

System Side Single-Cell Fuel Gauge Evaluation Board

General Description

The Evaluation Board demonstrates the RT9426AWSC to provide fuel gauging for single-cell battery packs. The RT9426AWSC reports *StateOfCharge, StateOfHealth, FullChargeCapacity, TimeToEmpty* and *CycleCount.* The RT9426AWSC also provides complete battery status monitor with interrupt alarm function. It could alert to host processor actively when condition of battery over/undervoltage, under SOC, SOC change, battery presence status change and over-temperature in charge/discharge.

Table of Contents

General Description	1
Performance Sepcification Summary	2
Power-up Procedure	2
Detailed Description of Hardware	4
Bill of Materials	6
Typical Applications	7
Evaluation Board Layout	9
More Information	10
Important Notice for Richtek Evaluation Board	10

RICHTEK your power partner.

Performance Spcification Summary

Summary of the RT9426AWSC Evaluation Board performance specificiaiton is provided in Table 1. The ambient temperature is 25°C.

Table 1	RT9426AWSC	Evaluation	Board	Performance	Specification	Summary
Tuble 1.	1110420/11000	LVuluulon	Douid	r chonnanoc	opcomodion	Gammary

Specification	Test Conditions	Min	Тур	Max	Unit
Operation Voltage	VBAT - VSS	2.5		5.5	V
Active Current	Active mode, VDD = 3.8V, BD_PRES_EN = 0 and not including external temp. measurement current.		14	20	μA
Sleep Current	Sleep mode, VDD = 3.8V, BD_PRES_EN = 0 and not including external temp. measurement current.		5	7	μA
Shutdown Current	VBAT = 3.8V			1	μA
Voltage Measurement Range		2.5		VBAT	V
Voltage Measurement Error	VBATS = 4V, VBATG = 0V	-7.5		7.5	mV
Current Measurement Range	VCSP - VCSN	-125		125	mV
Current Measurement Gain Error	VCSP - VCSN = 20mV			1	%
Current Measurement Offset Error	VCSP - VCSN = 0V (Note1)		±5	10	μV
Temperature Measurement Error	$T_A = 25^{\circ}C$ (Note 2)			3	°C
Internal Temperature Measurement Range		-40		85	°C
Internal Temperature Measurement Error	TA = 25°C		±3		°C

Note 1. Typical result is long time average.

Note 2. The thermistor is use 10k NTC and beta 3435k, default is SEMITEC 103KT1608T.

RT9426AWSC Evaluation Board

Power-up Procedure

Suggestion Required Equipments

- RT9426AWSC Evaluation Board
- DC power supply capable of 6V and 5A
- 1-Series (1sXp) Li-Ion/Li-Polymer Battery Cell
- Electronic load capable of 5A
- I²C communication Host

Proper measurement equipment setup and follow the procedure below.

The Evaluation Board is fully assembled and tested. Follow the steps below to verify board operation.

- 1) Insert battery to battery connector between B+ and B-
- 2) For discharge, connect electronic load from P+ to P-, adjust the discharge current according to battery spec.
- 3) For charge, connect DC power supply from P+ to P-, adjust the CV/CC according to battery spec.
- Get the information like StateOfCharge, StateOfHealth, FullChargeCapacity, TimeToEmpty, CycleCount, Voltage, Current and Temperature by I²C interface.

Note: Contact with RICHTEK for detatiled battery characterizing to get custom parameter for high accuracy *StateOfCharge* (SOC) report.

Detailed Description of Hardware

Headers Description and Placement

Carefully inspect all the components used in the EVB according to the following Bill of Materials table, and then make sure all the components are undamaged and correctly installed. If there is any missing or damaged component, which may occur during transportation, please contact our distributors or e-mail us at <u>evb_service@richtek.com</u>.

Test Points

The EVB is provided with the test points and pin names listed in the table below.

Test Point/ Pin Name	Function			
VBAT	Power supply input and battery voltage sensing input for WL-CSP package.			
VPTS	Power reference output pin for temperature measurement			
VSS	Device ground			
CSP	Battery current sensing positive input. Connect a $10m\Omega$ sense resistor with kelvin connection where is near B-side.			
CSN	Battery current sensing negative input. Connect a $10m\Omega$ sense resistor with kelvin connection where is near PACK- side.			
TS	Temperature measurement input.			
SDA	Serial data input. Slave I ² C serial communications data line for communication with system. Open-drain I/O.			
SCL	Serial clock input. Slave I ² C serial communications clock line for communication with system. Open-drain I/O.			

RICHTEK your power partner.

RT9426AWSC Evaluation Board

Test Point/ Pin Name	Function
ALERT	Alert open-drain indicator output.
J1	Battery Connector.
J2	Load/Charger Connector.
J3	I ² C communication interface.
J4	Alert pull-high enable.

RICHTEK your power partner.

Bill of Materials

Reference Count		Part Number	Value	Description	Package	Manufacturer
U1	1	RT9426AWSC	RT9426AWSC	Single-Cell Fuel Gauge	WL-CSP-9B 2.29x1.74 (BSC)	RICHTEK
C1	1	0603X105K250CT	1µF	Capacitor, Ceramic, 25V, X5R	0603	WALSIN
C2	1	0603B103K500CT	10nF	Capacitor, Ceramic, 50V, X7R	0603	WALSIN
C3, C4, C5	3	0603B104K250CT	0.1µF	Capacitor, Ceramic, 25V, X7R	0603	WALSIN
C6, C7	2			NC		
R1	1	WR06X1002FTL	10k	Resistor, Chip, 1/10W, 1%	0603	WALSIN
R2	1	103KT1608T	10k	NTC Resistor, Chip, 3435K, 1%	0603	SEMITEC
R3, R4, R8, R9, R10, R11, R12, R13	8	WR06X1000FTL	100	Resistor, Chip, 1/10W, 1%	0603	WALSIN
R7	1	RTT034701FTP	4.7k	Resistor, Chip, 1/10W, 1%	SMB	RALEC
R5, R6	2			NC		
RS1, RS2	2	RLM-0816-3F-R010-FNH	0.01	Current Sense Resistor, 1W, 1%	0603	Cyntec
D1, D2, D3	3			NC		

Typical Applications

EVB Schematic Diagram

- 1. RT9426AWSC can support high/low-side current sensing, EVB is default low side sense setup.
 - Mount RS1/R3/R4 for Low-Side Sensing.
 - Mount RS2/R5/R6 for High-Side Sensing.

RT9426AWSC Evaluation Board

Measurement Result

*: Sample accuracy with custom parameter into the IC.

Evaluation Board Layout

Figure 1 and Figure 2 are RT9426AWSC Evaluation Board layout. This board size is 55mm x 40mm and is

constructed on two-layer PCB with 1 oz. Cu.

Figure 1. Top View

Figure 2. Bottom View

More Information

For more information, please find the related datasheet or application notes from Richtek website <u>http://www.richtek.com</u>.

Important Notice for Richtek Evaluation Board

THIS DOCUMENT IS FOR REFERENCE ONLY, NOTHING CONTAINED IN THIS DOCUMENT SHALL BE CONSTRUED AS RICHTEK'S WARRANTY, EXPRESS OR IMPLIED, UNDER CONTRACT, TORT OR STATUTORY, WITH RESPECT TO THE PRESENTATION HEREIN. IN NO EVENT SHALL RICHTEK BE LIABLE TO BUYER OR USER FOR ANY AND ALL DAMAGES INCLUDING WITHOUT LIMITATION TO DIRECT, INDIRECT, SPECIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES.