Integrated Over Voltage Protection Circuit

General Description

The RT9709 is an integrated circuit (IC) optimized to protect low voltage system from abnormal high voltage input up to 28V. The IC monitors the input voltage, battery voltage and the charging current to make sure all three parameters are operated in normal range. It also monitors its own temperature and turns the MOSFET off when the chip temperature exceeds 140°C.

The RT9709 can support AC charger or USB charger. When the input voltage exceeds the OVP threshold, the IC turns off the MOSFET within 1us to remove the power before any damage occurs.

The current in the MOSFET is also limited to prevent charging the battery with an excessive current. The current limit can be programmed by an external resistor between ILIM and GND. The OCP function has a 4-bit binary counter that accumulates during an OCP event. When the total count reaches 16 times, the MOSFET will be turned off permanently unless the input power is recycled.

The IC also monitors the battery voltage VB. When the battery voltage exceeds 4.4V and last for more than 180us the RT9709 will turn off the MOSFET. The internal logic control will turn off and latch the MOSFET when the battery over-voltage event reaches 16 times.

Features

- Fully Integrated Protection Circuit for Three Protection Variables
 - User Programmable OCP Threshold
 - Input OVP Less than 1us
 - Battery OVP
- Up to 30V Over Voltage Protection
- High Accuracy Protection Threshold
- High Immunity of False Triggering Under Transients
- Warning Indication Output
- Enable Input
- Thermally Enhanced WDFN Package
- RoHS Compliant and Halogen Free

Applications

- Cellular Phones
- Digital Cameras
- PDAs and Smart Phones
- Portable Instruments

Ordering Information

- **Package Type**
 - RT9709 QW : WDFN-12L 4x3 (W-Type)
 - RT9709 QWB : WDFN-10L 3x3 (W-Type)
- **Lead Plating System**
 - G : Green (Halogen Free and Pb Free)
- **OVP Default**
 - A : 5.85V
 - B : 6.25V

Note:

Richtek products are:
- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Marking Information

For marking information, contact our sales representative directly or through a Richtek distributor located in your area.
Functional Pin Description

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Pin Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>VIN</td>
<td>Input Power Source Pin.</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground Pin.</td>
</tr>
<tr>
<td>4</td>
<td>WRN</td>
<td>This is an open-drain logic output that turns LOW when any protection event occurs.</td>
</tr>
<tr>
<td>5, 6, 12</td>
<td>NC</td>
<td>No Internal Connection.</td>
</tr>
<tr>
<td>7</td>
<td>EN</td>
<td>Enable Input Pin. Pull this pin to low or leave it floating to enable the IC. Force this pin to high to disable the IC.</td>
</tr>
<tr>
<td>8</td>
<td>VB</td>
<td>Battery Voltage Monitoring Input Pin. This pin is connected to the battery pack positive terminal via resistor.</td>
</tr>
<tr>
<td>9</td>
<td>ILIM</td>
<td>Over-Current Protection Threshold Setting Pin. Connect a resistor between this pin and GND to set the OCP threshold.</td>
</tr>
<tr>
<td>10, 11</td>
<td>VOUT</td>
<td>Output Voltage Pin. Output through the MOSFET.</td>
</tr>
<tr>
<td>13 (Expose Pad)</td>
<td>GND</td>
<td>The exposed pad must be soldered to a large PCB and connected to GND for maximum thermal dissipation.</td>
</tr>
</tbody>
</table>

Function Block Diagram
Absolute Maximum Ratings (Note 1)

- Supply Input Voltage, \(V_{\text{IN}} \) .. \(-0.3\) to 30V
- \(V_{\text{OUT}}, V_B \) ... \(-0.3\) to 7V
- Other Pins ...
- Power Dissipation, \(P_D \) @ \(T_A = 25^\circ \text{C} \)
 - WDFN-10L 3x3 ... 1.429W
 - WDFN-12L 4x3 ... 1.667W
- Package Thermal Resistance (Note 2)
 - WDFN-10L 3x3, \(\theta_{JA} \) .. 70°C/W
 - WDFN-10L 3x3, \(\theta_{JC} \) .. 7°C/W
 - WDFN-12L 4x3, \(\theta_{JA} \) .. 60°C/W
 - WDFN-12L 4x3, \(\theta_{JC} \) .. 7°C/W
- Junction Temperature ... 150°C
- Lead Temperature (Soldering, 10 sec.) .. 260°C
- Storage Temperature Range .. -65°C to 150°C
- ESD Susceptibility (Note 3)
 - HBM (Human Body Mode) ... 3kV
 - MM (Machine Mode) ... 250V

Recommended Operating Conditions (Note 4)

- Junction Temperature Range ... -40°C to 125°C
- Ambient Temperature Range ... -40°C to 85°C

Electrical Characteristics

(\(V_{\text{IN}} = 5\)V, \(C_{\text{IN}} = 1\)uF, \(T_A = 25^\circ \text{C} \), unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power- On Reset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation Voltage</td>
<td>RT9709</td>
<td>(V_{\text{IN}})</td>
<td>4.3</td>
<td>--</td>
<td>6.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>RT9709A</td>
<td></td>
<td>4.3</td>
<td>--</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>RT9709B</td>
<td></td>
<td>4.3</td>
<td>--</td>
<td>5.9</td>
<td>V</td>
</tr>
<tr>
<td>Under Voltage Lockout Threshold</td>
<td>(V_{\text{UVLO}})</td>
<td>(V_{\text{IN}}) Rising, Hysteresis</td>
<td>2.4</td>
<td>2.6</td>
<td>2.7</td>
<td>V</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>(I_Q)</td>
<td>When Enable, (V_{\text{EN}} < 0.4)V</td>
<td>--</td>
<td>0.5</td>
<td>1</td>
<td>mA</td>
</tr>
<tr>
<td>Shutdown Current</td>
<td>(I_{Q\ SD})</td>
<td>When Disable, (V_{\text{EN}} > 1.5)V</td>
<td>30</td>
<td>60</td>
<td>100</td>
<td>uA</td>
</tr>
<tr>
<td>Protections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input OVP Reference Voltage</td>
<td>RT9709</td>
<td>(V_{\text{OVP}})</td>
<td>6.65</td>
<td>6.8</td>
<td>7.0</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>RT9709A</td>
<td></td>
<td>5.65</td>
<td>5.85</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>RT9709B</td>
<td></td>
<td>6</td>
<td>6.25</td>
<td>6.5</td>
<td>V</td>
</tr>
<tr>
<td>Input OVP Hysteresis</td>
<td></td>
<td></td>
<td>--</td>
<td>60</td>
<td>100</td>
<td>mV</td>
</tr>
<tr>
<td>Input OVP Propagation Delay</td>
<td>(V_{\text{OUT}} = V_{\text{IN}} \times 80%)</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td>us</td>
<td></td>
</tr>
<tr>
<td>Over Current Protection</td>
<td>(I_{\text{OCP}})</td>
<td></td>
<td>0.93</td>
<td>1</td>
<td>1.07</td>
<td>A</td>
</tr>
<tr>
<td>Over Current Protection Blanking Time</td>
<td>(B_{T\ OCP})</td>
<td></td>
<td>--</td>
<td>170</td>
<td>--</td>
<td>us</td>
</tr>
</tbody>
</table>

To be continued
### Parameter	Symbol	Test Conditions	Min	Typ	Max	Units
Battery Over Voltage Protection	VBOVP	Threshold	4.3	4.35	4.4	V
	Hysteresis	--	30	--	mV	
Battery OVP Blanking time	BT_{OVP}	--	180	--	--	us
VB Pin Leakage Current	V_{VB} = 4.4V	--	--	100	--	nA
OTP Threshold	T_{SD}	Rising	--	140	--	°C
	Falling	--	90	--	°C	

Logic

| EN/ Threshold | Logic-High Voltage | V_{IH} | 1.5 | -- | -- | V
| Logic-Low Voltage | V_{IL} | -- | -- | 0.4 | V

| EN/ Internal Pull Down Resistor | Sink 5mA | 100 | 200 | 400 | kΩ

| WRN/ Output Logic Low | Internal Pull Down Resistor | 100 | 200 | 400 | kΩ

| WRN Output Logic High Leakage Current | -- | -- | 1 | uA

Power MOSFET

| On Resistance (P-MOSFET) | R_{ON1} | I_{OUT} = 500mA, 4.3V < V_{IN} < 6.5V | -- | 200 | 400 | mΩ

Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2. θ_{JA} is measured in the natural convection at $T_A = 25^\circ C$ on a high effective four layers thermal conductivity test board of JEDEC 517 thermal measurement standard. The case position of θ_{JC} is on the exposed pad of the packages.

