1.5A Flash LED Driver with High-Side Current Source

General Description

The RT4505 is a maximum 4MHz frequency synchronous Boost converter plus a 1.5A constant current driver for a high current white LED. The high-side current source allows for grounded cathode LED operation providing flash current up to 1.5A. An adaptive regulation method ensures the current source remains in regulation and maximizes efficiency.

The RT4505 is controlled via an I²C-compatible interface. Features include a hardware flash enable (STROBE) allowing a logic input to trigger the flash pulse as well as a TX input which forces the flash pulse into a low current, allowing for synchronization to RF power amplifier events or other high-current conditions.

The maximum 4MHz switching frequency, over-voltage protection and adjustable current limit settings allow the use of tiny, low-profile inductors and ceramic capacitors. The device is available in a small WL-CSP-9B 1.3x1.37 (BSC) package, and operates within the –40°C to 85°C temperature range.

Ordering Information

RT4505 📮

-Package Type WSC : WL-CSP-9B 1.3x1.37 (BSC)

Note :

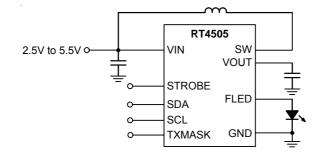
Richtek products are :

- ▶ RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

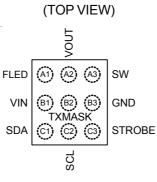
Features

- 1.5A High-Side Current Source for Single LED
- Up to 90% Efficiency in Torch Mode and Flash Mode
- Typical 5% LED Current Accuracy
- Typical 7.5% Timeout Accuracy
- Programmable Flash LED Current from 93.74mA to 1.5A
- Programmable Torch LED Currents from 49.6mA to 375mA
- Built-In Soft-Start Operation for Battery Protection
- Built-In Over-Voltage Protection, Over-Current Protection, and Over-Temperature Protection
- VIN Flash Monitor Optimization
- Hardware Strobe Enable
- Synchronization Input for RF Power Amplifier Pulse Events
- 400KHz I²C Control Interface
- 9-Ball WL-CSP Package
- RoHS Compliant and Halogen Free

Applications


Camera Phone LED Flash

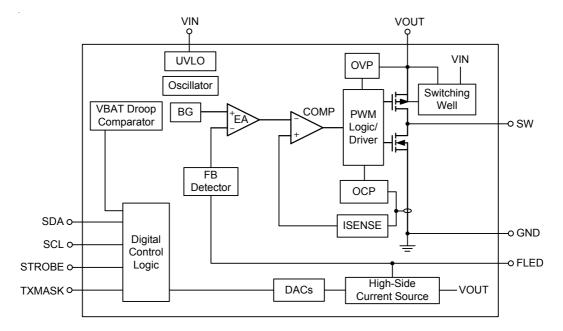
Marking Information



1Y : Product Code W : Date Code

Simplified Application Circuit

Pin Configurations



WL-CSP-9B 1.3x1.37 (BSC)

Functional Pin Description

Pin No.	Pin Name	Pin Function
A1	FLED	High-Side Current Source Output for Flash LED.
A2	VOUT	Step-Up DC/DC Converter Output. Connect a $4.7\mu\text{F}$ ceramic capacitor between this pin and GND.
A3	SW	Drain Connection for Internal NMOS and Synchronous P-MOSFET Switches.
B1	VIN	Input Voltage Connection. Connect IN to the input supply, and bypass to GND with a $4.7\mu F$ or larger ceramic capacitor.
B2	TXMASK	Configurable Power Amplifier Synchronization Input or Configurable Active High Torch Enable. There is an internal pull-down resistor of $400k\Omega$ between TX and GND.
B3	GND	Ground.
C1	SDA	Serial Data Input/Output.
C2	SCL	Serial Clock Input.
C3	STROBE	Active High Hardware Flash Enable. Drive STROBE high to turn on Flash pulse. There is an internal pull-down resistor of $400 k\Omega$ between STROBE and GND.

Function Block Diagram

Operation

PWM Logic/ Driver

The PWM duty control power MOS through the driver.

OSC

It generates the optimized clock signal. The maximum frequency is 4MHz.

BG

Generates the reference voltage for Error-amp and other bias circuits.

EA

Error amplifier generates COMP signal by the difference between FB and BG.

Digital Control Logic

Digital logic and registers part.

