
RTQ2510-QT

1A, Low Noise, High PSRR, Low-Dropout Linear Regulator

1 General Description

The RTQ2510-QT is a high-performance positive low dropout (LDO) regulator designed for applications requiring very low dropout voltage and high Power Supply Ripple Rejection (PSRR) at up to 1A. The input voltage range is from 2.2V to 6V, and the output voltage is programmable as low as 0.8V. The P-MOSFET switch provides excellent transient response with only a 4.7µF ceramic output capacitor. The external enable control effectively reduces power dissipation during shutdown and further output noise immunity is achieved through a bypass capacitor on the NR pin. Additionally, the RTQ2510-QT features a precise 1.5% output regulation over line, load, and temperature variations. The device is available in the VDFN-8L 3x3 package and is specified from -40°C to 125°C.

2 Ordering Information

Note 1.

Richtek products are Richtek Green Policy compliant and marked with ⁽¹⁾ indicates compatible with the current requirements of IPC/JEDEC J-STD-020.

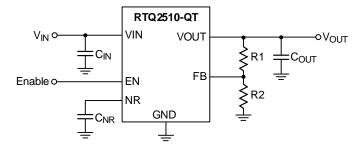
3 Features

- AEC-Q100 Grade 1 Qualified
- Dropout: 170mV Typical at 1A
- PSRR: 63dB @ 1kHz, 38dB @ 1MHz
- Input Voltage Range: 2.2V to 6V
- Adjustable Output Voltage: 0.8V to 5.5V
- –40°C to 125°C Operating Junction Temperature Range
- Excellent Noise Immunity
- Fast Response Over Load and Line Transient
- Stable with a 4.7μF Output Ceramic Capacitor
- Accurate Output Voltage 1.5% Over Load, Line, Process, and Temperature Variations
- Enable Control
- Overcurrent Protection
- Over-Temperature Protection

4 Applications

- In-Vehicle Infotainment Systems
- Telematics Control Units
- Instrument Clusters
- Automotive Head Units
- ADAS Camera and Radar
- Navigation Systems

5 Marking Information

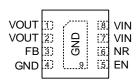


VU=: Product Code YMDNN: Date Code

RICHTEK

6 Simplified Application Circuit

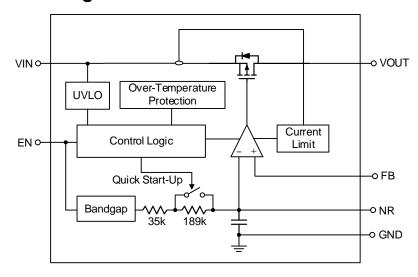
Table of Contents


1	Genei	al Description 1
2		ing Information 1
3		res 1
4		cations 1
5		ng Information1
6		ified Application Circuit2
7	Pin C	onfiguration 4
8		ional Pin Description 4
9		ional Block Diagram4
10		ute Maximum Ratings 5
11		Ratings 5
12	Recor	mmended Operating Conditions 5
13	Thern	nal Information 5
14		ical Characteristics 6
15	Typica	al Application Circuit8
16	Typica	al Operating Characteristics9
17	Opera	tion11
	17.1	Start-Up11
	17.2	Enable and Shutdown Operation11
	17.3	Overcurrent Protection11
	17.4	Over-Temperature Protection (OTP)11
	17.5	Undervoltage-Lockout (UVLO)12

18	Appıı	cation information	·13
	18.1	Dropout Voltage	13
	18.2	Output Voltage Setting	13
	18.3	Chip Enable Operation	13
	18.4	Overcurrent Protection	13
	18.5	CIN and COUT Selection	13
	18.6	Output Noise	14
	18.7	Thermal Considerations	
	18.8	Layout Considerations	15
19	Outli	ne Dimension	16
20	Footp	orint Information	17
21	Packi	ing Information	18
	21.1	Tape and Reel Data	18
	21.2	Tape and Reel Packing	19
	21.3	Packing Material Anti-ESD Property	20
22	Datas	sheet Revision History	21