Note 3. Devices are ESD sensitive. Handling precaution is recommended.

Note 4. The device is not guaranteed to function outside its operating conditions.
Typical Operating Characteristics

Power On from \(V_{IN} \)

- \(V_{IN} \) (5V/Div)
- \(V_{OUT} \) (5V/Div)
- \(WRN \) (2V/Div)
- \(C_{IN} = C_{OUT} = 1 \mu F \)
- Time (2.5ms/Div)

Power Off from \(V_{IN} \)

- \(V_{IN} \) (5V/Div)
- \(V_{OUT} \) (5V/Div)
- \(WRN \) (2V/Div)
- \(C_{IN} = C_{OUT} = 1 \mu F \)
- Time (250\mu s/Div)

Input OVP

- \(V_{IN} \) (10V/Div)
- \(V_{OUT} \) (5V/Div)
- \(WRN \) (5V/Div)
- \(I_{OUT} \) (1A/Div)
- Time (100ms/Div)

OCP

- \(V_{IN} \) (5V/Div)
- \(V_{OUT} \) (10V/Div)
- \(WRN \) (2V/Div)
- \(I_{OUT} \) (1A/Div)
- Time (100ms/Div)

Battery OVP

- \(V_{ACIN} \) (5V/Div)
- \(V_{BATT} \) (5V/Div)
- \(WRN \) (2V/Div)
- \(I_{OUT} \) (500mA/Div)
- Time (100ms/Div)

Quiescent Current vs. Input Voltage

- Input Voltage (V)
- Quiescent Current (\mu A)

Enable

Disable
Quiescent Current vs. Temperature

\[V_{IN} = 5.5V, C_{IN} = C_{OUT} = 1uF \]

OCP Threshold vs. Input Voltage

\[R_{SET} = 25k\Omega, C_{IN} = C_{OUT} = 1uF \]

Battery OVP Threshold vs. Input Voltage

\[C_{IN} = C_{OUT} = 1uF \]

EN Threshold Voltage vs. Input Voltage

\[C_{IN} = C_{OUT} = 1uF \]

Enable Current

Disable Current
Input OVP Threshold vs. Temperature

- C\text{IN} = C\text{OUT} = 1\text{uF}

R\text{DS(ON)} vs. Input Voltage

- C\text{IN} = C\text{OUT} = 1\text{uF}

R\text{DS(ON)} vs. Temperature

- V\text{IN} = 5.5\text{V}, C\text{IN} = C\text{OUT} = 1\text{uF}
Applications Information

Power Up
The RT9709 has an input under voltage lockout (UVLO) threshold of 2.6V with a built-in hysteresis of 100mV. Before the input voltage reaches the UVLO threshold, the RT9709 is off. When the input voltage is over the UVLO threshold; the RT9709 will delay for 10ms and after the 10ms delay, the soft-start will be activated. The 10ms delay allows any transients at the input during a hot insertion of the power supply to settle down before the IC starts to operate.

During the soft-start transition, the RT9709 slowly turns on the internal MOSFET to reduce the inrush current.

Enable Control
The RT9709 offers an enable (EN) input. When the EN pin is pulled to logic high (>1.5V), the RT9709 will be shut down. When the EN pin is pulled to logic low (<0.4V), the RT9709 will be powered on. The EN pin has an internal pull-down resistor so that leaving the EN pin floating can enable the IC.

Warning Indication Output
The WRN pin is an open-drain output that indicates a LOW signal when any protection event occurs (Input OVP, Output OCP, OTP and Battery OVP). When the protection events are released and then the WRN pin indicates a HIGH signal. The 4-bit binary counters for the battery OVP and the OCP are reset to zero when the IC is re-enabled.

Over Temperature Protection (OTP)
The RT9709 monitors its own internal temperature to prevent thermal failures. The chip turns off the MOSFET when the internal temperature reaches 140°C with a built-in hysteresis of 50°C. The IC will resume to normal operation until the internal temperature falls to 90°C.

Input Over Voltage Protection
The RT9709 monitors the input voltage to prevent the input over voltage leading to output system failures. The input OVP threshold is set to 6.8V for the RT9709. When the input voltage exceeds the threshold, the RT9709 outputs a logic signal to turn off the internal MOSFET within 1us to prevent the device in the handheld system from damaging. The hysteresis of the input OVP threshold is 100mV. When the input voltage is reduced to the normal operation voltage range, the RT9709 will re-enable the MOSFET.

