

5μA System Side Single Cell Fuel Gauge with Build-In Sense Resistor

General Description

The RT9427R Li-Ion/Li-Polymer battery fuel gauge is a microcontroller peripheral that provides fuel gauging for single-cell battery packs. The RT9427R resides within the system's main board and manages a non-removable battery or removable battery pack.

The RT9427R reports StateOfCharge, StateOfHealth, FullChargeCapacity, TimeToEmpty and CycleCount based on the Voltaic Gauge with Current Sensing (VGCS) algorithm by using the voltage difference between battery voltage and OCV to calculate the increasing or decreasing SOC, with current sensing compensation to report battery SOC.

Voltaic Gauge with Current Sensing algorithm can support smoothly SOC and does not accumulate error with time and current. That is an advantage compared to coulomb counter which suffer from SOC drift caused by current sense error and battery self-discharge.

The RT9427R provides complete battery status monitor with interrupt alarm function. It can alert to host processor actively when condition of battery over/undervoltage, charge/ over-temperature discharge and overcurrent in charge/discharge. Especially for high C-rate battery charging application, it can measure battery voltage by kelvin sense connection to eliminate the IR drop effect for optimal charging profile and safety. More useful alarm functions are Under SOC alert, SOC Change and battery presence status change.

The recommended junction temperature range is -40° C to 125°C, and the ambient temperature range is -40° C to 85°C.

Features

- Support System Side Fuel Gauging
- Battery Fuel Gauge for 1-Series (1sXp)
 Li-lon/Li-Polymer Applications
- State of Charge (SOC) Calculated by VoltaicGaugeTM with Current Sensing (VGCS)
- No Accumulation Error on Capacity Calculation
- Battery SOC, SOH, FCC, TTE and Cycle Count Report
- Ultra Low Power Consumption 5μA
- Voltage Measurement: ±5mV
- Current Measurement: ±1%
- Battery Temperature Measurement: ±1°C
- Battery monitor with alert indicator for Voltage,
 Current, Temperature, SOC and Presence
- High C-Rate Battery Charging Compliance
- Voltage Kelvin-Sense Connection
- Build-In 8mΩ Sense Resistor
- 9 Bump WL-CSP Package with 0.5mm Pitch
- I²C Controlled Interface with 1.2V and 1.8V IO Compatible

Applications

- Wearable Device
- Handheld and Portable Applications
- Digital Still Cameras
- Digital Video Cameras

Ordering Information

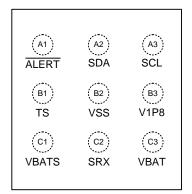
RT9427R □

Package Type

WSC: WL-CSP-9B 1.68x1.81 (BSC)

Note:

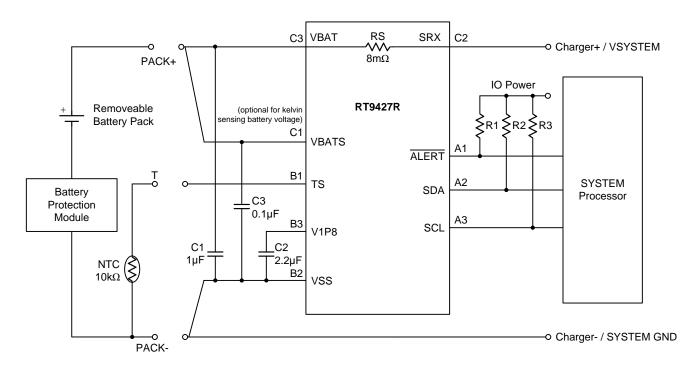
Richtek products are Richtek Green Policy compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.


Marking Information

2G: Product Code XXYY: Wafer ID with Check Sum CCC-RRR: IC Coordinate (X, Y) YMDNN: Date Code

Pin Configuration

(TOP VIEW)


WL-CSP-9B 1.68x1.81 (BSC)

Functional Pin Description

Pin No.	Pin Name	Pin Function
A1	ALERT	Alert open-drain indicator output.
A2	SDA	Serial data input. Slave I ² C serial communications data line for communication with system. Open-drain I/O.
А3	SCL	Serial cock input. Slave I ² C serial communications clock line for communication with system. Open-drain I/O.
B1	TS	Temperature measurement input.
B2	VSS	Device ground.
В3	V1P8	1.8V LDO output. Connect $2.2\mu F$ ceramic capacitor to VSS. It cannot provide power for other device in the system.
C1	VBATS	Battery voltage sensing input. Connect to battery positive terminal with kelvin connection.
C2	SRX	Battery current sensing positive input.
C3	VBAT	Power supply input and battery current sensing negative input.

Typical Application Circuit

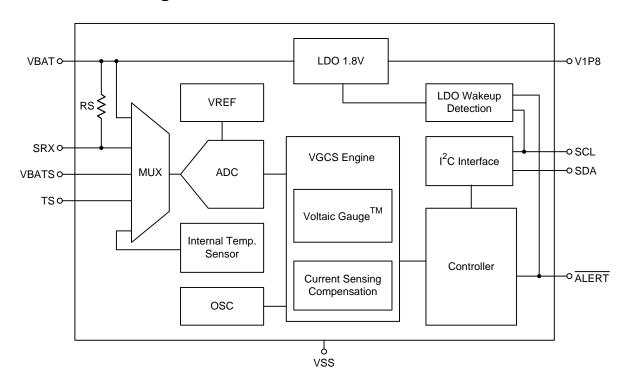


Table 1.BOM List

Name	Part Number	Description	Package	Manufacturer
C1	GRM155R61A105KE01	CAP, CERM, 1μF, 10V, ±10%, X5R	0402	Murata
C2	GRM155R60J225KE01	CAP, CERM, 2.2μF, 6.3V, ±10%, X5R	0402	Murata
C3	GRM155R61A104KA01E	CAP, CERM, 0.1μF, 10V, ±10%, X5R	0402	Murata
R1, R2, R3	WR06X3301FTL	3.3k, 1%, 0.1W	0603	WALSIN
NTC	103KT1608-1P	10kΩ, 1%, B = 3435K	0603	SEMITEC

Functional Block Diagram

DS9427R-00

Absolute Maximum Ratings (Note 1)	
Voltage on SRX Pin Relative to VSS	VBAT ± 0.3V
Voltage on V1P8 Pin Relative to VSS	0.3V to 2V
Voltage on VBAT Pin Relative to VSS	0.3V to 6V
Voltage on All Other Pins Relative to VSS	0.3V to 6V
 Power Dissipation, PD @ TA = 25°C 	
WL-CSP-9B 1.68x1.81 (BSC)	1.81W
Package Thermal Resistance (Note 2)	
WL-CSP-9B 1.68x1.81 (BSC), θJA	55°C/W
Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	65°C to 150°C
• ESD Susceptibility (Note 3)	
HBM (Human Body Model)	2kV
Recommended Operating Conditions (Note 4)	
Supply Voltage, VBAT	- 2.5V to 5.5V
Ambient Temperature Range	40°C to 85°C
Junction Temperature Range	40°C to 125°C

Electrical Characteristics

(2.5V \leq VBAT \leq 5.5V, T_{A} = 25°C, unless otherwise specified)

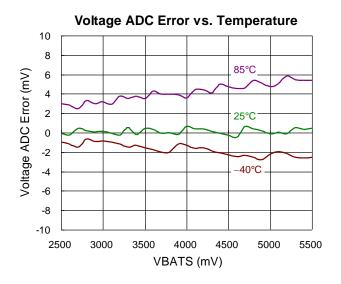
Parameter	Symbol	Test Conditions		Тур	Max	Unit
Operation Voltage		VBAT - VSS	2.5		5.5	V
Active Current	IACTIVE	V _{BAT} = 3.8V, battery present and ExTemp disable		12	20	μА
Sleep Current	ISLEEP	V _{BAT} = 3.8V, battery present and ExTemp disable, period is 4 times of active mode		5	12	μА
Shutdown Current	ISHUTDOWN	V _{BAT} = 3.8V, LDO off		1	1.5	μА
1.8V LDO	V _{1P8}			1.85		V
Voltage Measurement Range			2.5		VBAT	V
Voltage Measurement Error	VERR	V _{BAT} = 4V	-5		5	mV
Sense Resistor Value	RSENSE	TA = 25°C		8		mΩ
		Continuous current at 100% device utilization			3	
Recommended Input Current of Sense Resistor (Note 5)	IRSENSE	Continuous current at 10% device utilization			4	А
(.1010)		Peak pulsed current, 250ms maximum pulse width,10% maximum duty cycle, 1% device utilization	1		5	

