7+2 Channel DCIDC Converters with RTC and I ${ }^{2}$ C Interface

General Description

The RT9999P is a highly integrated power management IC that contains 7-CH switching DC/DC converters, one generic LDO, one Keep Alive low quiescent LDO, a switch with reverse leakage prevention from backup battery, and a Real-Time Clock (RTC) that includes a time counter and a 32768 Hz oscillator for DSC applications.

The DC/DC converters include one low voltage step-up operated in either asynchronous PFM or synchronous PWM, one current mode synchronous step-up/down (buck boost), two synchronous step-downs, one high voltage synchronous step-up for CCD+ with load disconnect, one asynchronous inverter for CCD-, and one WLED driver operated in either synchronous step-up mode or constant current source mode. All power MOSFETs are integrated and compensation networks are built in.

The RT9999P uses $I^{2} \mathrm{C}$ interface to set power on timing, output voltage, and WLED current and dimming level. The $1^{2} \mathrm{C}$ is also used to access RTC time counters and oscillator fine tuning.

The RT9999P provides comprehensive protection functions, including over current, under voltage, over voltage, over temperature, and over load.

The RT9999P is available in a WQFN-40L 5×5 package.

Features

- CH1 Sync Step-Up in PWM mode or Async Step-Up in Pulse Frequency Mode
- CH2 LV Sync Step-Up/Down
- CH3/4 LV Sync Step-Down with 100\% Maximum Duty Cycle
- CH5 HV Sync Step-Up for CCD+ Power with Load Disconnect Function
- CH6 HV Async Inverter for CCD- Power
- CH7 WLED Driver in Sync Step-Up Mode or Constant Current Source Mode
- Open LED Protection
- 32 Dimming Levels
- CH8 Generic Low Voltage LDO for Multiple Purpose Power Supply
- CH9 Keep Alive Low Quiescent LDO
- $I^{2} \mathrm{C}$ Interface to Program :
- Enable, Power On Delay Time, Output Regulated Voltage, WLED Dimming Current
- RTC Timer and Oscillator
- CH3/4 Fixed 2MHz Frequency
- CH1/2/5/6/7 Fixed 1MHz Frequency
- CH1/3/4/7/8 Support Dynamic Voltage Scaling (DVS)
- High Efficiency Up to 95\%
- RoHS Compliant and Halogen Free

Applications

- Digital Cameras
- Portable Instruments

Simplified Application Circuit

Ordering Information
RT9999P $\square \square$
Package Type QW : WQFN-40L 5×5 (W-Type)
Lead Plating System
G: Green (Halogen Free and Pb Free)
Note :
Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb -free soldering processes.

Marking Information

RT9999P
GQW
YMDNN
\bullet

RT9999PGQW : Product Number
YMDNN : Date Code

Pin Configuration

Part Status

Part No	Status	Package Type
RT9999PGQW	Lifebuy	WQFN-40L 5x5

The part status values are defined as below:
Active : Device is in production and is recommended for new designs.
Lifebuy : The device will be discontinued, and a lifetime-buy period is in effect.
NRND : Not recommended for new designs.
Preview : Device has been announced but is not in production.
Obsolete: Richtek has discontinued the production of the device.

Functional Pin Description

Pin No.	Pin Name	Pin Function
1	LX1	Switch Node of CH 1. This pin is in high impedance during shutdown.
2	RESET	Push Pull Output. This pin asserts the status of monitored VDDM voltage.
3	FB7	Feedback Input for CH 7 . This pin is in high impedance during shutdown.
4	VOUT7	Power Output of CH7 in Step-Up Mode and Power Input of CH7 in Current Source Mode. When turning off in step-up mode, the IC discharges CH 7 output capacitors internally. This pin is in high impedance during shutdown. In current source mode, it is recommended to connect VOUT7 to CH1 output node, VOUT1.
5	LX7	Switch Node of CH7 in Step-Up Mode. This pin is in high impedance during shutdown. Connect this pin to the LED anode terminal when CH 7 works in current source mode.
6	LX4	Switch Node of CH4. This pin is in high impedance during shutdown.
7	PVDD4	Power Input of CH 4 . This pin is in high impedance during shutdown.
8	VOUT4	Sense Pin for CH4 Output Voltage. The IC can choose whether CH4 would discharge output capacitors internally when turning off. If the IC is set to discharge CH 4 output capacitors internally, the IC would not start to turn off CH 3 till VOUT4 $<0.1 \mathrm{~V}$. This pin is high impedance in shut down.
9	VNEG	Output of Negative Charge Pump to Enhance CH2 (PVDD2 - LX2A), CH3, CH4, CH6 P-MOSFET Driving. The regulated voltage is the higher one between (BAT -4.5 V) and (-BAT). When the negative charge pump is off, VNEG is internally connected to GND. Connect this pin to an external $1 \mu \mathrm{~F}$ capacitor.
10	CN	Negative Switch Node of Charge Pump. A fly capacitor is needed between pins CP and CN.
11	CP	Positive Switch Node of Charge Pump.
12	BAT	Power Input of CH6, Battery Power Input, and Sense Pin. It is recommended to place input bypass capacitors as close to the IC as possible. The IC senses the voltage of this pin for UVLO and body diode direction control of CH5 and CH7 P-MOSFET switches. This pin is also the input power for the negative charge pump circuit.
13	LX6	Switch Node of CH6. This pin is in high impedance during shutdown.
14	VOUT6	Sense Pin for CH6 Output Voltage. When turning off, the IC internally discharges CH6 output capacitors to ground.
15	FB6	Feedback Input of CH6. This pin is in high impedance during shutdown.
16	VREF	Reference Voltage Buffer Output for CH 6 . This pin is in high impedance during shutdown.
17	MSEL	Selection Input for CH 4 Default Output Voltage. This pin is sensed at the moment when RESET goes high to determine the CH4 default output voltage. MSEL = High means CH 4 default $=1.8 \mathrm{~V}$; MSEL $=$ Low means CH 4 default $=1.5 \mathrm{~V}$.
18	SCL	Clock Input for $\mathrm{I}^{2} \mathrm{C}$ Serial Port.
19	SDA	Data Input and Output for $\mathrm{I}^{2} \mathrm{C}$ Serial Port.
20	VOUT2	Power Output for CH 2 Output Voltage. When turning off, the IC discharges CH 2 output capacitors internally until VOUT2 $<0.1 \mathrm{~V}$. CH3 can only start turning off after VOUT2 $<0.1 \mathrm{~V}$. This pin is in high impedance during shutdown. $I^{2} \mathrm{C}$ interface power level must be equal to CH 2 output voltage.
21	LX2B	Switch Node B of CH2. This pin is in high impedance during shutdown.

Pin No.	Pin Name	Pin Function
22	EN	Enable Input. This pin is used to activate/deactivate the IC. An internal pull low is included.
23	LX2A	Switch Node A of CH 2 . This pin is in high impedance during shutdown.
24	PVDD2	Power Input of CH2. It must be connected to the same node as BAT. This pin is in high impedance during shutdown.
25	LX5	Switch Node of CH5. This pin is in high impedance during shutdown.
26	VOUT5	Power Output and Sense Pin of CH5. When turning off, the IC discharges CH5 output capacitors internally until VOUT5 < 0.1V. It is recommended to place output capacitors as close to the chip as possible. This pin is in high impedance during shutdown.
27	FB5	Feedback Input of CH5. This pin is in high impedance during shutdown.
28	VOUT8	Regulated Output Node of CH8 Generic LDO. When turning off, the IC discharges CH8 output capacitors internally until VOUT8 $<0.1 \mathrm{~V}$. This pin is in high impedance during shutdown.
29	PVDD8	Power Input of CH8 Generic LDO. This pin is in high impedance during shutdown.
30	LX3	Switch Node of CH3. This pin is in high impedance during shutdown.
31	C32K	RTC 32768Hz Clock Output. Its rails are VDDM and GND. When $\overline{\text { RESET goes }}$ low, C32K outputs low.
32	PVDD3	Power Input of CH3. It must be connected to the same node as BAT. This pin is in high impedance during shutdown.
33	VOUT3	Sense Pin for CH3 Output Voltage. When turning off, the IC discharges CH3 output capacitors internally until VOUT3 $<0.1 \mathrm{~V}$. This pin is in high impedance during shutdown.
34	RTCGND	Ground for RTC Timer Counter and Oscillator.
35	XOUT	Crystal Output. This pin's parasitic capacitance should be kept as low as possible. Noise interference should also be avoided.
36	XIN	Crystal Input. This pin's parasitic capacitance should be kept as low as possible. Noise interference should also be avoided.
37	RTCPWR	RTCLDO Power Output Pin. Connect this pin to a backup battery.
38	VDDM	Regulation Voltage Output of CH9. This pin also provides power for all IC control circuit. When VDDM is lower than RESET threshold, the IC asserts $\overline{\text { RESET }}=0 \mathrm{~V}$. When BAT UVLO occurs, the IC discharges CH9 output capacitors internally.
39	VM	Output Sense Pin of CH1 and Power Input of CH9.
40	VOUT1	Power Output and Sense Pin for CH 1 Output Voltage. This pin is in high impedance during shutdown. It is recommended to place the output capacitors as close to the IC as possible.
41 (Exposed Pad)	GND	Power Ground and Control Circuit Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum thermal dissipation.