Battery Over Voltage Protection
The RT9709 monitors the battery voltage by the VB pin. When the battery voltage exceeds the 4.35V battery OVP threshold, the RT9709 has a built-in 180us blanking time to prevent any transient voltage from triggering the battery OVP. If the OVP situation still exists after 180us, the internal MOSFET will be turned off and the WRN pin indicates a LOW signal. The battery OVP threshold has a 30mV built-in hysteresis. The control logic contains a 4-bit binary counter. If the battery over voltage event occurs for consecutive 16 times, the MOSFET will be turned off permanently. The OVP latch status can be reset by the EN pin.

Selecting RVB
The RT9709 monitors the battery voltage by the VB pin. The RT9709 will be turned off when the battery voltage exceeds the 4.4V battery OVP threshold. The VB pin is connected to the battery pack positive terminal via an isolation resistor (R VB) and the resistor is an important component. The R VB determines some parameters such as battery OVP threshold error and VB pin leakage current. Generally, it is necessary to decrease the R VB for reducing the battery OVP threshold error. However, this will increase the VB pin leakage current. So, it is an important issue to get a trade-off between the battery OVP threshold error and the VB pin leakage current, the allowable resistance of the R VB is 200kΩ to 1MΩ.

Over Current Protection (OCP)
The RT9709 monitors the output current to prevent the output short or the charging of the battery with an excessive current. The OCP (Over Current Protection) threshold can be set by the ILIM pin. The RT9709 has a built-in 170us delay time to prevent any transient noise triggering from the OCP. If the OCP situation still exists for 170us, the internal MOSFET will be turned off and the WRN pin indicates a LOW signal. When the OCP happens for consecutive 16 times, the internal MOSFET will be turned off permanently unless the input power is recycled or the enable pin is toggled.
Selecting Capacitors

To get the better performance of the RT9709, it is very important to select peripherally appropriate capacitors. These capacitors determine some parameters such as input inrush current and input over shoot voltage. Generally, it is necessary to increase the input capacitance C_{IN} for reducing the input over shoot voltage. However, this will increase the inrush current of input. There are two scenarios that can cause the input over shoot voltage. The first one is when the AC adapter is hot-plugged and the second one is when the RT9709 has a step-down change. The cable between the AC adapter output and the handheld system input has a parasitic inductor and resistor causing the input over shoot voltage. Generally, the input over shoot voltage range is 1.5 to 2 times the input voltage. It is recommended to use 1uF C_{IN} and C_{OUT} capacitance and the C_{IN} rated voltage should be at 1.5 to 2 time of the input voltage.

Thermal Considerations

For continuous operation, do not exceed absolute maximum operation junction temperature. The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula:

$$P_{D(\text{MAX})} = \frac{(T_{J(\text{MAX})} - T_A)}{\theta_{JA}}$$

Where $T_{J(\text{MAX})}$ is the maximum operation junction temperature 125°C, T_A is the ambient temperature and the θ_{JA} is the junction to ambient thermal resistance.

For recommended operating conditions specification of RT9709, where $T_{J(\text{MAX})}$ is the maximum junction temperature of the die (125°C) and T_A is the maximum ambient temperature. The junction to ambient thermal resistance θ_{JA} is layout dependent. The thermal resistance θ_{JA} for the WDFN-12L 4x3 packages is 60°C/W and the WDFN-10L 3x3 packages is 70°C/W on the standard JEDEC 51-7 four layers thermal test board. The maximum power dissipation at $T_A = 25^\circ C$ can be calculated by following formula:

$$P_{D(\text{MAX})} = \frac{(125^\circ C - 25^\circ C)}{(60^\circ C/W)} = 1.429W$$ for WDFN 3x3 packages

$$P_{D(\text{MAX})} = \frac{(125^\circ C - 25^\circ C)}{(60^\circ C/W)} = 1.667W$$ for WDFN 4x3 packages

The maximum power dissipation depends on operating ambient temperature for fixed $T_{J(\text{MAX})}$ and thermal resistance θ_{JA}. For the RT9709 packages, the Figure 1 of derating curves allows the designer to see the effect of rising ambient temperature on the maximum power allowed.