7 Pin Configuration

(TOP VIEW)



VDFN-8L 3x3

8 Functional Pin Description

Pin No.	Pin Name	Pin Function
1, 2	VOUT	Output of the regulator. Decouple this pin to GND with at least $4.7\mu\text{F}$ for stability.
3	FB	Feedback voltage input. This pin is used to set the desired output voltage via an external resistive divider. The feedback reference voltage is 0.8V typically.
4, 9 (Exposed Pad)	GND	System ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.
5	EN	Enable control input. Connecting this pin to logic high enables the regulator or driving this pin low puts it into shutdown mode. EN can be connected to IN if not used. (The EN pin is not allowed to be left floating.)
6	NR	Noise reduction input. Decoupling this pin to GND with an external capacitor cannot only reduce output noise to very low levels but also slow down the VOUT rise, like a soft-start behavior.
7, 8	VIN	Supply input. A minimum of $1\mu F$ ceramic capacitor should be placed as close as possible to this pin for better noise rejection.

9 Functional Block Diagram

RTQ2510-QT DS-04

10 Absolute Maximum Ratings

(Note 2)

- All Pins ----- -0.3V to 7V
- Lead Temperature (Soldering, 10 sec.) ------ 260°C
- Junction Temperature ------ 150°C
- Storage Temperature Range ----- ---- -65°C to 150°C

Note 2. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

11 ESD Ratings

(Note 3)

- · ESD Susceptibility
- HBM (Human Body Model)----- 2kV

Note 3. Devices are ESD sensitive. Handling precautions are recommended.

12 Recommended Operating Conditions

(Note 4)

- Supply Input Voltage, VIN ----- 2.2V to 6V

Note 4. The device is not guaranteed to function outside its operating conditions.

13 Thermal Information

(Note 5 and Note 6)

	Thermal Parameter							
θJA	Junction-to-ambient thermal resistance (JEDEC standard)	60.82	°C/W					
θJC(Top)	Junction-to-case (top) thermal resistance	83.76	°C/W					
θ JC(Bottom)	Junction-to-case (bottom) thermal resistance	10.48	°C/W					
θJA(EVB)	Junction-to-ambient thermal resistance (specific EVB)	45.06	°C/W					
ΨJC(Top)	Junction-to-top characterization parameter	5.42	°C/W					
ΨЈВ	Junction-to-board characterization parameter	26.17	°C/W					

Note 5. For more information about thermal parameter, see the Application and Definition of Thermal Resistances report, <u>AN061</u>.

Note 6. $\theta_{JA~(EVB)}$, $\Psi_{JC(Top)}$, and Ψ_{JB} are measured on a high effective-thermal-conductivity four-layer test board, which is in size of 70mm x 50mm; furthermore, all layers with 1 oz. Cu. Thermal resistance/parameter values may vary depending on the PCB material, layout, and test environmental conditions.

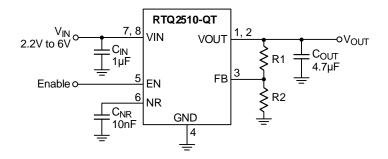
Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

14 Electrical Characteristics

 $(V_{IN} = V_{OUT} + 0.5V \text{ or } 2.2V, V_{OUT} = 0.8V \text{ and } 5.5V, I_{OUT} = 1 \text{mA}, V_{EN} = 2.2V, C_{NR} = 10 \text{nF}, C_{OUT} = 4.7 \mu F, T_{J} = -40 ^{\circ} \text{C} \text{ to } 125 ^{\circ} \text{C}, T_{C} = 10 ^{\circ} \text{C} \text{ to } 125 ^{\circ} \text{C}$ unless otherwise specified.)