Functional Block Diagram

Operation

The RT9999P is a highly integrated power management IC that contains 7-CH switching DC/DC converters, one generic LDO, one Keep Alive low quiescent LDO, a switch with reverse leakage prevention from backup battery, and a Real-Time Clock (RTC) that includes a time counter and 32768 Hz oscillator.

CH1 : Step-Up DC/DC Converter

CH1 is a step-up converter for motor driver power in DSC system. The converter operates at asynchronous PFM or fixed frequency PWM current mode which can be set by $I^{2} C$.

CH2 : Synchronous Step-Up / Down DC/DC Converter

CH 2 is a synchronous step-up / down converter for system I/O power. The converter operates at fixed frequency PWM Current Mode.

CH3 : Synchronous Step-Down DC/DC Converter

CH3 is suitable for core power in DSC system. The converter operates in fixed frequency PWM mode with integrated internal MOSFETs, FB resistors and compensation network.

CH4 : Synchronous Step-Down DC/DC Converter

CH 4 is suitable for memory power in DSC system. The converter operates in fixed frequency PWM mode with integrated internal MOSFETs, FB resistors and compensation network.

CH5 : Synchronous Step-Up DCIDC Converter

CH 5 is a high voltage synchronous step-up converter for CCD positive power. The converter operates at fixed frequency PWM mode, and CCM with integrated internal MOSFETs, compensation network and load disconnect function.

CH6 : INV DCIDC Converter

This converter integrates an internal P-MOSFET with internal compensation and needs an external Schottky diode to provide CCD negative power supply.

CH7 : WLED Driver

CH 7 is a WLED driver that can operate in either current source mode or synchronous step-up mode, as determined by $\mathrm{I}^{2} \mathrm{C}$ interface.

CH8 : Generic LDO

CH 8 is a generic low voltage LDO for multiple purpose power.

CH9 : Keep Alive LDO and RTC Related Function Block

The RT9999P provides a 3.1V output LDO for all IC control circuits and real time clock.

VNEG Charge Pump

The Charge pump is to increase the Vgs driving of big PMOSFET in Ch2/3/4/6. When BAT $<3.6 \mathrm{~V}$ and one of Ch2/3/4/6 turns on, VNEG charge pump will turn on and start to pump. As long as BAT doesn't trigger UVLO, CH 1 remains active without EN pin $=\mathrm{H}$. However, when A7.PWM1 = 1, EN pin = H and no VDDM_UVLO, CH1 will switch from PFM mode to PWM mode. Otherwise, it works in PFM mode. CH 2 and CH 3 are both enabled by the EN pin and have turn-on delay time as defined in $I^{2} \mathrm{C}$ register A5. ENDLY2/3. To enable CH 4 and CH 8 , the bits A7.EN4 and A7.EN8 must be set to " 1 " and EN pin must be high. When the enable bits are set to " 1 ", CH 8 will turn on immediately, and CH 4 will turn on after a delay time defined by ENDLY4.
Absolute Maximum Ratings (Note 1)

- Supply Input Voltage, BAT, VM, PVDD2, PVDD3, PVDD4, PVDD8 -0.3 V to 6 V
- LX1, LX2A, LX2B, LX3, LX4, CP -0.3 V to 6 V
- LX5, LX7, VOUT5, VOUT7 -0.3 V to 24 V
- LX6 (BAT -16 V) to (BAT +0.3 V)
- VOUT1, VOUT2, VOUT3, VOUT4, VOUT8, RTCPWR, VDDM -0.3 V to 6 V
- CN (BAT -6 V) to (BAT +0.3 V)
- VNEG (BAT -6 V) to 0.3 V
- VOUT6 (BAT -16 V) to 0.3 V
- Other Pins -0.3 V to 6 V
- Power Dissipation, $\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ WQFN-40L 5x5 3.64W
- Package Thermal Resistance (Note 2) WQFN-40L 5×5, θ_{JA} $27.5^{\circ} \mathrm{C} / \mathrm{W}$
WQFN-40L $5 \times 5, \theta_{\text {Jc }}$ $6^{\circ} \mathrm{C} / \mathrm{W}$
- Junction Temperature $150^{\circ} \mathrm{C}$
- Lead Temperature (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
- Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- ESD Susceptibility (Note 3)
HBM (Human Body Model) 2kV
MM (Machine Model) 200V
Recommended Operating Conditions (Note 4)
- Supply Input Voltage, BAT 1.8 V to 5.5 V
- Junction Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Electrical Characteristics

($\mathrm{V}_{\mathrm{DDM}}=3.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Supply Voltage						
VM UVLO Threshold Voltage		VM Rising to turn on CH 9	--	$\begin{gathered} \hline \text { BAT } \\ -1.1 \end{gathered}$	--	V
VDDM Over Voltage Protection			5.8	6	6.2	V
VDDM Over Voltage Protection Hysteresis			--	-0.25	--	V
BAT UVLO Threshold Voltage		Rising	--	1.7	1.8	V
BAT UVLO Hysteresis			--	0.2	--	V
Supply Current						
Shutdown Supply Current into VM (including CH9 Keep Alive LDO and RTC)	Ioff,Vm	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{CH} 1 \text { No Switching and } \\ & \mathrm{V}_{\mathrm{M}}=\mathrm{V}_{\mathrm{OUT} 1}=4.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{BAT}}=3.3 \mathrm{~V} \end{aligned}$	--	50	75	$\mu \mathrm{A}$

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Shutdown Supply Current into BAT	Ioff,BAT	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{CH} 1$ no switching and $\mathrm{V}_{\mathrm{M}}=\mathrm{V}_{\text {OUT1 }}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{BAT}}=3.3 \mathrm{~V}$	--	8	15	$\mu \mathrm{A}$
CH1 (Async Step-Up PFM) Supply Current into VOUT1	${ }_{\text {Q }}$ 1	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \text { CH1 No Switching } \\ & \text { and } \mathrm{V}_{\mathrm{M}}=\mathrm{V}_{\text {OUT1 }}=4.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{BAT}}=3.3 \mathrm{~V} \end{aligned}$	--	--	10	$\mu \mathrm{A}$
CH2 (Sync Step-Up/Down) + CH3 (Syn Step-Down) Supply Current into VDDM	$\mathrm{I}_{\mathrm{Q} 23}$	No Switching, $\mathrm{V}_{\mathrm{EN}}=3.3 \mathrm{~V}$	--	--	1200	$\mu \mathrm{A}$
CH1 (Sync Step-Up PWM) + CH2 (Sync Step-Up/Down) + CH3 (Sync Step-Down) + CH4 (Sync Step-Down) Supply Current into VDDM	$\mathrm{l}_{\text {Q1234 }}$	No Switching, $\mathrm{V}_{\mathrm{EN}}=3.3 \mathrm{~V}$	--	--	1600	$\mu \mathrm{A}$
CH2 (Sync Step-Up/Down) + CH3 (Sync Step-Down) + CH4 (Sync Step-Down) Supply Current into VDDM	$\mathrm{I}_{\mathrm{Q} 234}$	No Switching, $\mathrm{V}_{\mathrm{EN}}=3.3 \mathrm{~V}$	--	--	1600	$\mu \mathrm{A}$
CH5 (sync Step-Up) Supply Current into VDDM	$\mathrm{I}_{\mathrm{Q} 5}$	No Switching, $\mathrm{V}_{\mathrm{EN}}=3.3 \mathrm{~V}$	--	--	400	$\mu \mathrm{A}$
CH6 (Inverting) Supply Current into VDDM	$\mathrm{I}_{\text {Q6 }}$	No Switching, VEN $=3.3 \mathrm{~V}$	--	--	400	$\mu \mathrm{A}$
CH7 (WLED) in Current Source Mode Supply Current into VDDM	lQ7cs	$\mathrm{V}_{\mathrm{EN}}=3.3 \mathrm{~V}$	--	--	200	$\mu \mathrm{A}$
CH7 (WLED) in Sync Step-Up Mode Supply Current into VDDM	IQ7bo	No Switching, $\mathrm{V}_{\mathrm{EN}}=3.3 \mathrm{~V}$	--	--	400	$\mu \mathrm{A}$
CH8 (LDO) Supply Current into VDDM	IQ8	No Load, $\mathrm{V}_{\mathrm{EN}}=3.3 \mathrm{~V}$	--	--	100	$\mu \mathrm{A}$
Oscillator						
CH3, 4 Operation Frequency	fosc		1800	2000	2200	kHz
CH1, 2, 5, 6, 7 Operation Frequency		CH1 in PWM mode	900	1000	1100	kHz
CH1 Maximum Duty Cycle (Step-Up)			91	93	97	\%
CH2 Maximum Duty Cycle at LX2B		$\mathrm{V}_{\mathrm{BAT}}=4.2 \mathrm{~V}$	--	55	--	\%
CH 2 Maximum Duty Cycle at LX2A			--	--	100	\%
CH3 Maximum Duty Cycle (Step-Down)			--	--	100	\%
CH4 Maximum Duty Cycle (Step-Down)			--	--	100	\%
CH5 Maximum Duty Cycle (Step-Up)			91	93	97	\%
CH6 Maximum Duty Cycle (Inverting)			91	93	97	\%
CH7 Maximum Duty Cycle (WLED)		Step-up mode	91	93	97	\%

