6A, 23V, 500kHz, ACOT® Synchronous Buck Converter

General Description
The RT6220 is a synchronous Buck converter with Advanced Constant On-Time (ACOT®) mode control, which provides a very fast transient response with no external compensators. The RT6220 operates from 4.5V to 23V input voltage, provides complete protection functions including Over Current Protection (OCP), Under Voltage Protection (UVP) and Over Voltage Protection (OVP). This IC also provides a 1.5ms internal soft-start function and an open-drain power good indicator.

Features
- 4.5V to 23V Input Voltage Range
- Adjustable from 0.6V to 5V Output Range
- Up to 98% Duty for 2S Battery Application
- 500kHz Switching Frequency
- ACOT® Mode Performs Fast Transient Response
- Integrated MOSFETs
 - 31mΩ of High-Side MOSFET
 - 20mΩ of Low-Side MOSFET
- Supports MLCC Output Capacitors
- Internal Soft-Start (1.5ms typ)
- Built-in OVP/UVP/OCP
- Power Good Indicator
- Thermal Shutdown

Applications
- Laptop Computers
- Tablet PCs
- Networking Systems
- Servers
- Personal Video Recorders
- Flat Panel Television and Monitors
- Distributed Power Systems

Ordering Information
- RT6220
 - Package Type: QUF : UQFN-16L 3x3 (FC) (U-Type)
 - Lead Plating System: G : Green (Halogen Free and Pb Free)
 - PWM Operation / VOUT Protection:
 - A : with DEM/Latch
 - AH : with DEM/Hiccup
 - BL : without DEM/Latch
 - BH : without DEM/Hiccup

Note:
Richtek products are:
- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Simplified Application Circuit
RT6220

Marking Information

RT6220AGQUF

6J=YM DNN

6J= : Product Code
YMDNN : Date Code

RT6220BLGQUF

7M=YM DNN

7M= : Product Code
YMDNN : Date Code

RT6220AHGQUF

7P=YM DNN

7P= : Product Code
YMDNN : Date Code

RT6220BHGOQUF

7N=YM DNN

7N= : Product Code
YMDNN : Date Code

Pin Configuration

(TOP VIEW)

VIN
PGND

SW
SW
SW

VBYP
PGOOD
AGND
AGND
AGND
AGND
VOUT

UQFN-16L 3x3 (FC)
Functional Pin Description

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Pin Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VIN</td>
<td>Power input connect to high-side MOSFET drain. Place 2pcs 10μF MLCC decoupling capacitors near input pin.</td>
</tr>
<tr>
<td>2</td>
<td>PGND</td>
<td>Power ground. Connect power ground pin with wide and thick trace, adding thermal vias for better heat dissipation.</td>
</tr>
<tr>
<td>3</td>
<td>VBYP</td>
<td>Switch over input supply voltage for VCC. A low pass filter should be connected to AGND if VBYP is applied, the recommended RC filter value is RBYP = 5.1 and CBYP = 2.2μF. If VBYP is not used, then connect this pin to AGND. Do not connect to VCC pin.</td>
</tr>
<tr>
<td>4</td>
<td>PGOOD</td>
<td>This pin should be connected to a pull high voltage with a 100kΩ resistor. Recommend to pull high by VCC (5V). DO NOT pull high to external voltage which is higher than VCC (5V).</td>
</tr>
<tr>
<td>5, 6, 14</td>
<td>AGND</td>
<td>Analog ground.</td>
</tr>
<tr>
<td>7</td>
<td>VOUT</td>
<td>Output voltage sense input. An internal discharging circuit is connected to this pin.</td>
</tr>
<tr>
<td>8, 9, 15, 16</td>
<td>SW</td>
<td>Switch node.</td>
</tr>
<tr>
<td>10</td>
<td>BOOT</td>
<td>Bootstrap supply for high-side gate driver. A capacitor is needed to drive the power switch's gate above the supply voltage. It is connected between the SW and BOOT pins to form a floating supply across the power switch driver. Recommended design value is RBOOT = 2.2Ω and CBOOT = 0.1μF.</td>
</tr>
<tr>
<td>11</td>
<td>VCC</td>
<td>5V linear regulator output for internal control circuit. Bypass VCC to AGND with a 2.2μF capacitor. VCC can only supply internal circuits. Do not connect to external loads.</td>
</tr>
<tr>
<td>12</td>
<td>FB</td>
<td>Feedback voltage input.</td>
</tr>
<tr>
<td>13</td>
<td>EN</td>
<td>Enable control input. Do not leave this pin floating. The slew rate of EN is recommended to be slower than 4.8V/μs. User should add a RC circuit to avoid glitch noise.</td>
</tr>
</tbody>
</table>
Operation

Overall
The RT6220 is a synchronous step-down converter with advanced constant on-time control mode. Using the ACOT® control mode can reduce the output capacitance and provide fast transient response. It can minimize the component size without additional external compensation network.

Internal VCC Regulator
The regulator provides 5V power to supply the internal control circuit. Connecting a 2.2μF ceramic capacitor for decoupling and stability is required.

Soft-Start
In order to prevent the converter output voltage from overshooting during the startup period, the soft-start function is necessary. The soft-start time is internal setting and the duration is around 1.5ms.