OCP (Over Current Protection) Setting

The OCP (Over Current protection) threshold can be set by the ILIM pin. The resistor is connected between the ILIM pin and GND to set the OCP threshold. The OCP threshold can be calculated using the following equation:

$$I_{\text{OCP}} = \frac{K}{R_{\text{ILIM}}} = \frac{25000}{R_{\text{ILIM}}}$$

Layout Consideration

The RT9709 is a protection device. So, a careful PCB layout is necessary. For best performance, place all peripheral components as close to the IC as possible.

- Place C_{IN}, C_{OUT}, R_{VB}, and R_{ILIM} near to V_{IN}, V_{OUT}, VB, ILIM and GND pin respectively. A short connection is highly recommended. The following guidelines should be strictly followed when designing a PCB layout for the RT9709.

- The exposed pad, GND, must be soldered to a large ground plane for heat sinking and noise prevention. The through-hole vias located at the exposed pad is connected to ground plane of internal layer.
VIN traces should be wide enough to minimize inductance and handle the high currents. The trace running from input to chip should be placed carefully and shielded strictly.

- Input and output capacitors must be placed close to the part. The connection between pins and capacitor pads should be copper traces without any through-hole via connection.

Output capacitor must be placed between GND and VIN to reduce noise.

Output capacitor must be placed between GND and VOUT to reduce noise.

The exposed pad and GND should be connected to a strong ground plane for heat sinking and noise prevention.

Figure 2. Recommended PCB Layout
Outline Dimension

Dimensions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions In Millimeters</th>
<th>Dimensions In Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Min 0.700 Max 0.800</td>
<td>Min 0.028 Max 0.031</td>
</tr>
<tr>
<td>A1</td>
<td>Min 0.000 Max 0.050</td>
<td>Min 0.000 Max 0.002</td>
</tr>
<tr>
<td>A3</td>
<td>Min 0.175 Max 0.250</td>
<td>Min 0.007 Max 0.010</td>
</tr>
<tr>
<td>b</td>
<td>Min 0.180 Max 0.300</td>
<td>Min 0.007 Max 0.012</td>
</tr>
<tr>
<td>D</td>
<td>Min 2.950 Max 3.050</td>
<td>Min 0.116 Max 0.120</td>
</tr>
<tr>
<td>D2</td>
<td>Min 2.300 Max 2.650</td>
<td>Min 0.091 Max 0.104</td>
</tr>
<tr>
<td>E</td>
<td>Min 2.950 Max 3.050</td>
<td>Min 0.116 Max 0.120</td>
</tr>
<tr>
<td>E2</td>
<td>Min 1.500 Max 1.750</td>
<td>Min 0.059 Max 0.069</td>
</tr>
<tr>
<td>e</td>
<td>Min 0.500 Max 0.500</td>
<td>Min 0.020 Max 0.020</td>
</tr>
<tr>
<td>L</td>
<td>Min 0.350 Max 0.450</td>
<td>Min 0.014 Max 0.018</td>
</tr>
</tbody>
</table>

W-Type 10L DFN 3x3 Package

Note: The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

DETAIL A

Pin #1 ID and Tie Bar Mark Options

SEE DETAIL A
Symbol Dimensions In Millimeters Dimensions In Inches

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.700</td>
<td>0.800</td>
<td>0.028</td>
<td>0.031</td>
</tr>
<tr>
<td>A1</td>
<td>0.000</td>
<td>0.050</td>
<td>0.000</td>
<td>0.002</td>
</tr>
<tr>
<td>A3</td>
<td>0.175</td>
<td>0.250</td>
<td>0.007</td>
<td>0.010</td>
</tr>
<tr>
<td>b</td>
<td>0.180</td>
<td>0.300</td>
<td>0.007</td>
<td>0.012</td>
</tr>
<tr>
<td>D</td>
<td>3.950</td>
<td>4.050</td>
<td>0.156</td>
<td>0.159</td>
</tr>
<tr>
<td>D2</td>
<td>3.250</td>
<td>3.350</td>
<td>0.128</td>
<td>0.132</td>
</tr>
<tr>
<td>E</td>
<td>2.950</td>
<td>3.050</td>
<td>0.116</td>
<td>0.120</td>
</tr>
<tr>
<td>E2</td>
<td>1.650</td>
<td>1.750</td>
<td>0.065</td>
<td>0.069</td>
</tr>
<tr>
<td>e</td>
<td>0.500</td>
<td>0.500</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>L</td>
<td>0.350</td>
<td>0.450</td>
<td>0.014</td>
<td>0.018</td>
</tr>
</tbody>
</table>

W-Type 12L DFN 4x3 Package

Note: The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.