Switching Well

It compares VIN and VOUT. It will decide the big P-MOSFET well potential.

High-Side Current Source

The current source is connected between VOUT and FLED.

Protection Circuit

OCP, OVP, UVLO, VIN droop comparator.

DACs

It transfers digital signals to analog reference voltage.

Absolute Maximum Ratings (Note 1)

 Supply Input Voltage, VIN, SW, VOUT	
 Power Dissipation, P_D @ T_A = 25°C WL-CSP-9B 1.3x1.37 (BSC)	1.22W
 Package Thermal Resistance (Note 2) WL-CSP-9B 1.3x1.37 (BSC), θ_{JA} 	81.4°C/W
 Lead Temperature (Soldering, 10 sec.)	
Storage Temperature Range	
ESD Susceptibility (Note 3) HBM (Human Body Model)	2kV
MM (Machine Model)	200V

Recommended Operating Conditions (Note 4)

Supply Input Voltage, VIN	2.5V to 5.5V
Junction Temperature Range	40°C to 125°C
Ambient Temperature Range	40°C to 85°C

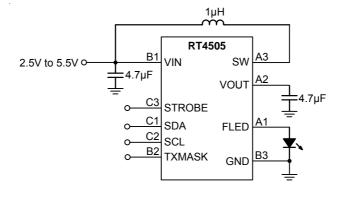
Electrical Characteristics

(V_{IN} = 3.6V, T_A = 25°C, unless otherwise specified)

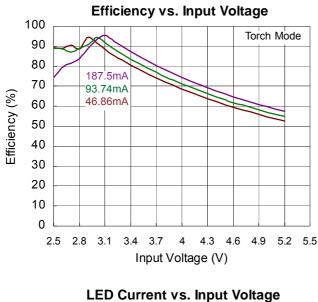
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
Current Source Specificati	ons		•				
		1.5A Flash, Flash current[4:0] = 11111	-5		5		
Current Source Accuracy	I _{LED}	1.031A Flash, Flash current[4:0] = 01010	-5		5	%	
		49.6mA Torch, Torch current[2:0] = 000	-10		10		
Current Source Regulation	V _{HR}	I _{LED} = 1.5A Flash, Flash current[4:0] = 11111		200		mV	
Voltage		I _{LED} = 49.6mA Torch, Torch current[2:0] = 000		80			
Output Over-Voltage Protection Trip Point	V _{OVP}			5.3		V	
Step-Up DC/DC Converter	Specificatio	ns					
P-MOSFET Switch On-Resistance	R _{DS(ON)} _P	I _{PMOS} = 400mA, WL-CSP package		90		mΩ	
N-MOSFET Switch On-Resistance	R _{DS(ON)_N}	I _{NMOS} = 400mA, V _{OUT} = 4V, WL-CSP package		60		mΩ	
Input Current Limit	I _{LIM}	V _{IN} = 2.5V, V _{OUT} = 4V	2.1	2.5	2.9	А	
LED Current Source Start-Up Current	I _{ST}		2	2.5		mA	

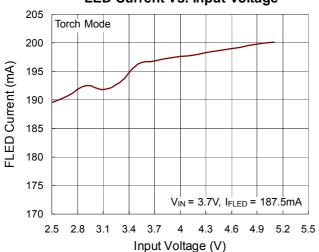
Para	ameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input Voltage F Threshold	Flash Monitor Trip	VIVFM	LVP[7:4] = 0000		3		V
Under Voltage	Threshold	UVLO	VIN Falling	-5%	2.3	5%	V
Switching Free	luency	f _{SW}	Flash mode V _{IN} = 2.5V, V _{OUT} = 5V, I _{LED} = 1.5A		4		MHz
Flash Time-ou	t period	Т _О	Set FTO = 000 to 111, I_{LED} = 1.5A from STROBE rising edge to I_{LED} falling edge	-7.5		7.5	%
Quiescent Sup	ply Current	lq	Device Not Switching Pass Mode		0.45		mA
Shutdown Curr	rent	I _{SHDN}	Device Disabled		1	4	μA
Thermal Shutd	lown	T _{SD}			150		°C
Thermal Shutdown Hysteresis		ΔT_{SD}			25		°C
Strobe, TX Vol	tage Specifications	3					
	High-Level	VIH		1.2			v
Input Voltage	Low-Level	VIL	IL			0.4	J.4 V
STROBE and Down Resistor	TXMASK Pin Pull	Rpd			400		kΩ
I ² C Interface S	Specification (SCI	L, SDA)					
	High-Level	VIH		1.2			N
Input Voltage	Low-Level	VIL				0.4	V
Output Logic L	.ow	Vol	I _{LOAD} = 3mA			400	mV
SCL Clock Fre	quency	T1		2.4			μS
Data In Setup	Time to SCL High	T2		100			ns
Data Out Stab	e After SCL Low	Т3		0			ns
SDA Low Setu Low (START)	p Time to SCL	T4		600			ns
SDA High Hold High (STOP)	d Time After SCL	Т5		600			ns