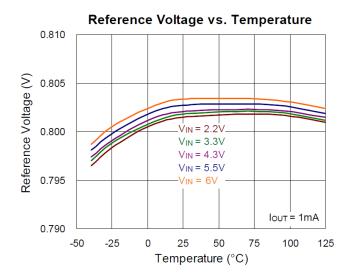
Parameter	Symbol	Test Conditi	ions	Min	Тур	Max	Unit
Supply Voltage	•	•					
VIN Supply Input Voltage	Vin			2.2	-	6	
Undervoltage- Lockout Rising Threshold	Vuvlo	Rout = 1kΩ		1.86	2	2.1	V
Undervoltage- Lockout Hysteresis	Vuvlo_HYS	Rout = 1kΩ			200		mV
Shutdown Current	loupu	$\label{eq:Vension} \begin{array}{l} V_{EN} \leq 0.4 V, \ V_{IN} \geq 2.2 V, \ R \\ 0^{\circ} C \leq T_{J} \leq 85^{\circ} C \end{array}$	OUT = $1k\Omega$,		0.2	2	^
Silutdowii Current	ISHDN	$Ven \leq 0.4V, \ Vin \geq 2.2V, \ R$ $-40°C \leq TJ \leq 125°C$	OUT = $1k\Omega$,	1	0.2	5	μΑ
Quiescent Current	IQ				190	350	μΑ
Output Voltage							
Output Voltage	Vout			0.8		5.5	V
Output Voltage	Maur 100	$\label{eq:controller} \begin{split} &V\text{OUT} + 0.5\text{V} \leq \text{Vin} \leq 6\text{V}, \text{Vin} \geq 2.5\text{V}, \\ &100\text{mA} \leq \text{IOUT} \leq 500\text{mA}, \\ &0^{\circ}\text{C} \leq \text{TJ} \leq 85^{\circ}\text{C} \end{split}$		-1	1	1	%
Accuracy (Note 7)	Vout_acc	$\begin{split} &V_{OUT}+0.5V\leq V_{IN}\leq 6V,\ V\\ &100mA\leq I_{OUT}\leq 1A\\ &-40^{\circ}C\leq T_{J}\leq 125^{\circ}C \end{split}$	-1.5	ı	1.5		
Line Regulation	VLINE_REG	Vout + $0.5V \le VIN \le 6V$, VIOUT = $100mA$	/IN ≥ 2.2V,		0.2		%
Load Regulation	VLOAD_REG	100mA ≤ I _{OUT} ≤ 1A			0.3		%
Enable Voltage							
EN Input Voltage Rising Threshold	VEN_R	Ven rising, $2.2V \le VIN \le 6$	V, Rout = 1 kΩ	1.2			V
EN Input Voltage Falling Threshold	VEN_F	VEN falling, ROUT = $1k\Omega$				0.4	V
EN Input Current	IEN	VIN = 6V, VEN = 6V			0.02	1	μΑ
FB Input Current	IFB	V _{IN} = 5.5V, V _{FB} = 0.8V			0.02	1	μΑ
Current Limit	•			•	•	•	
Current Limit	ILIM	VIN = 3.3V, VOUT = 0.85	x Vout	1.1	1.4	2	Α
Power-Up Time	•	•		•	•		
Soft-Start Time	tss	Vout = 3.3V, Rout = $3.3k\Omega$,	C _{NR} = 1nF		0.16		ms
		Cout = 4.7μF	CNR = 10nF		1.6		