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Feedback and Output Regulation Voltage						
VOUT2, 3, 5, 6 Accuracy		VOUTx typical values are listed next.	-1.5	--	1.5	\%
VOUT8 Accuracy		A3.VOUT8 $=0$ to 3	-1.5	--	1.5	\%
		A3.VOUT8 $=4$ to 7	-2	--	2	
VOUT4 Accuracy		A1.VOUT4 $=0$ to 3	-1.5	--	1.5	\%
		A1.VOUT4 $=4$ to 7	-2	--	2	
VOUT1 Accuracy		A0.VOUT1 $=0$ to 7	-1.5	--	1.5	\%
		A0.VOUT1 $=8$ to 15	-2	--	2	
Feedback Regulation Voltage @ FB6			170	200	230	mV
(VREF - VFB6) Regulation Voltage		A2.VOUT6 = 0x7 (for CH6 external feedback)	1.222	1.24	1.258	V
VREF Load Regulation		VREF $=-200 \mu \mathrm{~A}$	--	--	-10	mV
Feedback Regulation Voltage @ FB5		$\begin{array}{\|l} \hline \text { A2. VOUT5 }=0 \times 7 \text { (for CH5 } \\ \text { external feedback) } \\ \hline \end{array}$	1.232	1.25	1.268	V
Feedback Regulation Voltage @ FB7			0.237	0.25	0.263	v
VDDM Voltage (CH9 Output Regulation)			3.01	3.1	3.19	V
Power Switch Row and Current Limit						
CH1 On Resistance of MOSFET	RDS(ON)	P-MOSFET, $\mathrm{V}_{\text {OUT } 1}=3.3 \mathrm{~V}$	--	200	250	$\mathrm{m} \Omega$
		N-MOSFET, $\mathrm{V}_{\text {OUT } 1}=3.3 \mathrm{~V}$	--	150	200	
CH1 Current Limitation (Step-Up)			2.5	3	3.5	A
CH2 On Resistance of MOSFET	Rds(on)	P-MOSFET(PVDD2 - LX2A), $\mathrm{V}_{\text {PVDD2 }}=\mathrm{V}_{\text {OUT2 }}=3.3 \mathrm{~V}$	--	150	200	$\mathrm{m} \Omega$
		N-MOSFET(LX2A - GND), $\mathrm{V}_{\text {PVDD2 }}=\mathrm{V}_{\text {OUT2 }}=3.3 \mathrm{~V}$	--	250	350	
CH2 On Resistance of MOSFET	RDS(ON)	P-MOSFET (LX2B - VOUT2), $\mathrm{V}_{\text {PVDD2 }}=\mathrm{V}_{\text {OUT2 }}=3.3 \mathrm{~V}$	--	200	280	$\mathrm{m} \Omega$
		N-MOSFET (LX2B - GND), $\mathrm{V}_{\text {PVDD2 }}=\mathrm{V}_{\text {OUT2 }}=3.3 \mathrm{~V}$	--	150	200	
CH2 Current Limitation		Both P-MOSFET (PVDD2 - LX2A) and N-MOSFET (LX2B - GND)	1.5	2	2.5	A
CH3 On Resistance of MOSFET	Rds(ON)	P-MOSFET, $\mathrm{V}_{\text {PVDD }}=3.3 \mathrm{~V}$	--	200	300	$\mathrm{m} \Omega$
		N-MOSFET, $\mathrm{V}_{\text {PVDD3 }}=3.3 \mathrm{~V}$	--	150	220	
CH3 Current Limitation (Step-Down)			1.5	2	2.5	A

Parameter		Symbol	Test Conditions	Min	Typ	Max	Unit	
CH4 On Resistance of MOSFET		RDS(ON)	P-MOSFET, $\mathrm{V}_{\text {PVDD4 }}=3.3 \mathrm{~V}$	--	350	400	$\mathrm{m} \Omega$	
		N-MOSFET, $\mathrm{V}_{\text {PVDD4 }}=3.3 \mathrm{~V}$	--	350	400			
CH4 Current Limitation (Step-Down)					1	1.5	2	A
CH5 On Resistance of MOSFET			P-MOSFET, $\mathrm{V}_{\text {OUT5 }}=3.3 \mathrm{~V}$	--	1.2	1.5	Ω	
			$\mathrm{N}-\mathrm{MOSFET}, \mathrm{V}_{\text {DDM }}=3.1 \mathrm{~V}$	--	0.6	0.8		
CH5 Current Limitation			N-MOSFET	0.9	1.2	1.5	A	
CH6 On Resistance of MOSFET			P-MOSFET, $\mathrm{V}_{\text {BAT }}=3.3 \mathrm{~V}$	--	0.6	0.8	Ω	
CH6 Current Limitation			P-MOSFET, $\mathrm{V}_{\text {BAT }}=3.3 \mathrm{~V}$	1	1.5	2	A	
CH7 On Resistance of MOSFET			N-MOSFET	--	0.9	1.1	Ω	
			P-MOSFET	--	2.0	3.0		
CH7 Current Limitation			N-MOSFET	0.6	0.8	1	A	
Control								
MSEL Input Threshold Voltage	Logic-High			1.3	--	--	V	
	Logic-Low			--	--	0.4		
MSEL Sink Current			EN = High	--	1	3	$\mu \mathrm{A}$	
			EN = Low	--	--	0.5		
EN Input Threshold Voltage	Logic-High			1.3	--	--	V	
	Logic-Low			--	--	0.4		
EN Sink Current				--	1	3	$\mu \mathrm{A}$	
Thermal Protection								
Thermal Shutdown		TSD		125	160	--	${ }^{\circ} \mathrm{C}$	
Thermal Shutdown Hysteresis		$\Delta T_{S D}$		--	20	--	${ }^{\circ} \mathrm{C}$	
VNEG Charge Pump								
Charge Pump Low Threshold to Start		NV ${ }_{\text {ST }}$	Monitor BAT Falling	3.4	3.6	3.8	V	
Charge Pump Hysteresis Gap to Stop (BAT-VNEG) Clamp Level		$\Delta \mathrm{NV} \mathrm{ST}$		0.1	0.2	0.3	V	
			4.1	4.5	4.9			
CH8 LDO								
Supply Voltage of CH 8			VPVDD8		2.7	--	5.5	V
PSRR+ of CH 8			$\begin{aligned} & \hline 1 \mathrm{kHz}, \text { IOUT }=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {PVDD8 }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT8 }}=3.4 \mathrm{~V} \end{aligned}$	--	-40	--	dB	
CH8 Dropout Voltage			$\mathrm{V}_{\text {OUT8 }}=3.4 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}$	--	40	60	mV	
CH8 Current Limitation			$V_{\text {OUT8 }}=3.4 \mathrm{~V}$	220	300	380	mA	

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
CH9 Keep Alive LDO						
Supply Voltage of CH9 at VM Pin			2.4	--	5.5	V
PSRR+ of CH9		$\begin{aligned} & 1 \mathrm{kHz}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{M}}=3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DDM}}=3.1 \mathrm{~V} \end{aligned}$	--	-40	--	dB
CH9 Dropout Voltage		$\mathrm{V}_{\text {DDM }}=3.1 \mathrm{~V}$, Iout $=20 \mathrm{~mA}$	--	170	200	mV
Current Limit of CH9		$V_{\text {DDM }}=3.1 \mathrm{~V}$	50	100	--	mA
$\overline{\text { RESET }}$ Hysteresis Low		$\overline{\text { RESET Falling }}$	2.55	2.6	--	V
$\overline{\text { RESET }}$ Hysteresis High		RESET Rising	--	2.8	2.86	V
$\overline{\text { RESET }}$ Rising Delay Time			--	--	0.5	S
CH9 Quiescent Current		Excluding RTC Quiescent Current	--	4	8	$\mu \mathrm{A}$
RTC						
RTC Operation Voltage			1.6	--	3.3	V
RTC Quiescent Current		Including RTC_UVLO, RTC_OSC, and Time Counter	--	--	2	$\mu \mathrm{A}$
RTC Off Quiescent Current		When RTC RESET (UVLO) occurred	--	--	0.2	$\mu \mathrm{A}$
RTC Clock			--	32.768	--	kHz
RTC Clock Accuracy		$\mathrm{V}_{\text {RTCPWR }}=1.6 \mathrm{~V}$ to 3.3 V	-10	--	10	ppm
RTC Clock Output High		C32K pin source out 0.1 mA	$\begin{aligned} & \hline \mathrm{V} \mathrm{DDM} \\ & -0.3 \end{aligned}$	--	--	V
RTC Clock Output Low		C32K pin sink 0.1mA	--	--	0.3	V
RTC RESET (UVLO)	VRTC_F	RTCPWR Falling	1.5	1.6	1.7	V
RTC RESET POR	VRTC_R	RTCPWR Rising	$\begin{aligned} & \hline \mathrm{V}_{\text {RTC_F }} \\ & +20 \mathrm{~m} \\ & \hline \end{aligned}$	1.9	2	V
RTC Osc Startup Time			--	--	1	S
Switch On Resistance from VDDM to RTCPWR		P-MOSFET, $\mathrm{V}_{\text {DDM }}=3.1 \mathrm{~V}$	--	30	--	Ω
Under Voltage and Over Voltage Protection						
CH1 OVP Threshold @ VOUT1			5.8	6	6.2	V
CH2 OVP Threshold @ VOUT2			5.8	6	6.2	V
CH5 OVP Threshold @ VOUT5			20	21	22	V
CH6 OVP Threshold @ VOUT6			--	-13	--	V
CH7 OVP Threshold Accuracy @ VOUT7		Target voltage is the one chosen in A4.OVP7	Target -1	Target	Target +1	V
CH1 UVP Threshold @ VOUT1		For PWM Mode	1.95	2.25	2.55	V
CH2 UVP Threshold @ VOUT2			1.4	1.6	1.8	V