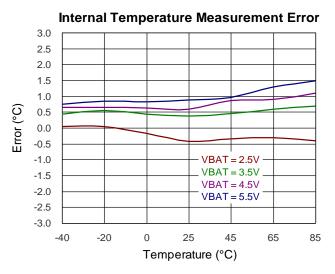
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Current Measurement Gain Error (Note 6)	IGERR		-1		1	%
Current Measurement Offset Error	IOERR	VVBAT - VSRX = 0V (Note 7)	-1		1	mA
Temperature Measurement	ExtTgerr	$T_A = 0$ °C to 45°C (Note 8)	-1		1	ŷ
Error	LATIGENIX	$T_A = -40$ °C to 85°C (Note 8)	-3		3)
Internal Temperature Measurement Range		(Note 9)	-40		85	°C
Internal Temperature Measurement Error	IntTGERR	T _A = 25°C		±3		°C
Battery Presence Detect Threshold			0.93 x V _{BAT}	0.95 x V _{BAT}	0.97 x V _{BAT}	V
Battery Presence Detect Pull High Resistor				150		kΩ
Battery Insertion Detection Time		Battery detection delay time Programmable	20		145	ms
Battery Removal Detection Time		Real-time detection enabled			1.1	ms
Input Logic-High: SCL, SDA, ALERT	ViH	Reference to VSS	0.78			V
Input Logic-Low: SCL, SDA, ALERT	VIL	Reference to VSS			0.5	V
Output Logic-Low: SDA, ALERT	VoL	I _{OL} = 3mA, reference to VSS			0.3	V
Pulldown Current: SCL, SDA, ALERT	IPDN		0.05	0.2	0.4	μΑ
SHUTDOWN Low Detection Time: SCL, ALERT	tsldt		20			μS
SHUTDOWN Entry Time	tshon	Delay time from SHUTDOWN command to V1P8 turned off, programmable	1		256	sec
I ² C ACK Delay Time	tack	I ² C ACK, register information not ready.			10	ms
Initialization Ready Time	trdy	Delay time from rising edge of VBAT to the active state.			250	ms
I ² C Time Out		Programmable	0.5		2.25	sec

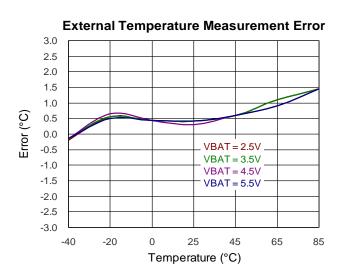
Electrical Characteristics: I²C Interface

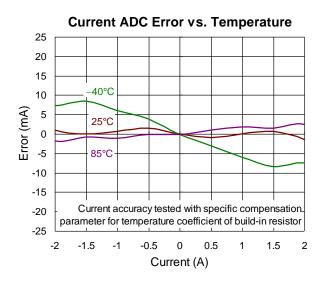
(2.5V \leq V_BAT \leq 5.5V, T_A = 25°C, unless otherwise specified)

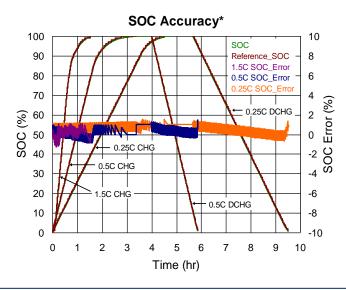
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Clock Operating Frequency	fscL	(Note 10)	10		400	kHz
Bus Free Time Between a STOP and START Condition	tBUF		1.3			μS
Hold Time After START Condition	thd;sta	(Note 10)	0.6			μS

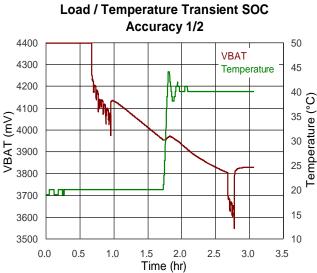

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Low Period of the SCL Clock	tLOW		1.3			μS
High Period of the SCL Clock	thigh		0.6			μS
Setup Time for a Repeated START Condition	tsu:sta		0.6			μS
Data Hold Time	thd;dat	(Note 11, 12)	0		0.9	μS
Data Setup Time	tsu;dat	(Note 11)	100			ns
Data Valid Time	tvd;dat	(Note 13, 14)			0.9	us
Data Valid Acknowledge Time	tvd;ack	(Note 13, 15)			0.9	us
Clock Data Rise Time	tR		20		300	ns
Clock Data Fall Time	tF		20		300	ns
Set-Up Time for STOP Condition	tsu;sto		0.6			μS
Spike Pulse Widths Suppressed by Input Filter	tsp	(Note 16)	0		50	ns
Capacitive Load for Each Bus Line	Св	(Note 17)			400	pF
SCL, SDA Input Capacitance	CBIN				5	pF