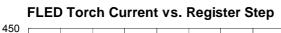
Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

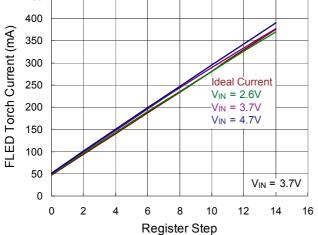

Note 2. θ_{JA} is measured at $T_A = 25^{\circ}C$ on a high effective thermal conductivity four-layer test board per JEDEC 51-7.

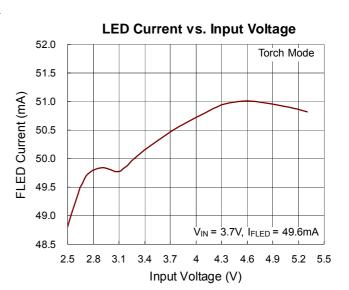
Note 3. Devices are ESD sensitive. Handling precaution is recommended.

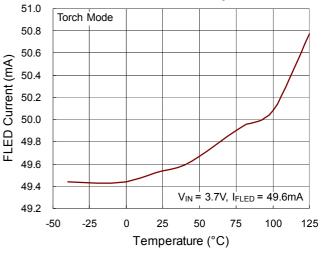

Note 4. The device is not guaranteed to function outside its operating conditions.