Parameter		Symbol	Test Conditions	Min	Typ	Max	Unit
CH3 UVP Threshold @ VOUT3				0.525	0.6	0.675	V
CH4 UVP Threshold @ VOUT4				0.7	0.8	0.9	V
CH5 UVP Threshold @ FB5				0.5	0.6	0.7	V
CH6 UVP Threshold @ FB6				0.4	0.5	0.6	V
CH8 UVP Threshold @ VOUT8			Target voltage is the one chosen in A3.VOUT8	--	$\begin{gathered} \hline 0.5 x \\ \text { Target } \end{gathered}$	--	V
CH1 Over Load P Threshold (OLP) @ VOUT1			Target voltage is the one chosen in A0.VOUT1	--	$\begin{gathered} \text { Target - } \\ 0.6 \\ \hline \end{gathered}$	--	V
CH2 OLP Threshold @ VOUT2			Target voltage is the one chosen in A0.VOUT2	--	$\begin{gathered} \hline \text { Target - } \\ 0.4 \end{gathered}$	--	V
CH3 OLP Threshold @ VOUT3			Target voltage is the one chosen in A1.VOUT3	--	$\begin{gathered} \text { Target - } \\ 0.15 \\ \hline \end{gathered}$	--	V
CH4 OLP Threshold @ VOUT4			Target voltage is the one chosen in A1.VOUT4	--	$\begin{gathered} \text { Target - } \\ 0.2 \\ \hline \end{gathered}$	--	V
CH5 OLP Threshold @ VOUT5			Target voltage is the one chosen in A2.VOUT5	--	$\begin{gathered} \hline \text { Target - } \\ 1.8 \\ \hline \end{gathered}$	--	V
CH6 OLP Threshold @ FB6			A2.VOUT6 $=0 \times 7$	0.3	0.35	0.4	V
Protection Delay Time			For OCP and OLP, except OCP of CH2	--	100	--	ms
$\mathrm{I}^{2} \mathrm{C}$ Interface							
SDA, SCLK Input Threshold Voltage	Logic-High		$\mathrm{V}_{\text {OUT2 }}=3.3 \mathrm{~V}$	$\begin{gathered} 0.7 \times \\ V_{\text {OUT2 }} \\ \hline \end{gathered}$	--	--	V
	Logic-Low		$\mathrm{V}_{\text {OUT2 }}=3.3 \mathrm{~V}$	--	--	$\begin{gathered} 0.3 x \\ \mathrm{~V}_{\text {OUT2 }} \\ \hline \end{gathered}$	
SCLK Clock Rate		$\mathrm{f}_{\text {SCL }}$	$\mathrm{V}_{\text {OUT2 }}=3.3 \mathrm{~V}$	--	--	400	kHz
Hold Time for Repeated START Condition (After this period, the first clock pulse is generated)		thD; STA	$\mathrm{V}_{\text {OUT2 }}=3.3 \mathrm{~V}$	0.6	--	--	$\mu \mathrm{S}$
LOW Period of SCL Clock		tLow	$\mathrm{V}_{\text {OUT2 }}=3.3 \mathrm{~V}$	1.3	--	--	$\mu \mathrm{S}$
HIGH Period of SCL Clock		$\mathrm{t}_{\text {HIGH }}$	$\mathrm{V}_{\text {OUT2 }}=3.3 \mathrm{~V}$	0.6	--	--	$\mu \mathrm{S}$
Set-up Time for Repeated START Condition		tsu;STA	$\mathrm{V}_{\text {OUT2 }}=3.3 \mathrm{~V}$	0.6	--	--	$\mu \mathrm{S}$
Data Hold Time		thd; DAT	$\mathrm{V}_{\text {OUT2 }}=3.3 \mathrm{~V}$	0	--	0.9	$\mu \mathrm{S}$
Data Set-up Time		tsu;DAT	$\mathrm{V}_{\text {OUT2 }}=3.3 \mathrm{~V}$	100	--	--	ns
Set-up Time for STOP Condition		tsu;Sto	$\mathrm{V}_{\text {OUT2 }}=3.3 \mathrm{~V}$	0.6	--	--	$\mu \mathrm{S}$
Bus Free Time between a STOP and START Condition		$t_{\text {BUF }}$	$\mathrm{V}_{\text {OUT2 }}=3.3 \mathrm{~V}$	1.3	--	--	$\mu \mathrm{S}$
Rise Time of Both SDA and SCL Signals		t_{R}	$\mathrm{V}_{\text {OUT2 }}=3.3 \mathrm{~V}$	20	--	300	ns
Fall Time of Both SDA and SCL Signals		t_{F}	$\mathrm{V}_{\text {OUT2 }}=3.3 \mathrm{~V}$	20	--	300	ns
SDA and SCL Output Low Sink Current		IOL	$\text { SDA or SCL voltage }=0.4 \mathrm{~V} \text {, }$ $V_{\text {OUT2 }}=3.3 \mathrm{~V}$	2	--	--	mA

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Output Voltage Ramp Rate						
VOUT1 Ramp Rate		$\mathrm{V}_{\text {OUT1 }}=3.6 \mathrm{~V}$ to 5.3 V	--	1.24	--	V/ms
VOUT2 Ramp Rate		$\mathrm{V}_{\text {Out2 }}=0 \mathrm{~V}$ to 3.25 V	--	0.82	--	V/ms
VOUT3 Ramp Rate		$V_{\text {OUT3 }}=0 \mathrm{~V}$ to 1.12	--	0.33	--	V/ms
VOUT4 Ramp Rate		$\mathrm{V}_{\text {OUT4 }}=0 \mathrm{~V}$ to 1.8 V	--	0.44	--	V/ms
VOUT5 Ramp Rate		Vouts $=0 \mathrm{~V}$ to 13 V , A2.VOUT5 [2:0] is not 0×7.	--	1.6	--	V/ms
FB5 Reference Ramp Rate (CH5 external feedback)		$\begin{aligned} & \mathrm{V}_{\text {FB5 }}=0 \mathrm{~V} \text { to } 1.25 \mathrm{~V}, \\ & \text { A2.VOUT5 }[2: 0]=0 \times 7 \end{aligned}$	--	0.133	--	V/ms
VOUT6 Ramp Rate		$V_{\text {OUT6 }}=0 \mathrm{~V} \text { to }-7.5 \mathrm{~V} \text {, }$ A2.VOUT6 [2:0] is not 0x7.	--	0.8	--	V/ms
VREF Ramp Rate (CH6 external feedback)		$\mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V}$ to 1.24 V , A2.VOUT6 [2:0] $=0 \times 7$	--	0.125	--	V/ms
VOUT8 Ramp Rate		$\mathrm{V}_{\text {Out8 }}=0 \mathrm{~V}$ to 3.4 V	--	0.84	--	V/ms
Ramp Rate Accuracy		(For all ramp rates listed above)	-40	--	40	\%
Enabling Delay Time						
Delay Time Step Resolution		For ENDLY2, 3, 4 at A5, A6	--	2	--	ms
Off Discharge						
VOUT2, 3, 4, 5, 7 Discharge Equivalent Resistance		$V_{\text {OUTx }}=1 \mathrm{~V}$	50	--	--	Ω
VOUT6 Discharge Equivalent Resistance		$V_{\text {OUT6 }}=-1 \mathrm{~V}$	100	--	--	Ω
VOUT8 Discharge Equivalent Resistance		$\mathrm{V}_{\text {OUT8 }}=1 \mathrm{~V}$	200	--	--	Ω
VDDM Discharge Equivalent Resistance		$\mathrm{V}_{\mathrm{M}}=4.2 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DDM}}=1 \mathrm{~V}$	200	--	--	Ω
CH2 Discharge Finish Threshold for CH3 Starting to Turn Off			0.05	0.1	0.15	V
CH4 Discharge Finish Threshold for CH3 Starting to Turn Off		CH 3 will wait for CH 4 to discharge only when A1.DIS4 = 1	0.05	0.1	0.15	V
CH1 Asynchronous PFM						
N-MOSFET On-Time		$\mathrm{V}_{\mathrm{M}}=3.6 \mathrm{~V}$	--	0.5	--	$\mu \mathrm{S}$
Minimum Off-Time		$\mathrm{V}_{\mathrm{M}}=3.6 \mathrm{~V}$	--	0.5	--	$\mu \mathrm{S}$
N-MOSFET Current Limit		$\mathrm{V}_{\mathrm{M}}=3.6 \mathrm{~V}$	--	0.8	--	A
N-MOSFET On Resistance		$\mathrm{V}_{\mathrm{M}}=3.6 \mathrm{~V}$, (the same as PWM mode)	--	150	200	$\mathrm{m} \Omega$
VOUT1 Regulation Voltage		$\mathrm{V}_{\mathrm{M}}=3.6 \mathrm{~V}$	3.5	3.6	3.7	V

Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
Note 2. θ_{JA} is measured at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θ_{Jc} is measured at the exposed pad of the package.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.