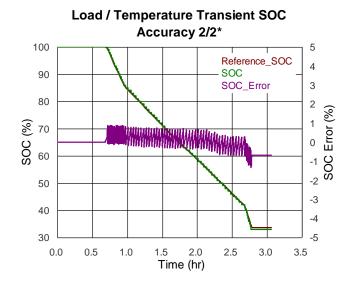

- **Note 1.** Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- **Note 2.** θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}\text{C}$ with the component mounted on a high effective-thermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard.
- Note 3. Devices are ESD sensitive. Handling precautions are recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.
- Note 5. Guaranteed by design and not production tested.
- Note 6. Need firmware compensation parameter applied for temperature coefficient of resistor.
- Note 7. Typical result is long time average.
- Note 8. The thermistor is use 10k NTC and beta 3435k, default is SEMITEC 103KT1608T.
- **Note 9.** Specifications are 100% tested at T_A = 25°C. Limits over the operating range are guaranteed by design and characterization.
- Note 10. f_{SCL} must meet the minimum clock low time plus the rise/fall times.
- Note 11. The maximum t_{HD:DAT} has only to be met if the device does not stretch the low period (t_{LOW}) of the SCL signal.
- Note 12. This device internally provides a hold time of at least 300ns for the SDA signal (referred to the V_{IHMIN}) of the SCL signal to bridge the undefined region of the falling edge of SCL.
- Note 13. The maximum $t_{VD;DAT}$ can be $0.9\mu s$ for Fast-mode, but must be less than the maximum of $t_{VD;DAT}$ or $t_{VD;ACK}$ by a transition time. This maximum must only be met if the device does not stretch the LOW period (t_{LOW}) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.
- Note 14. t_{VD;DAT} = Time for data signal from SCL LOW to SDA output (HIGH or LOW, depending on which one is worse).
- **Note 15.** t_{VD;ACK} = Time for Acknowledgement signal from SCL LOW to SDA output (HIGH or LOW, depending on which one is worse).
- Note 16. Filters on SDA and SCL suppress noise spikes at the input buffers and delay the sampling instant.
- Note 17. C_B Total capacitance of one bus line in pF.

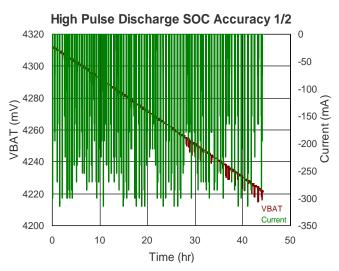


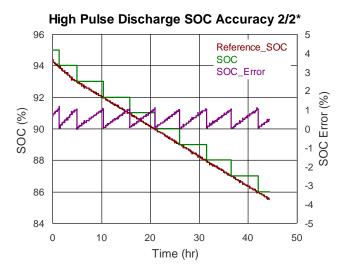

Typical Operating Characteristics


*: SOC accuracy tested by IC with custom parameter.









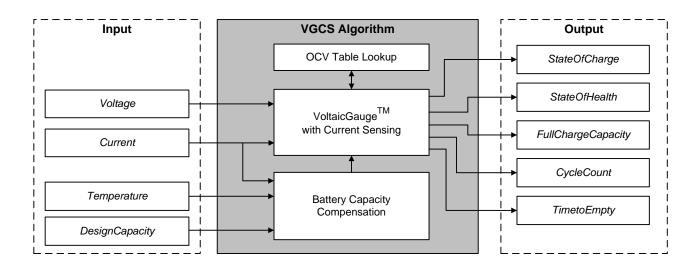
Copyright © 2023 Richtek Technology Corporation. All rights reserved.

DS9427R-00 September 2023 www.richtek.com

Application Information

Richtek's component specification does not include the following information in the Application Information section. Thereby no warranty is given regarding its validity and accuracy. Customers should take responsibility to verify their own designs and reserve suitable design margin to ensure the functional suitability of their components and systems.

ADC for Voltage, Current and Temperature


Battery voltage is measured at the VBAT pin input with respect to VBATG over a 2.5 to 5.5V range with resolutions of 1mV. The ADC calculates the first cell voltage for a period of 250ms after IC power on and then for a period of 1s for every cycle afterwards. The Voltage register requires 1s to update after exiting Sleep mode. The result is placed in the *Voltage* register at the end of each conversion period.

The RT9427R Fuel Gauge measures battery current in charging and discharging and reports it to *Current* register. The measurement range is 3A, and the resolution is 1mA.

The RT9427R reports temperature to *Temperature* register by measuring battery temperature or chip temperature. When measuring battery temperature, an external NTC resistor will be used.

VoltaicGauge[™] with Current Sensing (VGCS) Algorithm

The VGCS algorithm is based on the battery voltage and the dynamic difference of battery voltage and battery current measurement, by iterating battery voltage information and compensating with current information to increase or decrease delta SOC, then integrate to SOC. The below figure is for VGCS functional block.

The RT9427R got battery voltage information then using OCV table and iterate calculation with current correction to calculate delta SOC, then using design capacity and battery capacity as a reference to optimize result and output final SOC result.

The coulomb counter based fuel gauge suffers from SOC drift due to current-sense error and cell self-discharge. Even there is a very small current sensing error, the coulomb counter accumulates the error from time to time, VGCS is based on voltage

iteration algorithm to reach stable SOC behavior and only using current information to fine tune result for getting good transient state response. VGCS does not accumulate current and suffer SOC drift issue like traditional coulomb counter.

VGCS also support high C-RATE charging technology, battery capacity aging compensation by full charge, full discharge, relax condition and Battery Aging Profile Adjust (BAPA) command.