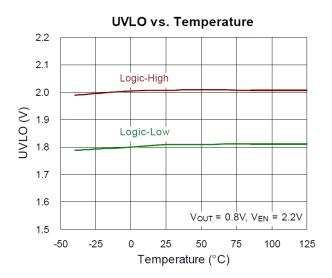
Parameter	Symbol	Test Conditi	ions	Min	Тур	Max	Unit
Dropout Voltage			•				
			V _{IN} ≥ 2.2V, I _{OUT} = 500mA			160	
Dropout Voltage	VDROP		$V_{IN} \ge 2.5V$, $I_{OUT} = 750mA$			210	mV
			V _{IN} ≥ 2.5V, I _{OUT} = 1A			370	
Power Supply Ripp	ole Rejection a	nd Noise					
Power Supply Ripple Rejection			f = 100Hz		48		
	PSRR	V _{IN} = 4.3V, V _{OUT} = 3.3V, I _{OUT} = 750mA (<u>Note 8</u>)	f = 1kHz		63		dB
			f = 10kHz		63		
		(11000)	f = 1MHz		38		
	Vn	BW = 100Hz to 100kHz,	CNR = 1nF		15.6 х Vouт		
Output Noise		VIN = 4.3V, VOUT = 3.3V, IOUT = 100mA	CNR = 10nF		15.6 х Vouт		μVRMS
		(<u>Note 8</u>)	CNR = 0.1μF		15.1 х Vouт		
Over-Temperature	Protection						
Over-Temperature Protection Threshold	Тотр	(<u>Note 8</u>)		160		- °C	
Over-Temperature Protection Hysteresis	Totp_Hys	(<u>Note 8</u>)			20		

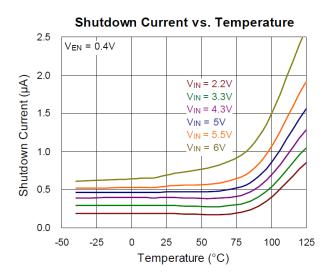

Note 7. The spec does not cover the tolerances from external resistors, and which is not tested at condition of V_{OUT} = 0.8V, $4.5 \text{V} \leq \text{V}_{\text{IN}} \leq 6 \text{V}, \text{ and } 750 \text{mA} \leq \text{I}_{\text{OUT}} \leq 1 \text{A since the power dissipation of the device is totally higher than the maximum}$ rating of the package to lead a thermal shutdown issue.

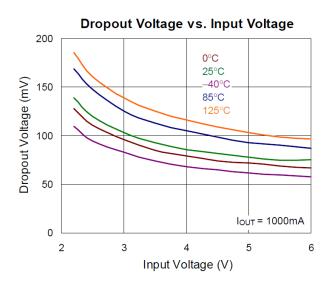
Note 8. Guarantee by design.