Typical Application Circuit

Figure 1. Application for $\mathrm{V}_{\mathrm{MEM}}=2.1 \mathrm{~V}$

Figure 2. Application for $\mathrm{V}_{\text {MEM }}=1.8 \mathrm{~V}$

Typical Operating Characteristics

CH2 Buck-Boost Efficiency vs. Output Current

CH3 Buck Efficiency vs. Output Current

CH6 Inverting Efficiency vs. Output Current

CH1 Boost Output Voltage vs. Output Current

CH2 Buck-Boost Output Voltage vs. Output Current

CH7 Efficiency vs. Input Voltage

CH1 Boost Output Voltage vs. Output Current

CH2 Buck-Boost Output Voltage vs. Output Current

CH4 Buck Output Voltage vs. Output Current

CH9 LDO Dropout Voltage vs. Load Current

CH6 Inverting Output Voltage vs. Output Current

CH8 LDO Dropout Voltage vs. Load Current

Power On Sequence

Power Off Sequence

Application Information

The RT9999P is a highly-integrated DSC Power Management IC that contains 7 CH switching DC/DC converters and one generic LDO, one keep-alive lowquiescent LDO, a switch with reverse leakage prevention from backup battery, and a Real-Time-Clock (RTC) including time counter and 32768 Hz oscillator.

CH1 : Step-up operated in either Async PFM or Sync PWM current mode DC/DC converter. It includes internal power MOSFETs, compensation network and FB resistors. The P-MOSFET body can be controlled to disconnect the load. This is suitable for power of DSC Motor.

CH2 : Step-up/down (Buck-Boost) synchronous current mode DC/DC converter with internal power MOSFETs, compensation network and FB resistors. This channel supplies the power for I/O. This channel is always operated at CCM.

CH3 : Step-down synchronous current mode DC/DC converter with internal power MOSFETs, compensation network and FB resistors. This channel supplies the power for core. It can be operated at 100\% maximum duty cycle to extend battery operating voltage range.

CH4 : Step-down synchronous current mode DC/DC converter with internal power MOSFETs, compensation network and FB resistors. This channel supplies the power for Memory. It can be operated at 100\% maximum duty cycle to extend battery operating voltage range.

CH5 : High voltage step-up synchronous current mode DC/DC converter with internal power MOSFETs, compensation network and FB resistors. The P-MOSFET

body can be controlled to disconnect the load. This channel supplies the CCD+ bias.

CH6 : Asynchronous inverting current mode DC/DC converter with internal power MOSFET, compensation network and FB resistors. It needs an external Schottky diode. This channel supplies the CCD- bias.

CH7 : A WLED driver operating in either current source mode or synchronous step-up mode with internal PMOSFET and compensation network. WLED current and dimming level is determined by $\mathrm{I}^{2} \mathrm{C}$ interface. The P MOSFET body in step-up mode can be controlled to disconnect the load.

CH 3 and CH 4 operate in PWM mode with 2 MHz , while $\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 5, \mathrm{CH} 6$ and CH 7 operate in PWM mode with 1 MHz switching frequency.

CH 8 : A generic LDO output voltage is controlled by $I^{2} \mathrm{C}$ interface. This supplies the multiple purpose power.

CH9 : A keep-alive LDO supplies the power for backup battery.

CH1 : Step-Up DC/DC Converter

CH1 is a step-up converter for motor driver power in DSC system. The converter operates at async PFM or fixed frequency PWM current mode which can be set by $I^{2} C$. The converter integrates internal MOSFETs, FB resistors, compensation network and synchronous rectifier for up to 95% efficiency. The output voltage of CH 1 is adjustable by the $\mathrm{I}^{2} \mathrm{C}$ interface in the range of 3.6 V to 5.3 V .

CH 1 operates at async PFM mode, LX1 switch as below waveform:

CH2 : Synchronous Step-Up / down DCIDC
 Converter

CH 2 is a synchronous step-up / down converter for system I/O power. The converter operates at fixed frequency PWM Current Mode. The converter integrates internal MOSFETs, FB resistors, compensation network and synchronous rectifier for up to 95\% efficiency.

The output voltage of CH 2 can be adjusted by the $\mathrm{I}^{2} \mathrm{C}$ interface.

VNEG Charge Pump

The Charge pump is to increase the Vgs driving of big P MOSFET in CH2/3/4/6.

When BAT < 3.6V and one of CH2/3/4/6 turns on, VNEG charge pump would turn on and start to pump. But when pumping, the BAT threshold to turn off and stop charge pump becomes 3.9 V .

When pumping, the (BAT - VNEG) voltage would be clamped at 4.5 V . But because of charge pumping architecture limitation, most negative level of the VNEG is only (-BAT).

Hence, if BAT $<4.5 / 2=2.25 \mathrm{~V}$, VNEG is limited to $(-$ BAT).

When VNEG charge pump is off, VNEG is connected internally to GND.

CH3 : Synchronous Step-Down DC/DC Converter

CH 3 is suitable for core power in DSC system. The converter operates in fixed frequency PWM mode with integrated internal MOSFETs, FB resistors and compensation network. The CH3 step-down converter can be operated at 100% maximum duty cycle to extend battery operating voltage range.

The output voltage of CH 3 is adjustable by the $\mathrm{I}^{2} \mathrm{C}$ interface in the range of 1.3 V to 1 V .

CH4 : Synchronous Step-Down DC/DC Converter

CH 4 is suitable for memory power in DSC system. The converter operates in fixed frequency PWM mode with integrated internal MOSFETs, FB resistors and compensation network. The CH4 step-down converter can be operated at 100% maximum duty cycle to extend battery operating voltage range.

The output voltage of CH 4 is adjustable by the $\mathrm{I}^{2} \mathrm{C}$ interface.

CH5 : Synchronous Step-Up DC/DC Converter

CH 5 is a high voltage synchronous step-up converter for CCD positive power. The converter operates at fixed frequency PWM mode, and CCM with integrated internal MOSFETs, compensation network and load disconnect function.

The output voltage of CH 5 is adjustable by the $\mathrm{I}^{2} \mathrm{C}$ interface in the range of 15 V to 12 V or set by external feedback resistors.

The equation is as follows :
Vout_ch5 $=(1+\mathrm{R} 1 / R 2) \times \mathrm{V}_{\mathrm{FB} 5}$
$\mathrm{V}_{\mathrm{FB} 5}$ is 1.25 V typically.

CH6 : INV DC/DC Converter

This converter integrates an internal P-MOSFET with internal compensation and needs an external Schottky diode to provide CCD negative power supply.

The output voltage of CH 6 is adjustable by the $\mathrm{I}^{2} \mathrm{C}$ interface in the range of -5 V to -8 V or set by external feedback resistors.

The equations are as follows :
$V_{\text {OUt_CH6 }}=0.2-(R 3 / R 4) \times 1.24 V$
Where R3 and R4 feedback resistors are connected to FB6, 1.24V equals to ($\mathrm{V}_{\mathrm{REF}}-\mathrm{V}_{\mathrm{FB} 6}$).

Reference Voltage

The RT9999P provides a precise 1.24 V to 1.84 V reference voltage, VREF, with souring capability of $200 \mu \mathrm{~A}$. Connect a $0.1 \mu \mathrm{~F}$ ceramic capacitor from the VREF pin to GND. Reference voltage is enabled by $I^{2} \mathrm{C}$ interface. Furthermore, this reference voltage is internally pulled to GND at shutdown.

CH7 : WLED Driver

CH 7 is a WLED driver that can operate in either current source mode or synchronous step-up mode, as determined by $\mathrm{I}^{2} \mathrm{C}$ interface. When CH 7 works in current source mode, it sources an LED current out of LX7 pin and regulates the current by FB7 voltage. The LED current is defined by FB7 voltage and the external resistor between FB7 and

GND. The FB7 regulation voltage can be set in 32 steps from 7.8 mV to 250 mV , typically, via $\mathrm{I}^{2} \mathrm{C}$ interface. If CH 7 works in synchronous step-up mode, it integrates synchronous step-up mode with an internal MOSFET and
internal compensation. The LED current is also set via an external resistor and FB7 regulation voltage.

CH7 WLED Current Dimming Control

If CH 7 is in synchronous step-up mode or current source mode, the WLED current is set by an external resistor. Regardless of the mode, dimming is always controlled by $I^{2} \mathrm{C}$ interface.

The WLED current can be set by the following equation :
$I_{\text {LED }}(m A)=[250 m V / R(W)] \times(D I M 7+1) / 32$
R is the current sense resistor from FB7 to GND and (DIM $+1) / 32$ ratio refers to $I^{2} C$ control register file.

* Register DIM7 defines dimming FB7 regulation voltage for Both Sync Step-Up mode and Current Source mode. The regulation voltage $=0.25 \mathrm{~V} \times(\mathrm{DIM} 7+1) / 32$, where $($ DIM7 +1) $/ 32=1 / 32$ to $32 / 32$.
0.25 V voltage with accuracy $\pm 5 \%$. I Led max is defined by the $0.25 \mathrm{~V} / \mathrm{R}_{\mathrm{EXT}}$.

CH8 : Generic LDO

CH8 is a generic low voltage LDO for multiple purpose power.

