td>RT9169/H (SOT-23-5)</td>
<td>EN</td>
<td>V\textsubscript{IN} or EN = 0</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>EN/EN Threshold</td>
<td></td>
<td>Logic High</td>
<td>V\textsubscript{IL}</td>
<td>0.6</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Logic Low</td>
<td>V\textsubscript{IH}</td>
<td>--</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>Thermal Shutdown Protection</td>
<td></td>
<td></td>
<td>125</td>
<td>--</td>
<td>--</td>
<td>\degree C</td>
</tr>
</tbody>
</table>

Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.

Note 2. \(\theta\text{JA}\) is measured in the natural convection at \(T\textsubscript{A} = 25°C\) on a low effective thermal conductivity test board of JEDEC 51-3 thermal measurement standard.

Note 3. Devices are ESD sensitive. Handling precaution is highly recommended.

Note 4. The device is not guaranteed to function outside its operating conditions.

Application Information

A 1\,\mu F (or larger) capacitor is recommended between V\textsubscript{OUT} and GND for stability. The part may oscillate without the capacitor. Any type of capacitor can be used, but not Aluminum electrolytes when operating below \(-25°C\). The capacitance may be increased without limit.

A 1\,\mu F capacitor (or larger) should be placed between V\textsubscript{IN} to GND.
Typical Operating Characteristics

Temperature Stability

- Output Voltage (V	ext{OUT}) vs. Temperature
 - V	ext{OUT} = 3.3V
 - V	ext{OUT} = 1.8V

Quiescent Current vs. Temperature

- Quiescent Current (μA) vs. Temperature
 - VIN = 5V

Dropout Voltage (VIN-V	ext{OUT})

- Dropout Voltage (V) vs. I	ext{LOAD} (mA)
 - V	ext{OUT} = 3.3V

Short Circuit Current

- Short Circuit Current (mA) vs. Input/Output Differential (V)
 - 25°C, 125°C

PSRR

- PSRR (dB) vs. Frequency (Hz)
 - VIN = 5V, VOUT = 1.8V
 - VIN = 5V, VOUT = 3.3V
 - C\text{IN} = 1μF, T\text{A} = 125°C
 - C\text{OUT} = 1μF Electrolytic Capacitor

www.richtek.com

DS9169/H-14 April 2011
Line Transient Response

- **Input Voltage Deviation (V)**
 - 6
 - 5
 - 4
 - 3

- **Output Voltage Deviation (mV)**
 - 300
 - 200
 - 100
 - 0

- **Time (1ms/Div)**

- **Input Voltage**
 - $V_{IN} = 5V$
- **Output Voltage**
 - $V_{OUT} = 1.8V$
- **Current**
 - $I_{OUT} = 50mA$
- **Temperature**
 - $T_A = 25\degree C$
- **Capacitors**
 - $C_{IN} = 1uF$ Ceramic
 - $C_{OUT} = 1uF$ Electrolytic

Load Transient Response

- **Load Current (mA)**
 - 100
 - 50
 - 1
 - -50

- **Output Voltage Deviation (mV)**
 - 100
 - 50
 - 10
 - -50

- **Time (500us/Div)**

- **Load Current (mA)**
 - 100
 - 50
 - 1
 - -50

- **Input Voltage**
 - $V_{IN} = 5V$
- **Output Voltage**
 - $V_{OUT} = 3.3V$
- **Current**
 - $I_{OUT} = 50mA$
- **Temperature**
 - $T_A = 25\degree C$
- **Capacitors**
 - $C_{IN} = 1uF$ Ceramic
 - $C_{OUT} = 1uF$ Ceramic
Outline Dimension