Design Capacity

The *DesignCapacity* register should be set with proper value after IC power on, Design Capacity is the expected capacity when cell has been made and it is not been changed when VGCS active. Design Capacity is used as a reference input for VGCS algorithm. The resolution of Design Capacity is 1mAh and default value is 0x07D0 (2000mAh).

SOC Report

The *StateOfCharge* register is a read-only register that displays the state of charge of the cell as calculated by the VGCS algorithm. The result is displayed as a percentage of the cell's full capacity. This register automatically adapts to variation in battery size since the Fuel Gauge naturally recognize relative SOC. The units of SOC is %. The reported SOC also includes residual capacity, which might not be available to the actual application because of early termination voltage requirements. When SOC = 0, typical applications have no remaining capacity. The first update occurs in 250ms after POR of the IC.

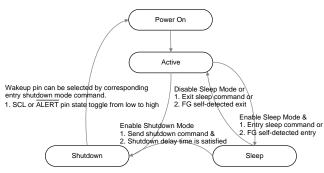
Power Mode

There are three power mode for the RT9427R. Each power mode can be applied on different application for different power consumption considering. The three power modes are Active mode, Sleep mode and Shutdown mode.

Active Mode

The active mode is recommended and it is the default power mode after power on. In active mode, the Voltage, Current, Temperature, AverageVoltage, AverageCurrent and AverageTemperature will be updated every second.

Sleep Mode


The sleep mode behavior is the same as the active mode but it has the longer measurement period. The period in the sleep mode is programmable. The minimum period is 2 times of active mode and the maximum period is 16 times of active mode. The default period is 4 times of active mode. When sleep mode function is enabled, it can be entered/exited by

sending commands or by Fuel Gauge self-detection.

Shutdown Mode

In shutdown mode, the RT9427R will turn off internal LDO to keep the minimum power consumption and all the RAM-based data are lost. To enter shutdown mode, the function should be enabled firstly and shutdown delay time is satisfied after sending entry shutdown mode command. To exit shutdown mode, it can be wakeup by SCL or ALERT pin transition from low to high and the low period should satisfy tWAKE. Wakeup pin can be selected by corresponding entry shutdown mode command.

Power Mode Switching

*: Exit sleep mode command is available for FG self-detected entry sleep mode.
*: After sending shutdown mode command, FG will stay at latest mode and keep corresponding routine work until shutdown delay time is satisfied.

Controller

The controller takes care of the control flow of system routine, ADC measurement flow, algorithm calculation and alert determined.

Power Up Sequence

When the RT9427R is power on, the Fuel Gauge (FG) measures the battery voltage and then predicts the first SOC according to the voltage for a period of 250ms. The first SOC will be accurate if the battery has been well relaxed for over 30 minutes. Otherwise, the initial SOC error occurs. However, the initial SOC error will be convergent and the SOC will be adjusted gradually and finally approach to the OCV when battery is relaxed.

Quick Sensing

A Quick Sensing operation allows the RT9427R to restart battery voltage sensing and StateOfCharge calculation. The operation is used to reduce the initial StateOfCharge error caused by improper power-on sequence. A Quick Sensing operation can be performed by I²C Quick Sensing command (0x4000) to the Control register.

Alert Function

The RT9427R support several kinds of alert to alarm system there is abnormal condition need to be noticed, such as over-temperature or undervoltage. It total includes over-temperature in charge (OTC), overtemperature in discharge (OTD), overvoltage (OV), undervoltage (UV), under-SOC (US) and SOC change (SC), overcurrent in charge (OCC), overcurrent in discharge (ODC) and temperature change (TC) alerts.

Host can polling the ALERT Flag for a period to monitor system status or accept the interrupt notice from the RT9427R ALERT pin. Alert need to be enabled before it works. There are 2 ways to enable alert function. One is to enable specified bit operation, the other is just to set a proper value to detection threshold. Please refer to below diagram and descriptions for detailed.