The CH 8 is a linear regulator, designed to be stable over the entire operating load range with the use of external ceramic capacitors. CH8 have an ON/OFF control which
can be set by $\mathrm{I}^{2} \mathrm{C}$ commands. The output voltage of CH 8 is adjustable by the $I^{2} \mathrm{C}$ interface in the range of 3.5 V to 1.5 V .

CH9 : Keep Alive LDO and RTC Related Function Block

The RT9999P provides a 3.1V output LDO for all IC control circuits and real time clock. The LDO features low quiescent current $(4 \mu \mathrm{~A})$ and high output voltage accuracy. This LDO is always on, even when the system is shut down. For better stability, it is recommended to connect a $1 \mu \mathrm{~F}$ to the VDDM pin. The RTCPWR switch avoids backcharging from the RTCPWR node into the input node VDDM.

The Frequency Divider from 32768 Hz to 1 Hz would generate the below 1 Hz wave that has a little jitter but the 1 Hz average frequency can be finely tuned.

Fine tune 1 Hz by digital divider can create
tuning range $=(-60$ to 67$) /(32768 \mathrm{~Hz} \times 60 \mathrm{~s})=-30$ to 33 ppm
each tune step size $=0.5 \mathrm{ppm}$.
But the 1 Hz would include jitter and the C32K still is not tuned.

RTC Time Read/Write Method

When reading RTC time via $I^{2} C$ interface, suggest reading 6 bytes (address A11 to A16) together and finish reading within 0.5 second to avoid the second carry issue. A16. RTCT_SEC [0] can be used for checking whether second is carried during reading time.

When writing RTC time via $I^{2} C$ interface, suggest writing 6 bytes (address A11 to A16) together. A11 is first and then A12, A13, A14, A15, A16. Suggest finishing writing within 0.5 second to avoid second carry issue during writing.

$I^{2} \mathrm{C}$ Register Information

The RT9999P $I^{2} \mathrm{C}$ interface power must be supplied by either VOUT2 or an equal potential node. If $\overline{\text { RESET }}=$ Low, ${ }^{2}$ C read/write can not function.

The RT9999P $I^{2} \mathrm{C}$ slave address $=0011000$ (7bits). $\mathrm{I}^{2} \mathrm{C}$ interface supports fast mode (bit rate up to $400 \mathrm{~kb} / \mathrm{s}$). The write or read bit stream $(\mathrm{N} \geq 1)$ is shown below :

Read N bytes from RT9999P

Write N bytes to RT9999P

Data for Address $=\mathrm{m}+\mathrm{N}-1$
\square Driven by Master, \square Driven by Slave (RT9999P), P Stop, S Start, Sr Repeat Start

$I^{2} \mathrm{C}$ Waveform Information

1^{2} C Register File

Address Name	Register Address	(MSB)		Bit Map, Read/Write, Default value				(LSB)	
		b[7]	b[6]	b[5]	b[4]	b[3]	b [2]	b[1]	b[0]
A0	0x00	VOUT1				Reserved	VOUT2		
		R/W				--	R/W		
		0	0	0	1	x	0	0	1
A1	0x01	VOUT3				DIS4	VOUT4		
		R/W				RM	R/W		
		1	1	0	0	1	$\overline{\text { MSEL }}$	0	1
A2	0x02	Reserved	VOUT5			Reserved	VOUT6		
		--	RM			--	R/W		
		x	1	0	0	x	1	0	1
A3	0x03	VOUT8			DIM7				
		RNW			R/W				
		0	0	1	1	1	1	1	1

[^0]| Address Name | Register Address | (MSB) | Bit Map, Read/Write, Default value | | | | | | (LSB) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | b[7] | b[6] | b[5] | b[4] | b[3] | b [2] | b[1] | b[0] |
| A4 | 0x04 | Reserved | | | | MOD7 | OVP7 | | |
| | | | -- | | | RM | | R/W | |
| | | X | x | x | x | 0 | 1 | 1 | 0 |
| A5 | 0×05 | ENDLY3 | | | | ENDLY2 | | | |
| | | R/W | | | | RM | | | |
| | | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| A6 | 0x06 | Reserved | | | | ENDLY4 | | | |
| | | -- | | | | RM | | | |
| | | x | x | X | x | 0 | 0 | 1 | 0 |
| A7 | 0×07 | PWM1 | Reserved | Reserved | EN4 | EN5 | EN6 | EN7 | EN8 |
| | | R/W | -- | -- | R/W | RM | R/W | RM | R/W |
| | | 0 | X | X | 1 | 0 | 0 | 0 | 0 |
| A10 | 0x0A | Reserved | RTCAJ | | | | | | |
| | | -- | RM | | | | | | |
| | | x | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
| A11 | 0x0B | Reserved | Reserved | RTCT_SEC[5:0] | | | | | |
| | | -- | -- | RM | | | | | |
| | | X | X | 0 | 0 | 0 | 0 | 0 | 0 |
| A12 | 0x0C | Reserved | Reserved | RTCT_MIN[5:0] | | | | | |
| | | -- | -- | RM | | | | | |
| | | X | X | 0 | 0 | 0 | 0 | 0 | 0 |
| A13 | 0x0D | Reserved | Reserved | Reserved | RTCT_HR[4:0] | | | | |
| | | -- | -- | -- | R/W | | | | |
| | | x | x | x | 0 | 0 | 0 | 0 | 0 |
| A14 | 0x0E | Reserved | Reserved | Reserved | RTCT_DAY[4:0] | | | | |
| | | -- | -- | -- | R/W | | | | |
| | | X | X | X | 0 | 0 | 0 | 0 | 1 |
| A15 | 0x0F | Reserved | RTCT_MON[3:0] | | | | RTCT_WEK[2:0] | | |
| | | -- | R/W | | | | R/W | | |
| | | X | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| A16 | 0×10 | $\begin{gathered} \text { RTCT_S } \\ \text { EC[0] } \\ \hline \end{gathered}$ | Reserved | RTCT_YAR[5:0] | | | | | |
| | | R | -- | RM | | | | | |
| | | 0 | x | 0 | 0 | 1 | 0 | 1 | 1 |
| A17 | 0×11 | USER[7:0] | | | | | | | |
| | | R/W | | | | | | | |
| | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| A18 | 0×12 | USER[15:8] | | | | | | | |
| | | R/W | | | | | | | |
| | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Address Name	Register Address	(MSB)		Bit Map, Read/Write, Default value				(LSB)	
		b[7]	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0]
A19	0×13	USER[23:16]							
		R/W							
		0	0	0	0	0	0	0	0
A20	0x14	USER[31:24]							
		R/W							
		0	0	0	0	0	0	0	0

Notes:

- VOUT1/2/3/4/5/6/8 at A0, A1, A2, A3.
- A1.DIS4 : can set whether CH4 discharges output node when it turns off.

DIS4 = $1: \mathrm{CH} 4$ will discharge VOUT4 node when it turns off.

DIS4 = 0 : CH4 will NOT discharge VOUT4 node when it turns off.

- A4.MOD7 : is used for selecting CH7 WLED operation mode.

MOD7 = 0x0 means current source mode.
MOD7 $=0 \times 1$ means sync step-up mode .

- A3.DIM7 : defines LED current dimming ratio of CH7. The dimming ratio is (DIM7 + 1) / 32. DIM7 define FB7 regulation voltage $=0.25 \mathrm{~V} \times($ DIM7 +1) $/ 32$.
- A4.OVP7 : defines the over voltage protection threshold at VOUT7 node of CH7 in step-up mode. This allows users to choose the proper OVP threshold for series 2 to 5 WLED. For 2 WLED application, select OVP7 = 0 only.

The mode setting of CH 7 must be ready before CH 7 enable signal sent by $\mathrm{I}^{2} \mathrm{C}$.