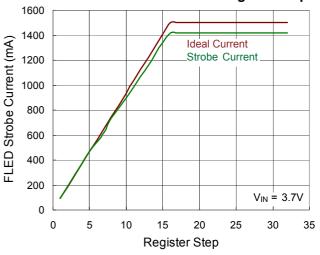



Typical Application Circuit



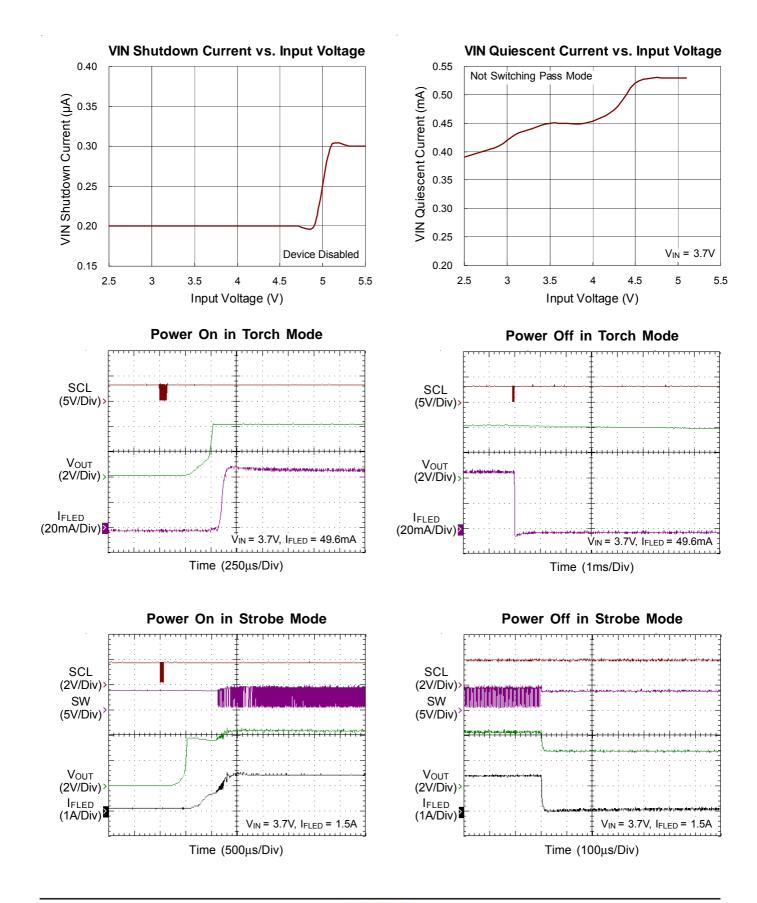

Typical Operating Characteristics





LED Current vs. Temperature

FLED Strobe Current vs. Register Step



Copyright ©2014 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

DS4505-02 October 2014

RT4505

Timing Diagram

Torch Mode

EN_FLED					1
STROBE_sel					
I _{LED}	Off	Torch	Off	Torch	Off
Flash Mode					
EN_FLED					
STROBE_sel STROBE_Reg					
STROBE		< Timeout			> 1s
I _{LED}	Off	Flash	Off	Flash	Flash Timeout
EN_FLED					
STROBE					
STROBE_Reg	Off	<pre> Timeout Flash </pre>	Off	Flash	> 1s Flash Timeout
Flash Mode with TXMASK					
EN_FLED					
STROBE_sel STROBE					
		 Timeout 			> 1s

Flash

Torch

Off

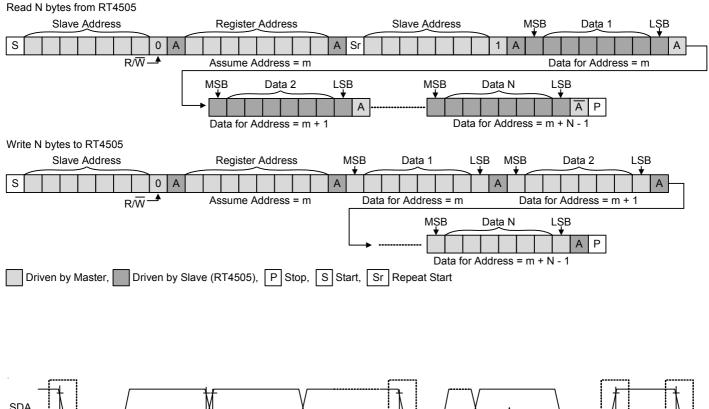
TxMASK

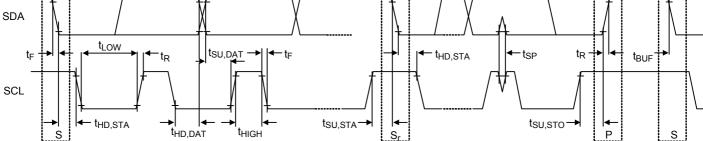
I_{LED}

Flash Timeout

Torch

Flash


Torch


Off

I²C Interface

RT4505 I^2C slave address = 7'b1100011. I^2C interface supports fast mode (bit rate up to 400kb/s).

I²C Register Map

Address Name Register Address		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Reset	0X00	Meaning	Reset	FREE	FREE	FREE	FREE	FREE	FREE	FREE
		Default	0	0	0	0	0	0	1	1
		Read/Write	R/W	R	R	R	R	R	R/W	RW
			It's used to reset software and registers							
R	Reset			normal						
	1	Softwar	e reset							

Address Name	Regis	ter Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
		Meaning		LVP	[7:4]		FREE	FTO[2:0]					
Flash features	0X08	Default	0	0	0	0	0	0	1	0			
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
				Flash	Time-C	out Time							
	012-01		Code	Time	Code	Time	Code	Time	Code	Time			
	O[2:0]		000	100ms	001	200ms	010	300ms	011	400ms			
			100	500ms	101	600ms	110	700ms	111	800ms			
				The LVP detects VIN pin voltage to protect battery									
			Code	Voltage	Code	Voltage	Code	Voltage	Code	Voltage			
	1 4.71		0000	3V	0001	3.1V	0010	3.2V	0011	3.3V			
LV	'P[7:4]		0100	3.4V	0101	3.5V	0110	3.6V	0111	3.7V			
			1000	3.8V	1001	3.8V	1010	3.8V	1011	3.8V			
			1100	3.8V	1101	3.8V	1110	3.8V	1111	3.8V			