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions In Millimeters</th>
<th>Dimensions In Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Min: 0.889, Max: 1.295</td>
<td>Min: 0.035, Max: 0.051</td>
</tr>
<tr>
<td>A1</td>
<td>Min: 0.000, Max: 0.152</td>
<td>Min: 0.000, Max: 0.006</td>
</tr>
<tr>
<td>B</td>
<td>Min: 1.397, Max: 1.803</td>
<td>Min: 0.055, Max: 0.071</td>
</tr>
<tr>
<td>b</td>
<td>Min: 0.356, Max: 0.508</td>
<td>Min: 0.014, Max: 0.020</td>
</tr>
<tr>
<td>C</td>
<td>Min: 2.591, Max: 2.997</td>
<td>Min: 0.102, Max: 0.118</td>
</tr>
<tr>
<td>D</td>
<td>Min: 2.692, Max: 3.099</td>
<td>Min: 0.106, Max: 0.122</td>
</tr>
<tr>
<td>e</td>
<td>Min: 1.803, Max: 2.007</td>
<td>Min: 0.071, Max: 0.079</td>
</tr>
<tr>
<td>H</td>
<td>Min: 0.080, Max: 0.254</td>
<td>Min: 0.003, Max: 0.010</td>
</tr>
<tr>
<td>L</td>
<td>Min: 0.300, Max: 0.610</td>
<td>Min: 0.012, Max: 0.024</td>
</tr>
</tbody>
</table>

SOT-23-3 Surface Mount Package
SOT-23-5 Surface Mount Package

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions In Millimeters</th>
<th>Dimensions In Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>A</td>
<td>0.889</td>
<td>1.295</td>
</tr>
<tr>
<td>A1</td>
<td>0.000</td>
<td>0.152</td>
</tr>
<tr>
<td>B</td>
<td>1.397</td>
<td>1.803</td>
</tr>
<tr>
<td>b</td>
<td>0.356</td>
<td>0.559</td>
</tr>
<tr>
<td>C</td>
<td>2.591</td>
<td>2.997</td>
</tr>
<tr>
<td>D</td>
<td>2.692</td>
<td>3.099</td>
</tr>
<tr>
<td>e</td>
<td>0.838</td>
<td>1.041</td>
</tr>
<tr>
<td>H</td>
<td>0.080</td>
<td>0.254</td>
</tr>
<tr>
<td>L</td>
<td>0.300</td>
<td>0.610</td>
</tr>
</tbody>
</table>
3-Lead SOT-89 Surface Mount Package

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions In Millimeters</th>
<th>Dimensions In Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>A</td>
<td>1.397</td>
<td>1.600</td>
</tr>
<tr>
<td>b</td>
<td>0.356</td>
<td>0.483</td>
</tr>
<tr>
<td>B</td>
<td>2.388</td>
<td>2.591</td>
</tr>
<tr>
<td>b1</td>
<td>0.406</td>
<td>0.533</td>
</tr>
<tr>
<td>C</td>
<td>3.937</td>
<td>4.242</td>
</tr>
<tr>
<td>C1</td>
<td>0.787</td>
<td>1.194</td>
</tr>
<tr>
<td>D</td>
<td>4.394</td>
<td>4.597</td>
</tr>
<tr>
<td>D1</td>
<td>1.397</td>
<td>1.753</td>
</tr>
<tr>
<td>e</td>
<td>1.448</td>
<td>1.549</td>
</tr>
<tr>
<td>H</td>
<td>0.356</td>
<td>0.432</td>
</tr>
</tbody>
</table>
3-Lead TO-92 Plastic Package

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions In Millimeters</th>
<th>Dimensions In Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>A</td>
<td>3.175</td>
<td>4.191</td>
</tr>
<tr>
<td>A1</td>
<td>1.143</td>
<td>1.372</td>
</tr>
<tr>
<td>b</td>
<td>0.406</td>
<td>0.533</td>
</tr>
<tr>
<td>C</td>
<td>0.406</td>
<td>0.533</td>
</tr>
<tr>
<td>D</td>
<td>4.445</td>
<td>5.207</td>
</tr>
<tr>
<td>D1</td>
<td>3.429</td>
<td>5.029</td>
</tr>
<tr>
<td>E</td>
<td>4.318</td>
<td>5.334</td>
</tr>
<tr>
<td>e</td>
<td>1.143</td>
<td>1.397</td>
</tr>
<tr>
<td>L</td>
<td>12.700</td>
<td></td>
</tr>
</tbody>
</table>

Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.