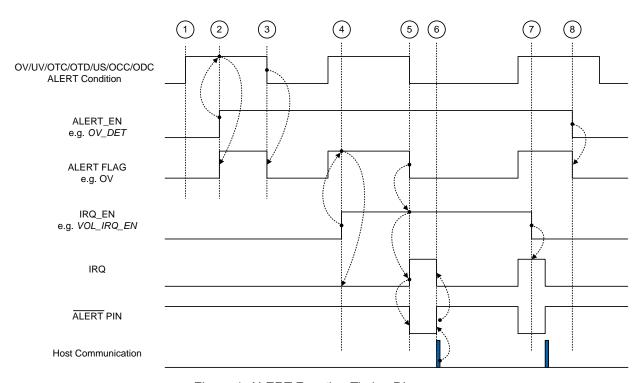
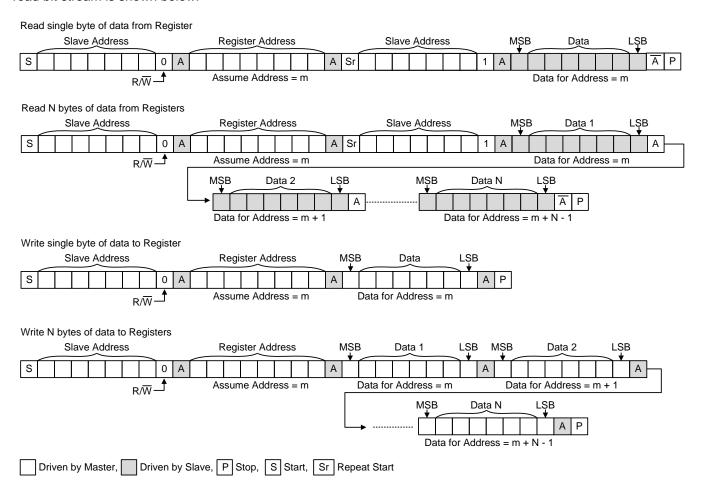


Figure 1. ALERT Function Timing Diagram

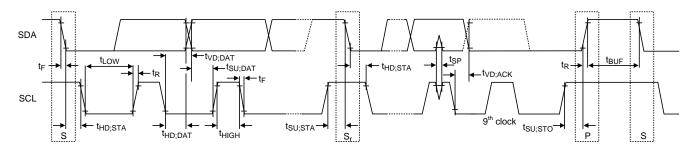
- 1. ALERT occur but ALERT_EN is disabled, ALERT FLAG have no response.
- 2. ALERT EN enable, ALERT FLAG is set when ALERT condition occur.
- 3. ALERT FLAG is cleared when ALERT condition recover.
- 4. When ALERT FLAG is already set and IRQ_EN is set, IRQ and ALERT PIN output have no response.
- 5. IRQ is set and ALERT PIN output low only when IRQ_EN is set and ALERT FLAG state change.
- 6. IRQ and ALERT PIN are read clear only.
- 7. Clear IRQ EN have no effect on IRQ and ALERT PIN output.
- Disable ALERT_EN will also clear ALERT FLAG.

DS9427R-00



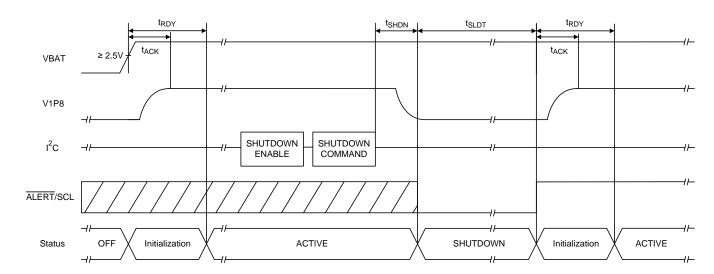

Figure 2. SC/TC ALERT Function Timing Diagram

- 1. ALERT condition occur but ALERT_EN disable, ALERT FLAG have no response
- 2. ALERT_EN enable, ALERT FLAG is set when ALERT condition occur.
- 3. ALERT FLAG is cleared when driver write ALERT FLAG to 0.
- 4. When ALERT FLAG is already set and IRQ_EN is set, IRQ and ALERT PIN output have no response.
- 5. IRQ is set and ALERT PIN output low only when IRQ_EN is set and ALERT FLAG state set.
- 6. IRQ and ALERT PIN are read clear only, driver read clear IRQ will also clear ALERT FLAG
- 7. Clear IRQ_EN have no effect on IRQ and ALERT PIN output.
- 8. Disable ALERT_EN will also clear ALERT FLAG.



I²C Interface

The RT9427R I^2C slave address = 7'b1010101. I^2C interface support fast mode (bit rate up to 400kb/s). The write or read bit stream is shown below:



I²C Waveform Information

Shutdown and Wake-Up Timing

^{*:} Wake-up pin can be selected by corresponding entry shutdown mode command.

DS9427R-00 September 2023 www.richtek.com

Register Summary Table

Name	Symbol	Address	Unit	Mode	Reset
Control	CNTL	0x00 to 0x01		R/W	0x0000
Current	CURR	0x04 to 0x05	mA	R	0x0000
Temperature	TEMP	0x06 to 0x07	0.1°K	R/W	0x0BA6
Voltage	VBAT	0x08 to 0x09	mV	R	0x0ED8
Flag1	FLAG1	0x0A to 0x0B		R	0x0000
Flag2	FLAG2	0x0C to 0x0D		R	0x0000
DeviceID	DVCID	0x0E to 0x0F		R	0x2752
RemainingCapacity	RM	0x10 to 0x11	mAh	R	0x03E8
FullChargeCapacity	FCC	0x12 to 0x13	mAh	R	0x07D0
AverageCurrent	Al	0x14 to 0x15	mA	R	0x0000
TimeToEmpty	TTE	0x16 to 0x17	minute	R	0xFFFF
Version	VER	0x20 to 0x21		R	0x0001
VGCOMP12	VGCOMP12	0x24 to 0x25		R/W	0x3232
VGCOMP34	VGCOMP34	0x26 to 0x27		R/W	0x3232
InternalTemerature	INTT	0x28 to 0x29	0.1°K	R	0x0BA6
CycleCount	CYC	0x2A to 0x2B	Counts	R/W	0x0000
StateOfCharge	SOC	0x2C to 0x2D	%	R	0x0032
StateOfHealth	SOH	0x2E to 0x2F	%	R	0x0064
Flag3	FLAG3	0x30 to 0x31		R	0x0000
IRQ	IRQ	0x36 to 0x37		R	0x0000
DesignCapacity	DC	0x3C to 0x3D	mAh	R	0x07D0
ExtendedControl	EXTDCNTL	0x3E to 0x3F		W	0x0000
ExtendReg0 to 15	EXTREG0 to 15	0x40 to 0x4F		R/W	0xFFFF
ExtPageChecksum	PAGE_CKS	0x50 to 0x51		R	0xFFFF
AverageVoltage	AV	0x64 to 0x65	mV	R	0x0ED8
AverageTemperature	AT	0x66 to 0x67	0.1°K	R	0x0BA6
ExtTotalChecksum	TOTAL_CKS	0x68 to 0x69		R	0x0000

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature TJ(MAX), listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

 $PD(MAX) = (TJ(MAX) - TA) / \theta JA$

DS9427R-00

where T_J(MAX) is the maximum junction temperature, TA is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-toambient thermal resistance, θ_{JA} , is highly package dependent. For a WL-CSP-9B 1.68x1.81 (BSC) package, the thermal resistance, θ_{JA} , is 55°C/W on a standard **JEDEC** 51-7 high effective-thermalconductivity four-layer test board. The maximum power dissipation at T_A = 25°C can be calculated as below:

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (55^{\circ}C/W) = 1.81W$ for a WL-CSP-9B 1.68x1.81 (BSC) package.

The maximum power dissipation depends on the operating ambient temperature for the fixed T_J(MAX) and the thermal resistance, θ_{JA} . The derating curves in Figure 3 allows the designer to see the effect of rising ambient temperature on the maximum dissipation.

September 2023

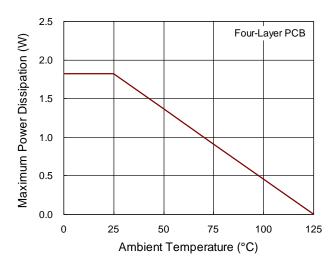


Figure 3. Derating Curve of Maximum Power Dissipation

Layout Considerations

To ensure the measurement accuracy of the RT9427R, the recommended layout guideline is as below:

- ▶ The capacitor of VBAT pin must be put as close as possible to avoid the noise effect.
- ▶ The VBATS and VSS path must be make Kelvin sense connection to the P+ and P- to minimize the IR drop effect on voltage measurement accuracy.
- ▶ The VBAT and SRX path copper should be routed as wilder as possible for thermal consideration.
- ▶ The NTC should be as close as possible to the Battery and far away from the thermal area.
- ▶ The capacitor of V1P8 pin must be put as close as possible to the IC.
- ▶ There are no special layout requirements for other pins.

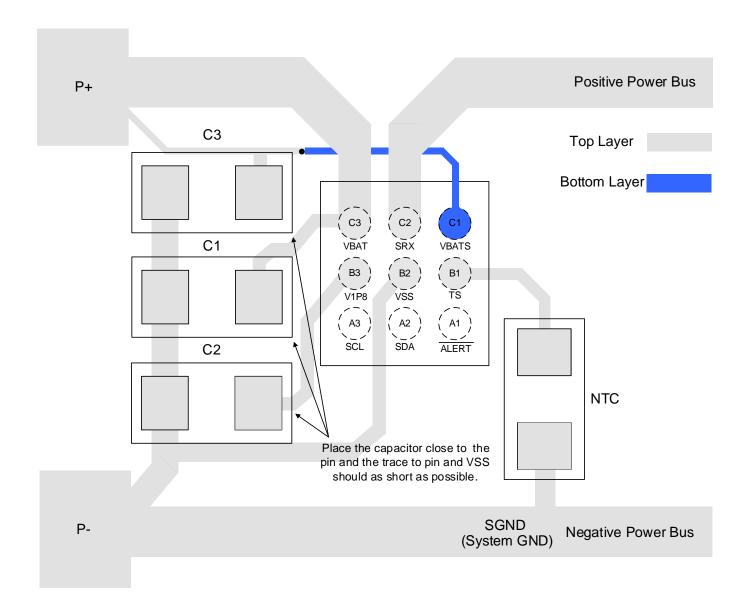
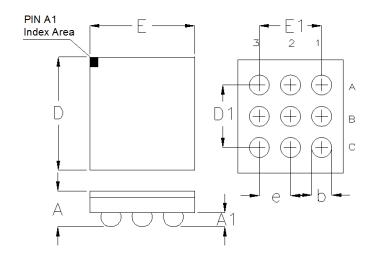
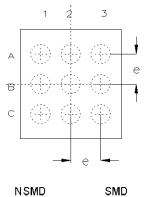
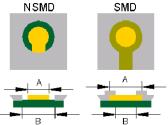