Address Name	Register Address		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
		Meaning	То	rch current [2	:0]	Flash current [4:0]						
ILED	0X09	Default	0	0	0	0	1	1	1	1		
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
			Torch c	urrent level								
Tor	ab ourro	n+[].0]	Code	Current	Code	Current	Code	Current	Code	Current		
	ch curre	π[2.0]	000	49.60mA	001	93.74mA	010	140.63mA	011	187.5mA		
			100	234.38mA	101	281.25mA	110	328.13mA	111	375mA		
			Flash current level									
			Code	Current	Code	Current	Code	Current	Code	Current		
			00000	93.74mA	00001	187.5mA	00010	281.25mA	00011	375mA		
Flas	sh curre	nt[4:0]	00100	468.75mA	00101	562.5mA	00110	656.25mA	00111	750mA		
			01000	843.75mA	01001	937.5mA	01010	1031.25mA	01011	1125mA		
			01100	1218.75mA	01101	1312.5mA	01110	1406.25mA	01111 to 11111	1500mA		

RT4505

Address Name		gister dress	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
		Meaning	EN_IVFM	EN_TX	EN _STROBE	EN_CS	FREE	STROBE _Reg	STROBE _sel	EN_FLED		
Enable	0X0A	Default	0	1	1	1	0	0	0	0		
		Read /Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
			IVFM enable									
E	EN_IVFM		0	disable								
			1	enable								
			TXMASK F	'in enable	;							
	EN_TX			disable								
			1 enable									
			Strobe Pin	enable								
E	N_Strob	е	0	disable								
			1	1 enable								
			LED current source enable									
	EN_CS		0	disable								
			1	enable								
			It could be	used to c	ontrol LED f	lash functi	on					
ST	ROBE_F	Reg	0	no strob	е							
			1 strobe one shut									
			This bit is ι	ised to se	et the operati	ion mode						
ST	ROBE_	sel	0	Torch m	ode							
			1 Flash mode									
			Mode contr	ol								
E	EN_FLED			Shutdow	vn							
			1	Tum on								

RT4505

Address Name	Regis	ter Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Flags	0X0B	Meaning	FREE	FREE	IVFM	FREE	OVP	LED or VOUT short	OTP	то	
e.go		Default	0	0	0	0	0	0	0	0	
		Read/Write	R	R	R	R	R	R	R	R	
			IVFM c	lown thre	shold c	rossed.	(readou	t reset)			
I I	IVFM			No IVFN	/I down	threshol	d crosse	ed.			
			1	IVFM do	own thre	shold cr	ossed.				
					OVP Flag (readout reset)						
0	OVP			No OVF	o event						
			1	1 Over-voltage Protection tripped or open LED							
		_	LED short Flag (readout reset)								
	or VOU hort	l	0	No shor	t event						
			1	LED sho	ort deteo	cted					
			OTP F	lag (read	out rese	et)					
0	OTP		0	No OTP	event						
			1	OTP sh	utdown						
			Flash time-out Flag (readout reset)								
	ТО			No flash time-out event							
			1	Flash tir	ne-out e	event					

Application Information

Soft-Start

The RT4505 employs a soft-start feature to limit the inrush current. The soft-start circuit prevents the excessive inrush current and input voltage drop.

Input UVLO

The input voltage range of the LED driver is from 2.5V to 5.5V. The RT4505 provides an Under Voltage Lockout (UVLO) function to prevent it from unstable issue during startup. The UVLO threshold of input falling voltage is set at 2.3V typically.

Over Voltage Protection (Open LED, Open Circuit)

The RT4505 provides an internal over voltage protection to limit its output voltage. The OVP function prevents the RT4505 from damaging while open LED or open circuit condition occurs. Once the open circuit condition is removed, and the RT4505 will return to normal operation.

Over Temperature Protection

The RT4505 provides an over temperature protection to prevent the IC from overheating. When the junction temperature rises above 150°C, the OTP function will be triggered and then the LED driver will be shut down. The OTP hysteresis is 25°C. Once the junction temperature reduces below the over temperature protection threshold by 25°C, the IC will enter normal operation again.

Low Input Voltage Protection

When the input voltage is lower than the specified value, the converter will stop switching. Until the input voltage rises above the low input voltage protection threshold plus hysteresis voltage value, the converter resumes switching. The low input voltage protection can be programmed with 16 different levels (3V to 3.8V).

Torch mode and Strobe Mode Operation

The RT4505 is designed for one LED driving for torch and flash application, it provides an I^2C interface to operate at torch or flash mode.