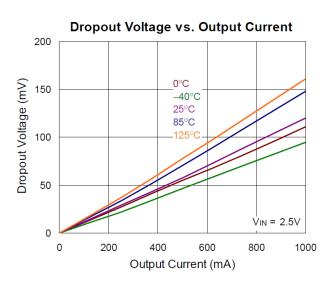
RTQ2510-QT_DS-04 March 2025

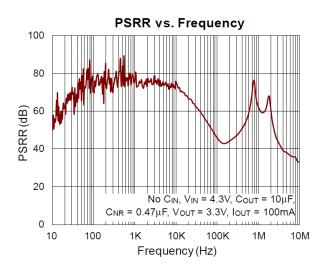


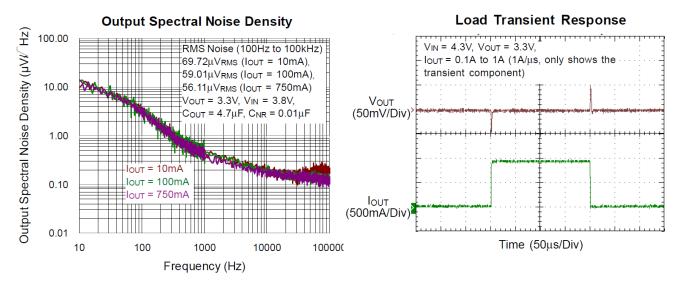

15 Typical Application Circuit

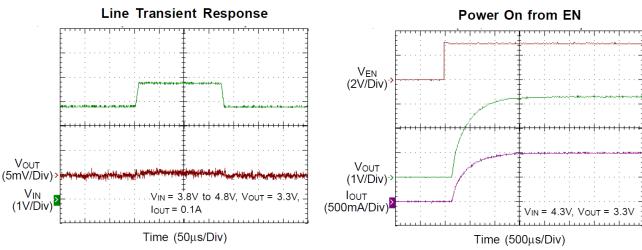


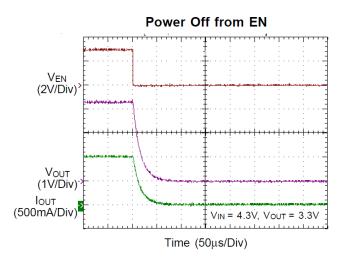


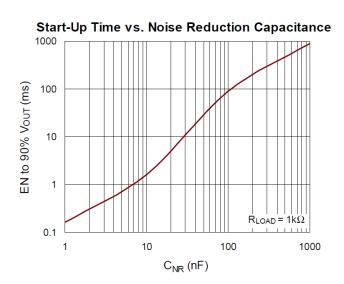

16 Typical Operating Characteristics











10

17 Operation

The RTQ2510-QT is a low noise, high PSRR LDO which supports very low dropout operation. The operating input voltage range is from 2.2V to 6V, the output voltage is programmable as low as 0.8V, and the output current can be up to 1A. The internal compensation network is well designed to achieve fast transient response with good stability.

In steady-state operation, the feedback voltage is regulated to the reference voltage by the internal regulator. When the feedback voltage signal is less than the reference, the output current passing through the power MOSFET will be increased. The additional current is sent to the output until the voltage level of the FB pin returns to the reference voltage.

Conversely, if the feedback voltage is higher than the reference, the power MOSFET current is decreased. The excess charge at the output can be released by the loading current.

17.1 Start-Up

The RTQ2510-QT has a quick-start circuit to charge the noise reduction capacitor (CNR). The switch of the quick-start circuit is closed at start-up.

To reduce the noise from the bandgap, there is a low-pass (RC) filter consisting of the C_{NR} and the resistor, which is connected with the bandgap, as shown in <u>Functional Block Diagram</u>.

At the start-up, the quick-start switch is closed, with only $35k\Omega$ resistance between the bandgap and the NR pin. The quick-start switch opens approximately 2ms after the device is enabled, and the resistance between NR and the bandgap is about $224k\Omega$ to form a very good low-pass filter with great noise reduction performance.

The $35k\Omega$ resistance is used to slow down the reference voltage ramp to avoid inrush current at chip start-up, and the start-up time can be calculated using the following equation:

 $tss(sec) = 160000 \times CNR(F)$

It is recommended that the CNR value be larger than $0.01\mu\text{F}$ to reduce noise, and low-leakage ceramic capacitors are suitable. However, if the CNR value is too large, the start-up time will be extended significantly if the CNR is not fully charged within 2ms and the quick-start switch is opened. The CNR will be charged through a higher resistance of $224k\Omega$, which will take much longer to complete the start-up process.

17.2 Enable and Shutdown Operation

The RTQ2510-QT enters shutdown mode when the EN pin is at a logic low condition. In this condition, the pass transistor, the error amplifier, and the bandgap are all turned off, reducing the supply current to 2μ A (maximum). If the shutdown mode is not needed, the EN pin can be directly tied to the VIN pin to keep the LDO on.

17.3 Overcurrent Protection

The RTQ2510-QT continuously monitors the output current to protect the pass transistor against abnormal operations. When an overload or short circuit is encountered, the current limit circuitry controls the pass transistor's gate voltage to limit the output within the predefined range. Due to the built-in body diode, the pass transistor conducts current when the output voltage exceeds the input voltage. Since the current is not limited, external current protection should be added if the device may work at a reverse voltage state.

17.4 Over-Temperature Protection (OTP)

The RTQ2510-QT has an over-temperature protection. When the device triggers the OTP, the device shuts down until the temperature returns to a normal state.

RICHTEK is a registered trademark of Richtek Technology Corporation.