OVP7 = 0	OVP7 = 1	OVP7 = 2	OVP7 = 3	OVP7 $=4$	OVP7 $=5$	OVP7 $=6$	OVP7 $=7$
8 V	10 V	12 V	14 V	16 V	18 V	20 V	23 V

- ENDLY1/2/3/4/8 at A4/5/6 : ENDLYx set CHx power on delay time ($2 \mathrm{~ms} \times$ ENDLYx). Time counting starts once the EN pin goes high. Hence, ENDLYx can choose Oms to 30 ms . To turn on, CHx has to satisfy two conditions : one is the enable bit A8.ENx = 1 and the other is "delay time counting finish".
- A7.PWM1 : defines CH1 operation mode PWM1 = 0 means CH 1 is in PFM asynchronous rectified operation mode. PWM1 = 1 means CH 1 is in peak current control PWM synchronous rectified operation mode.
- EN4/5/6/7/8 at A7 : enable (ENx = 1) or disable $(E N x=0) C H 4 / 5 / 6 / 7 / 8$. When the EN pin goes high, CHx turns on (after the delay time ENDLYx) if the bits $E N x=1$. CH5/6/7 has no ENDLYx setting. Hence, they turn on immediately once the EN pin goes high and the bit $E N x=1$. The register byte A7 resets when the external EN input pin goes low.
- A10.RTCAJ : finely tune the RTC time counting frequency by adjusting (RTCAJ - 60)/2 ppm. Hence, the tuning range is -30 ppm to 33 ppm .
- RTCT_SEC [5:0] at A11 and RTCT_SEC [0] at A16 : stores the SECOND field of RTC time. That is 0 to 59. A16.RTCT_SEC[0] has the same storing value as A11.RTCT_SEC[0] Users can set SECOND value into address A11. Hence, when users read out the RTC time starting from A11 to A16, the SECOND of the RTC time may be carried. Thus, the A16.RTCT_SEC [0] will return a different value from A11.RTCT_SEC [0]. The difference allows users to deal with the carry on correction from the read RTC time.
- RTCT_MIN [5:0] at A12 : stores the MINUTE field of RTC time from 0 to 59.
- RTCT_HR [4:0] at A13 : stores the HOUR field of RTC time from 0 to 23 (24 hour format).
- RTCT_DAY [4:0] at A14 : stores the DATE field of RTC time from 1 to 31, depending on the month. RTCT_DAY [4:0] = 1 means 1st day of each month. The RT9999P supports leap year counting.
- RTCT_MON [3:0] at A15: stores the MONTH field of RTC time from 1 to 12 . RTCT_MON = 1 means January.
- RTCT_YAR [5:0] at A16 : stores the YEAR field of RTC time from 0 to 63. RTCT_YAR $=0$ means the year 2000. Hence, RT9999P can count until the year 2063.
- RTCT_WEK [2:0] at A15 : stores the DAY-of-WEEK field of RTC time from 0 to 6. RTCT_WEK = 0 means Sunday and RTCT_WEK = 1 means Monday. The

RT9999P can not automatically calculate the field based on other fields (YEAR, MONTH, DATE). Users have to write the right value into this field initially. The RT9999P just counts the field value among 0 to 6 when DATE field is carried.

- USER [31:0] at A17 to A20 : stores user's data, similar to accessing SRAM via $I^{2} \mathrm{C}$.
- Register File Reset Moment

A0 to A6 : Reset when $\overline{\text { RESET }}=\mathrm{L}$ occurs.
A7 : Reset when EN goes low.
A10 to A16 : Reset when RTC Reset occurs.
A17 to A20 : Reset when $\overline{\text { RESET }}=\mathrm{L}$ occurs.

Output Voltage List

I^{2} C Register Value	VOUT1 4bit	VOUT2 I/O 3 bit	VOUT3 CORE 4bit	VOUT4 MEM $3 b i t ~$	VOUT5 CCD+ $3 b i t$	VOUT6 CCD- 3bit	VOUT8 LDO 3bit
0	5.3	3.65	1.3	2.14	15	-5	3.5
1	5.2^{*}	3.6^{*}	1.28	2.1^{*}	14.5	-5.5	3.4^{*}
2	5.1	3.55	1.26	2.06	14	-6	3.3
3	5	3.5	1.24	2.02	13.5	-6.5	3.
4	4.9	3.45	1.22	1.84	13^{*}	-7	2.8
5	4.8	3.4	1.2	1.8^{\star}	12.5	-7.5^{*}	2.5
6	4.7	3.35	1.18	1.76	12	-8	1.8
7	4.6	3.3	1.16	1.72	Ref	Ref	1.5
8	4.5	--	1.14	--	--	--	--
9	4.4	--	1.12	--	--	--	--
10	4.3	--	1.1	--	--	--	--
11	4.2	--	1.08	--	--	--	--
12	4	--	1.06^{*}	--	--	--	--
13	3.9	--	1.04	--	--	--	--
14	3.8	--	1.02	--	--	--	--
15	3.6	--	1	--	--	--	--

Ref means VOUT set by external feedback resistors.
FB5 regulation voltage $=1.25 \mathrm{~V}$ for CH 5
$\left(\mathrm{V}_{\mathrm{REF}}-\mathrm{V}_{\mathrm{FB6}}\right)$ regulation voltage $=1.24 \mathrm{~V}$ for CH 6 .
Typically, $\mathrm{V}_{\mathrm{FB} 6}$ is regulated at 0.2 V .

VOUT4 Default Voltage is selected by the pin MSEL and latched at the moment when RESET goes high. MSEL $=\mathrm{H}$: default $\mathrm{V}_{\text {out4 }}=2.1 \mathrm{~V}$
$\mathrm{MSEL}=\mathrm{L}:$ default $\mathrm{V}_{\text {Out } 4}=1.8 \mathrm{~V}$.

Output Voltage Ramp Rate

For instance, $\mathrm{CH} 3 \mathrm{~V}_{\text {CORE }}$ output voltage ramp up rate $=$ $1.5 \times 0.8 \mathrm{~V} / 4 \mathrm{~ms}=0.3 \mathrm{~V} / \mathrm{ms}$. The ramp up/down rate is kept the same for enabling soft-start or dynamic output voltage adjustment.

Each channel has a different ramp rate as shown in Electrical Characteristics.

From PWM1 $=1$ to VOUT1 $=5 \mathrm{~V}$, the soft-start time \sim 4 ms .

From EN8 $=1$ to VOUT8 $=3.4 \mathrm{~V}$, the soft-start time \sim 4 ms .

The soft-start time would be proportional to VOUT target voltage.

Note: CH1, CH3, CH4, CH8 output voltage and CH 7 WLED current can be dynamically changed with inrush and $\mathrm{V}_{\text {Out-ramping control }}$ when they have been turned on. $\mathrm{CH} 2, \mathrm{CH} 5, \mathrm{CH} 6$ are not.

Note : The Start point referred by ENDLYx delay time begins when the EN pin goes high.
Once, $\mathrm{A} 7 . \mathrm{EN} 8=1, \mathrm{CH} 8$ turns on immediately.

Power On/Off Sequence

CH 1 : As long as BAT doesn't trigger UVLO, CH 1 remains active without EN pin $=\mathrm{H}$. However, when A7. $\mathrm{PWM} 1=1$, EN pin $=\mathrm{H}$ and no VDDM_UVLO, CH1 will switch from PFM mode to PWM mode. Otherwise, it works in PFM mode.
$\mathrm{CH} 2 / 3$: CH 2 and CH 3 are both enabled by the EN pin and have turn on delay time as defined in $I^{2} \mathrm{C}$ register A 5 . ENDLY2/3. When EN goes low, CH 2 starts to turn off. After CH 2 output voltage $<0.1 \mathrm{~V}, \mathrm{CH} 4$ will start to turn off.

After CH 4 output voltage $<0.1 \mathrm{~V}, \mathrm{CH} 3$ will start to turn off. If A1.DIS4 $=1, \mathrm{CH} 4$ will internally discharge when turning off. If A1.DIS4 $=0, \mathrm{CH} 4$ will internally not discharge when turning off. CH 3 will wait for $\mathrm{V}_{\text {OUT2 }}<0.1 \mathrm{~V}$.

CH4/8 : To enable CH4 and CH8, the bits A7.EN4 and A7.EN8 must be set to " 1 " and EN pin must be high. When the enable bits are set to " 1 ", CH 8 will turn on immediately, and CH 4 will turn on after a delay time defined by ENDLY4.

Max Load of Every Channel

Purpose	RT9999P	Current Limit	Max Load	Condition (VIN VOUT)
VDDM and $\mathrm{V}_{\text {MOTOR }}$	CH 1	3 A	800 mA	$3 \mathrm{~V} \rightarrow 5 \mathrm{~V}$
$\mathrm{~V}_{\text {I/O }}$	CH 2	2 A	600 mA	$3 \mathrm{~V} \rightarrow 3.3 \mathrm{~V}$
$\mathrm{~V}_{\text {CORE }}$	CH 3	2 A	1.2 A	$3 \mathrm{~V} \rightarrow 1.1 \mathrm{~V}$
$\mathrm{~V}_{\text {MEM }}$	CH 4	1.5 A	500 mA	$3 \mathrm{~V} \rightarrow 1.8 \mathrm{~V}$
CCD+	CH 5	1.2 A	100 mA	$3 \mathrm{~V} \rightarrow 16 \mathrm{~V}$
CCD-	CH 6	1.5 A	150 mA	$3 \mathrm{~V} \rightarrow-8 \mathrm{~V}$
WLED	CH 7	0.8 A	50 mA	4 WLED
Generic LDO	CH 8	300 mA	200 mA	$\mathrm{~V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}>150 \mathrm{mV}$
Keep Alive LDO	CH 9	100 mA	50 mA	$\mathrm{~V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}>300 \mathrm{mV}$

Protection Act

	Protection Type	Threshold (typical value)	Delay Time	Protection Methods	Reset Method
VDDM	Over Voltage Protection	$V_{\text {DDM }}>6 \mathrm{~V}$	100ms	Turn off whole IC, Except CH9 and CH1 in PFM	$\begin{aligned} & \text { Restart if } \\ & \text { VDDM < } 5.8 \mathrm{~V} \end{aligned}$
BAT	UVLO	$\mathrm{V}_{\text {BAT }}<1.5 \mathrm{~V}$	No Delay	Disable all Channels	Restart if $\mathrm{V}_{\text {BAT }}>1.7 \mathrm{~V}$
CH1	Current Limit (in PFM)	N-MOSFET current > 0.8A	No Delay	Turn off N-MOSFET	Reset after minimum off-time finish
	VOUT1 OVP (in PWM)	Vout1 ${ }^{\text {c }}$ 6V	No Delay	Turn Off Whole IC, Except CH 9 and CH1 in PFM	VDDM Power Reset or $\mathrm{EN}=$ low
	OCP (in PWM)	N-MOSFET current > 3A	100ms	Turn Off Whole IC, Except CH 9 and CH 1 in PFM	VDDM Power Reset or $\mathrm{EN}=$ low
	VOUT1 UVP (in PWM)	$\mathrm{V}_{\text {OUT } 1}<2.25 \mathrm{~V}$	No Delay	Turn Off Whole IC, Except CH 9 and CH1 in PFM	VDDM Power Reset or EN = low
	Over Load Protection (in PWM)	$V_{\text {OUT1 }}$ < Target - 0.6	100ms	Turn Off Whole IC, Except CH 9 and CH1 in PFM	VDDM Power Reset or EN = low