Figure 4. PCB Layout Guide

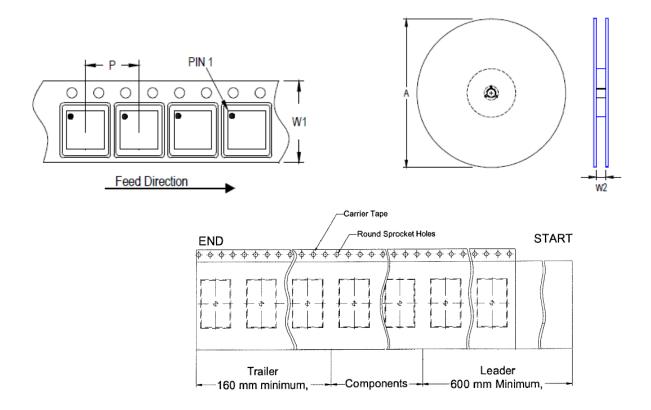
Outline Dimension



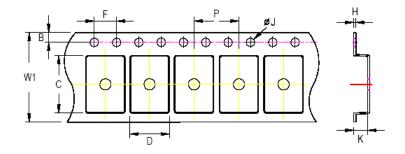

Symbol	Dimensions I	In Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
А	0.525	0.625	0.021	0.025		
A1	0.200	0.260	0.008	0.010		
b	0.290	0.350	0.011	0.014		
D	1.770	1.850	0.070	0.073		
D1	1.0	000	0.0)39		
E	1.640	1.720	0.065	0.068		
E1	1.0	000	0.039			
е	0.5	500	0.0)20		

9B WL-CSP 1.68x1.81 Package (BSC)

Footprint Information



Packago	Number of	Tuna	Footpri	nt Dimensio	n (mm)	Toloropoo	
Package	Pin	Type	е	Α	В	Tolerance	
WL-CSP1.68x1.81-9(BSC)	9	NSMD	0.500	0.275	0.375	±0.025	
WL-C3P 1.00X1.01-9(B3C)	9	SMD	0.500	0.305	0.275	±0.025	



Packing Information

Tape and Reel Data

Package Type	Tape Size (W1) (mm)	Pocket Pitch (P) (mm)	Reel Si	ze (A) (in)	Units per Reel	Trailer (mm)	Leader (mm)	Reel Width (W2) Min./Max. (mm)
WL-CSP 1.68x1.81	8	4	180	7	3,000	160	600	8.4/9.9

- C, D and K are determined by component size.

 The clearance between the components and the cavity is as follows:
- For 8mm carrier tape: 0.5mm max.

Tape Size	W1	F)	В		F		Ø٦		Н
Tape Size	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
8mm	8.3mm	3.9mm	4.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1	PICHTERA I PAR TO THE PART OF	4	
	Reel 7"		12 inner boxes per outer box
2	MOTOLULUS TO THE PARTY OF THE P	5	RICHTEK 1974-Talign
	Packing by Anti-Static Bag		Outer box Carton A
3	RICHTEK JAMES PART STATE OF THE STATE OF TH	6	
	3 reels per inner box Box A		

Container	R	eel	Вох			Carton				
Package	Size	Units	Item	Size(cm)	Reels	Units	Item	Size(cm)	Boxes	Unit
WL-CSP	7"	2 000	Box A	18.3*18.3*8.0	3	9,000	Carton A	38.3*27.2*38.3	12	108,000
1.68x1.81	′	3,000	Box E	18.6*18.6*3.5	1	3,000		For Combined or Pa	artial Reel.	

Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω /cm ²	10 ⁴ to 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2023 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

DS9427R-00 September 2023 www.richtek.com

Datasheet Revision History

Version	Date	Description	Item
00	2023/9/19	Final	General Description on P1 Applications on P1 Ordering Information on P2 Marking Information on P2 Absolute Maximum Ratings on P5 Electrical Characteristics on P5 Note 4, 5 on P7 Application Information on P10, 11