RTQ2510-QT

17.5 Undervoltage-Lockout (UVLO)

The RTQ2510-QT utilizes an undervoltage-lockout circuit to keep the output shutdown until the internal circuitry is operating properly. The UVLO circuit has a de-glitch feature that typically ignores undershoot transients on the input if they are less than 30µs duration.

18 Application Information

(Note 9)

The RTQ2510-QT is a low voltage, low dropout linear regulator with an input voltage from 2.2V to 6V and an adjustable output voltage from 0.8V to 5.5V.

18.1 Dropout Voltage

The dropout voltage refers to the voltage difference between the VIN and VOUT pins while operating at a specific output current. The dropout voltage VDROP can also be expressed as the voltage drop across the pass-FET at a specific output current (IRATED) while the pass-FET is fully operating at the ohmic region, and the pass-FET can be characterized as a resistance RDSON. Thus, the dropout voltage can be defined as (VDROP = VVIN – VVOUT = RDSON x IRATED).

For normal operation, the suggested LDO operating range is (VVIN > VVOUT + VDROP) for good transient response and PSRR ability. Conversely, operating in the ohmic region will severely degrade these performances.

18.2 Output Voltage Setting

For the RTQ2510-QT, the output voltage is set by the voltage on the FB pin and is determined by the values of R1 and R2. The values of R1 and R2 can be calculated for any voltage using the following equation:

$$V_{OUT} = \frac{\left(R1 + R2\right)}{R2} \times 0.8$$

It is recommended to use lower values for R1 and R2 to reduce the noise injected from the FB pin. Note that R1 is connected from the VOUT pin to the FB pin, and R2 is connected from FB to GND.

18.3 Chip Enable Operation

The EN pin is the chip enable input. Pulling the EN pin low (<0.4V) will shut down the device. During shutdown mode, the RTQ2510-QT quiescent current drops to lower than 2μ A. Driving the EN pin high (>1.2V, <6V) will turn on the device again. For external timing control (for example, RC), the EN pin can also be externally pulled high by adding a $100k\Omega$ or greater resistor from the VIN pin.

18.4 Overcurrent Protection

The RTQ2510-QT continuously monitors the output current to protect the pass transistor against abnormal operations. When an overload or short circuit is encountered, the current limit circuitry controls the pass transistor's gate voltage to limit the output within the predefined range. Due to the built-in body diode, the pass transistor conducts current when the output voltage exceeds the input voltage. Since the current is not limited, external current protection should be added if the device may operate at a reverse voltage state.

18.5 CIN and COUT Selection

Like any low dropout regulator, the external capacitors of the RTQ2510-QT must be carefully selected for regulator stability and performance. Using a capacitor of at least $4.7\mu F$ is suitable. The input capacitor must be located at a distance of no more than 0.5 inch from the input pin of the chip. Any good quality ceramic capacitor can be used. However, a capacitor with larger value and lower ESR (Equivalent Series Resistance) is recommended since it will provide better PSRR and line transient response.

The RTQ2510-QT is designed specifically to work with low ESR ceramic output capacitor for space saving and performance considerations. Using a ceramic capacitor with a capacitance of at least $4.7\mu F$ on the RTQ2510-QT output ensures stability.

RICHTEK is a registered trademark of Richtek Technology Corporation.

18.6 Output Noise

The dominant noise source is from the internal bandgap for most LDOs. With the noise reduction capacitor connected to the NR pin of the RTQ2510-QT, the noise component contributed from the bandgap will not be significant. Instead, the most significant noise source comes from the output resistor divider and the error amplifier input. For general noise reduction in applications, it is recommended to use a 0.01 µF noise-reduction capacitor (CNR).

18.7 Thermal Considerations

Thermal protection limits power dissipation in the RTQ2510-QT. When the operating junction temperature exceeds 160°C, the OTP circuit initiates the thermal shutdown function and turns off the pass element. The pass element turns on again after the junction temperature decreases by 20°C.

The RTQ2510-QT output voltage will be close to zero when an output short circuit occurs, as shown in Figure 1. This can reduce the IC temperature and provide maximum safety to end users when an output short circuit occurs.

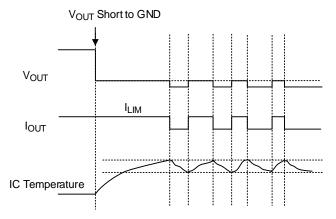


Figure 1. Short-Circuit Protection when Output Short-Circuit Occurs

The junction temperature should never exceed the absolute maximum junction temperature TJ(MAX), listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

$$PD(MAX) = (TJ(MAX) - TA) / \theta JA$$

where TJ(MAX) is the maximum junction temperature, TA is the ambient temperature, and θ JA is the junction-toambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θJA(EVB), is highly package dependent. For a VDFN-8L 3x3 package, the thermal resistance, θJA(EVB), is 45.06°C/W on a standard JEDEC 51-7 high effectivethermal-conductivity four-layer test board. The maximum power dissipation at TA = 25°C can be calculated as follows:

 $PD(MAX) = (125^{\circ}C - 25^{\circ}C)/(45.06^{\circ}C/W) = 2.22W$ for a VDFN-8L 3x3 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed TJ(MAX) and the thermal resistance, θ JA(EVB). The derating curve in Figure 2 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

RTQ2510-QT DS-04

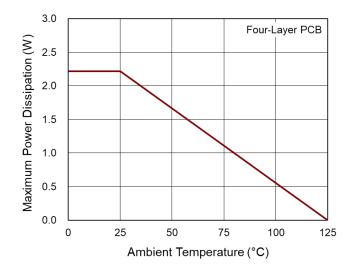


Figure 2. Derating Curve of Maximum Power Dissipation

18.8 Layout Considerations

RTQ2510-QT DS-04

March 2025

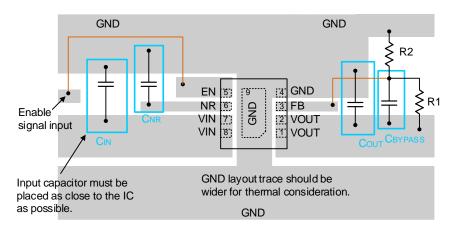
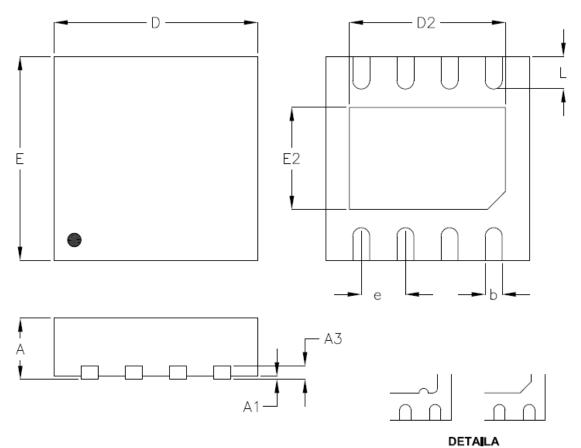
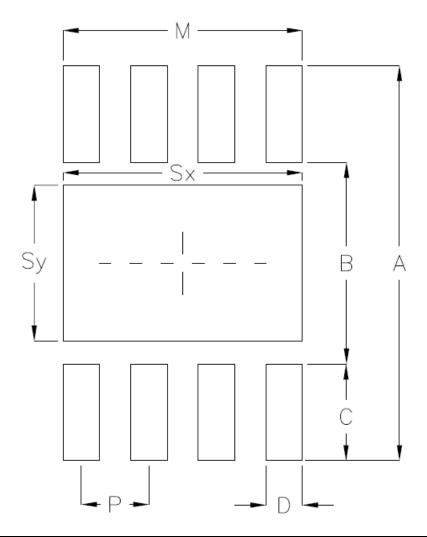



Figure 3. PCB Layout Guide

Note 9. The information provided in this section is for reference only. The customer is solely responsible for the designing, validating, and testing your product incorporating Richtek's product and ensure such product meets applicable standards and any safety, security, or other requirements.