	Protection Type	Threshold (typical value)	Delay Time	Protection Methods	Reset Method
CH2	Current Limit and OCP	Inductor Current > 2A	No Delay	Turn Off Whole IC, Except CH9 and CH 1 in PFM	VDDM Power Reset or EN = low
	VOUT2 OVP	$\mathrm{V}_{\text {OUT2 }}>6 \mathrm{~V}$	No Delay	Turn Off Whole IC, Except CH9 and CH 1 in PFM	VDDM Power Reset or EN = low
	VOUT2 UVP	Vout2 < 1.6V	No Delay	Turn Off Whole IC, Except CH9 and CH1 in PFM	VDDM Power Reset or EN = low
	Over Load Protection	Vout2 < Target - 0.4	100ms	Turn Off Whole IC, Except CH 9 and CH 1 in PFM	VDDM Power Reset or EN = low
CH3	OCP	$\begin{array}{\|l\|} \hline \text { P-MOSFET } \\ \text { Current > 2A } \\ \hline \end{array}$	100ms	Turn Off Whole IC, Except CH9 and CH1 in PFM	VDDM Power Reset or EN = Low
	VOUT3 UVP	$\mathrm{V}_{\text {OUT3 }}<0.6$	No Delay	Turn Off Whole IC, Except CH 9 and CH 1 in PFM	VDDM Power Reset or EN = Low
	Over Load Protection	$\mathrm{V}_{\text {OUT3 }}$ < Target -0.15	100ms	Turn Off Whole IC, Except CH9 and CH1 in PFM	VDDM Power Reset or EN = Low
CH 4	OCP	P-MOSFET Current > 1.5A	100ms	Turn Off Whole IC, Except CH9 and CH1 in PFM	VDDM Power Reset or EN = Low
	VOUT4 UVP	Vout4 <0.8	No Delay	Turn Off Whole IC, Except CH 9 and CH 1 in PFM	VDDM Power Reset or EN = Low
	Over Load Protection	Vout4 < Target - 0.2	100ms	Turn Off Whole IC, Except CH9 and CH1 in PFM	VDDM Power Reset or EN = Low
CH5	OCP	N-MOSFET Current > 1.2A	100ms	Turn Off Whole IC, Except CH 9 and CH 1 in PFM	VDDM Power Reset or EN = Low
	OVP	$\mathrm{V}_{\text {OUT5 }}>19 \mathrm{~V}$	No Delay	Turn Off Whole IC, Except CH9 and CH1 in PFM	VDDM Power Reset or EN = Low
	UVP	$\mathrm{V}_{\mathrm{FB} 5}<0.6 \mathrm{~V}$	100ms	Turn Off Whole IC, Except CH 9 and CH 1 in PFM	VDDM Power Reset or EN = Low
	Over Load Protection	$\mathrm{V}_{\text {OUT5 }}<$ Target -1.8	100ms	Turn Off Whole IC, Except CH9 and CH1 in PFM	VDDM Power Reset or EN = Low
CH6	OVP	VOUT6<-11V	No Delay	Turn Off Whole IC, Except CH9 and CH1 in PFM	VDDM Power Reset or EN = Low
	OCP	P-MOSFET Current > $1.5 \mathrm{~A}$	100ms	Turn Off Whole IC, Except CH9 and CH1 in PFM	VDDM Power Reset or EN = Low
	VOUT6 UVP	$\mathrm{V}_{\mathrm{FB6}}>0.5 \mathrm{~V}$	100ms	Turn Off Whole IC, Except CH9 and CH1 in PFM	VDDM Power Reset or EN = Low
	Over Load Protection	$\mathrm{V}_{\mathrm{FB6} 6}>0.35 \mathrm{~V}$	100ms	Turn Off Whole IC, Except CH9 and CH1 in PFM	VDDM Power Reset or EN = Low
CH 7	OCP	N-MOSFET Current > $0.8 \mathrm{~A}$	100ms	Turn Off Whole IC	VDDM Power Reset or EN = Low
	OVP	Vout7 > A4.OVP7 Threshold	No Delay	Turn Off CH7 only	VDDM Power Reset or EN = Low
CH8	UVP	Vouts < target x 0.5	No Delay	Turn off whole IC, Except CH9 and CH1 in PFM	VDDM Power Reset or EN = Low
	Current Limit	P-MOSFET Current > 300mA	No Delay	Limit P-MOSFET Current	Reset by Load
CH9	Current Limit	P-MOSFET Current > 100mA	No Delay	Limit P-MOSFET Current	Reset by Load
	VM UVLO	$\mathrm{V}_{\mathrm{M}}<\mathrm{BAT}-1.1 \mathrm{~V}$	No Delay	Lower down CH1 PFM driving capability	Reset when $\mathrm{V}_{\mathrm{M}}>\mathrm{BAT}-1.1 \mathrm{~V}$
	$\overline{\text { RESET }}$	$\mathrm{V}_{\text {DDM }}<2.6 \mathrm{~V}$	No Delay	Turn Off Whole IC, Except CH9 and CH 1 in PFM	Restart Whole IC if EN $=$ High and VDDM $>2.8 \mathrm{~V}$

	Protection Type	Threshold (typical value)	Delay Time	Protection Methods	Reset Method
RTCPWR	UVLO	$\mathrm{V}_{\mathrm{RTCPWR}}<1.6 \mathrm{~V}$	No Delay	Clear RTC Registers	$\mathrm{V}_{\mathrm{RTCPWR}}>1.616 \mathrm{~V}$
Thermal	Thermal Shutdown	Temperature $>160^{\circ} \mathrm{C}$	No Delay	Turn Off Whole IC, Except CH9 and CH1 in PFM	Restart Whole IC if EN $=$ High and Temperature $140^{\circ} \mathrm{C}$

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :
$P_{D(\text { mAX })}=\left(T_{J(M A X)}-T_{A}\right) / \theta_{J A}$
where $T_{J(M A X)}$ is the maximum junction temperature, T_{A} is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is $125^{\circ} \mathrm{C}$. The junction to ambient thermal resistance, θ_{JA}, is layout dependent. For WQFN-40L 5×5 package, the thermal resistance, θ_{JA}, is $27.5^{\circ} \mathrm{C} / \mathrm{W}$ on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ can be calculated by the following formula :
$\mathrm{P}_{\mathrm{D}(\text { MAX })}=\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) /\left(27.5^{\circ} \mathrm{C} / \mathrm{W}\right)=3.64 \mathrm{~W}$ for WQFN-40L 5×5 package

The maximum power dissipation depends on the operating ambient temperature for fixed $\mathrm{T}_{\mathrm{J}_{\text {MAX }}}$ and thermal resistance, θ_{JA}. The derating curve in Figure 3 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Figure 3. Derating Curve of Maximum Power Dissipation

Layout Considerations

For the best performance of the RT9999P, the following PCB layout guidelines must be strictly followed.

- Place the input and output capacitors as close as possible to the input and output pins respectively for good noise filtering.
- Keep the main power traces as wide and short as possible.
- The switching node area connected to LX and inductor should be minimized for lower EMI.
- Place the feedback components as close as possible to the FB pin and keep these components away from the noisy devices.
- Connect the GND and Exposed Pad to a strong ground plane for maximum thermal dissipation and noise protection.
- Directly connect the output capacitors to the feedback network of each channel to avoid bouncing caused by parasitic resistance and inductance from the PCB trace.

For the $32-\mathrm{kHz}$ oscillator to the best performance, Please obey the following guidelines :

- Place the crystal and its components close to the oscillator side and the oscillator pins.
- Ensure that the ground plane under the oscillator and its components are of good quality.
- Avoid placing a separate ground under the oscillator and connecting it to the general ground through a single point.

Figure 4. PCB Layout Guide

Outline Dimension

Note : The configuration of the Pin \#1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions In Millimeters		Dimensions In Inches				
	Min	Max	Min	Max			
A	0.700	0.800	0.028	0.031			
A1	0.000	0.050	0.000	0.002			
A3	0.175	0.250	0.007	0.010			
b	0.150	0.250	0.006	0.010			
D	4.950	5.050	0.195	0.199			
D2	3.250	3.500	0.128	0.138			
E	4.950	5.050	0.195	0.199			
E2	3.250	3.500	0.128	0.138			
e	0.400						0.016
L	0.350	0.450	0.014	0.018			

W-Type 40L QFN 5x5 Package

Richtek Technology Corporation

5F, No. 20, Taiyuen Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

[^0]: Copyright ©2019 Richtek Technology Corporation. All rights reserved.
 RICHTEK is a registered trademark of Richtek Technology Corporation.