Flash Mode

In Flash Mode, FLED provides 16 different current levels from typically 93.74mA to 1500mA in step of 93.75mA. The flash currents are adjusted via the register for flash brightness.

Torch Mode

In Torch Mode, FLED provides 8 different current levels from 49.6mA to 375mA. Torch Mode is activated by setting reg0x09 bits [2:0]. Once Torch Mode is enabled, the current sources will ramp up to the programmed torch current level by stepping through all of the torch currents until the programmed torch current level is reached.

Inductor Selection

The recommended value of inductor for LED photo flash applications is 1μ H. Small size and better efficiency are the major concerns for portable devices which is used for single cell Lithium-ion/polymer battery applications. The inductor should have low core loss at 2MHz and low DCR for better efficiency. The inductor saturation current rating should be considered to cover the inductor peak current.

When VIN is larger than for ward voltage of flash LED at set current. RT 4505 will enter by pass mode.

 $I_{\text{LED}(MAX)}$ is maximum led current, which is usually equal to flash mode current. For normal operation, we suggest customers to recon firm RDC of inductor as below formula.

RT4505 formula :

When VIN_operation > $VF(I_{LED(MAX)})$:

 $\label{eq:lambda} \begin{array}{l} \mbox{[240mV/(1.1 x \mbox{I}_{\text{LED}(\text{MAX})}(A))]} - 75(m\Omega) = Suggested \mbox{ Inductor} \\ \mbox{RDC} \ (m\Omega) \end{array}$

Please make sure VIN - VOUT on PCB is smaller than 240mV in bypass mode.

Capacitor Selection

Input ceramic capacitor of 4.7μ H and output ceramic capacitor of 4.7μ H are recommended for the RT4505 applications. For better voltage filtering, ceramic capacitors with low ESR are recommended. X5R and X7R types are suitable because of their wider voltage and temperature ranges.

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula:

$\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}) / \theta_{\mathsf{J}\mathsf{A}}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is 125°C. The junction to ambient thermal resistance, θ_{JA} , is layout dependent. For WL-CSP-9B 1.3x1.37 (BSC) package, the thermal resistance, θ_{JA}, is 81.4°C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at $T_A = 25^{\circ}C$ can be calculated by the following formula:

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (81.4^{\circ}C/W) = 1.22W$ for WL-CSP-9B 1.3x1.37 (BSC) package

The maximum power dissipation depends on the operating ambient temperature for fixed $T_{J(MAX)}$ and thermal resistance, θ_{JA} . The derating curve in Figure 1 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Figure 1. Derating Curve of Maximum Power Dissipation

Layout consideration

For best performance of the RT4505, the following PCB layout guidelines should be strictly followed. GND should be connected to the ground plane of the PCB.

- Input and output capacitors should be connected to a strong ground plane for heat sinking and noise protection.
- SW node of DC/DC converter is with high frequency voltage swing. It should be kept at a small area.
- . Keep the main current traces as short and wide as possible.
- It is recommended to add additional PCB exposed pad area or the flash LED for maximized heat-sinking ability. This is necessary for high current application and long flash duration application.

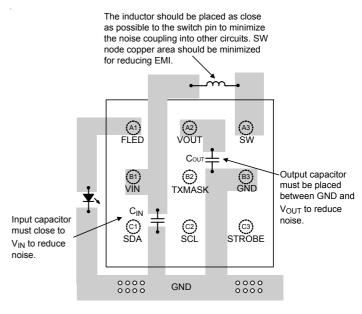
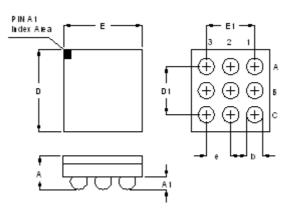



Figure 2. PCB Layout Guide

Outline Dimension

Symbol	Dimensions I	n Millimeters	Dimensions In Inches				
Symbol	Min. Max.		Min.	Max.			
A	0.500	0.600	0.020	0.024			
A1	0.170	0.230	0.007	0.009			
b	0.240	0.300	0.009	0.012			
D	1.320	1.420	0.052	0.056			
D1	0.8	800	0.031				
E	1.250	1.350	0.049	0.053			
E1	0.8	800	0.031				
е	0.4	100	0.016				

9B WL-CSP 1.3x1.37 Package (BSC)

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.