19 Outline Dimension

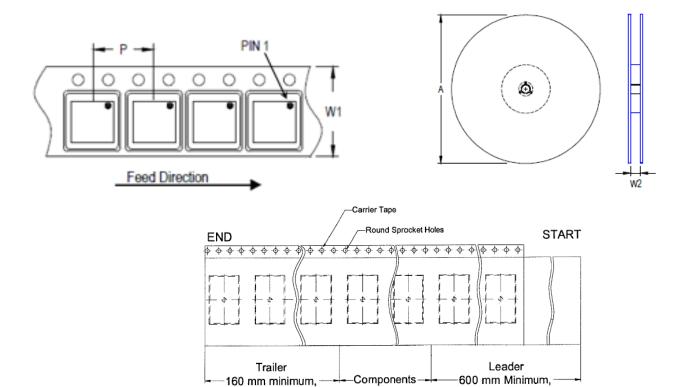
Pln #1 ID and Tle Bar Mark Options


Note: The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

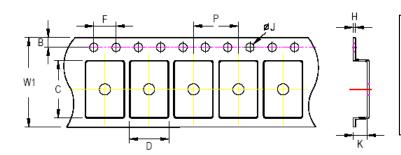
Cumbal	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
А	0.700	0.900	0.027	0.035		
A1	0.000	0.050	0.000	0.002		
А3	0.175	0.250	0.007	0.010		
b	0.200	0.300	0.008	0.012		
D	2.950	3.050	0.116	0.120		
D2	2.100	2.350	0.083	0.093		
Е	2.950	3.050	0.116	0.120		
E2	1.350	1.600	0.053	0.063		
е	0.6	550	0.026			
L	0.425	0.525	0.017	0.021		

V-Type 8L DFN 3x3 Package

20 Footprint Information



Package	Number of Pin		Footprint Dimension (mm)							Tolerance
		Р	Α	В	С	D	Sx	Sy	М	
V/W/U/XDFN3*3-8	8	0.65	3.80	1.94	0.93	0.35	2.30	1.50	2.30	±0.05



21 Packing Information

21.1 Tape and Reel Data

Package Type	Tape Size (W1) (mm)	Pocket Pitch (P) (mm)	Reel Si	ze (A) (in)	Units per Reel	Trailer (mm)	Leader (mm)	Reel Width (W2) Min/Max (mm)
(V, W) QFN/DFN 3x3	12	8	180	7	1,500	160	600	12.4/14.4

C, D, and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 12mm carrier tape: 0.5mm maximum

Tana Cina	W1	F)	E	3	F	=	Q	M J	ŀ	<	Н
Tape Size	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Max
12mm	12.3mm	7.9mm	8.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	1.0mm	1.3mm	0.6mm

21.2 Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1	PICHTER COME.	4	RICHTEK CHAST. The State of th
	Reel 7"		3 reels per inner box Box A
2	Management of the property of	5	
	HIC & Desiccant (1 Unit) inside		12 inner boxes per outer box
3	RECORD AND THE PARTY OF THE PAR	6	RICHTEK TETPOSTUR
	Caution label is on backside of Al bag		Outer box Carton A

Container	R	eel		Вох			Carton	
Package	Size	Units	Item	Reels	Units	Item	Boxes	Unit
(V, W) QFN/DFN	7"	4.500	Box A	3	4,500	Carton A	12	54,000
3x3	1	1,500	Box E	1	1,500	For Com	bined or Partial	Reel.

21.3 Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
$\Omega/{ m cm}^2$	10 ⁴ to 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2025 Richtek Technology Corporation. All rights reserved.

22 Datasheet Revision History

Version	Date	Description	Item
03	2025/8/6	First Edition	
04	2025/1/10	Modify	General Description on page 1 Features on page 1 Simplified Application Circuit on page 2 Electrical Characteristics on page 7 Operation on page 12 Application Information on page 15