OCP
The inductor valley current is monitored cycle-by-cycle via the internal switches, preventing an on-time until the current drops below the current limit.

Power Good
After soft-start is finished, the power good output goes high. The PGOOD pin is an open-drain output.

VCC Switch-Over
The internal regulator output will switch over to VBYP if VBYP level is higher than 4.6V.

Power Off
There is an internal discharging circuit to discharge the residual charge of output capacitor when converter is power off.
Absolute Maximum Ratings (Note 1)

- VIN to PGND: -0.3V to 27V
- SW to PGND
 DC: -1V to 27.3V
 AC (<30ns): -5V to 28V
- BOOT to PGND
 DC: -0.6V to 33.3V
 AC (<30ns): -5V to 34V
- EN, FB to AGND: -0.3V to 27V
- VBYP to AGND: -0.3V to 5.3V
- VCC, PGOOD, VOUT to AGND: -0.3V to 6V
- PGND to AGND: -0.3V to 0.3V
- Power Dissipation, PD @ TA = 25°C: 2.33W

- Package Thermal Resistance (Note 2)
 UQFN-16L 3x3 (FC): 43°C/W
 UQFN-16L 3x3 (FC), θJA: 0.1°C/W

- Lead Temperature (Soldering, 10 sec.): 260°C
- Junction Temperature: 150°C

- Storage Temperature Range: -65°C to 150°C
- ESD Susceptibility (Note 3)
 HBM (Human Body Model): 2kV

Recommended Operating Conditions (Note 4)

- Supply Input Voltage, VIN: 4.5V to 23V
- Junction Temperature Range: -40°C to 125°C
- Ambient Temperature Range: -40°C to 85°C

Electrical Characteristics
(VIN = 12V, TA = 25°C, unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shutdown Current</td>
<td>VEN = 0V</td>
<td>--</td>
<td>2.5</td>
<td>5</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>VEN = 2V,</td>
<td>--</td>
<td>100</td>
<td>130</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>no switching</td>
<td>(RT6220A/AH)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(RT6220BL/BH)</td>
<td>110</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOOT to SW Leakage Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
<td>μA</td>
</tr>
<tr>
<td>BOOTo SW Leakage Current</td>
<td>VBYP = 5V,</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VEN = 0V</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch On-Resistance</td>
<td>RDS(ON)_H</td>
<td>VBOOT – VSW = 5V</td>
<td></td>
<td>31</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td>RDS(ON)_L</td>
<td>--</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Side MOSFET Leakage Current</td>
<td>I Leakage_H</td>
<td>VIN = 12V, VEN = 0V</td>
<td>--</td>
<td></td>
<td>1</td>
<td>μA</td>
</tr>
</tbody>
</table>

Copyright ©2020 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Limit</td>
<td>I_{OC}</td>
<td>Valley current of low-side switch</td>
<td>7.6</td>
<td>--</td>
<td>11.4</td>
<td>A</td>
</tr>
<tr>
<td>Switching Frequency and Minimum Off Timer</td>
<td>f_{SW}</td>
<td></td>
<td>450</td>
<td>500</td>
<td>550</td>
<td>kHz</td>
</tr>
<tr>
<td>Protections</td>
<td></td>
<td></td>
<td>--</td>
<td>200</td>
<td>--</td>
<td>ns</td>
</tr>
<tr>
<td>OVP Trip Threshold</td>
<td>V_{OVP}</td>
<td>With respect to output voltage</td>
<td>120</td>
<td>125</td>
<td>130</td>
<td>%</td>
</tr>
<tr>
<td>OVP Propagation Delay</td>
<td>T_{OVPDLY}</td>
<td></td>
<td>--</td>
<td>5</td>
<td>--</td>
<td>μs</td>
</tr>
<tr>
<td>UVP Trip Threshold</td>
<td>V_{UVP}</td>
<td>With respect to output voltage</td>
<td>53</td>
<td>58</td>
<td>63</td>
<td>%</td>
</tr>
<tr>
<td>UVP Propagation Delay</td>
<td>T_{UVPDLY}</td>
<td></td>
<td>--</td>
<td>5</td>
<td>--</td>
<td>μs</td>
</tr>
<tr>
<td>Reference and Soft-Start</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedback Reference Voltage</td>
<td>V_{REF}</td>
<td></td>
<td>0.594</td>
<td>0.600</td>
<td>0.606</td>
<td>V</td>
</tr>
<tr>
<td>Soft-Start Time</td>
<td>T_{SS}</td>
<td>From EN high to PGOOD high</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>ms</td>
</tr>
<tr>
<td>Enable and UVLO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN Input High Voltage</td>
<td>V_{ENH}</td>
<td></td>
<td>1.25</td>
<td>1.35</td>
<td>1.45</td>
<td>V</td>
</tr>
<tr>
<td>EN Hysteresis</td>
<td>V_{ENHYS}</td>
<td></td>
<td>50</td>
<td>200</td>
<td>250</td>
<td>mV</td>
</tr>
<tr>
<td>EN Input Current</td>
<td>I_{EN}</td>
<td>$V_{EN} = 2V$</td>
<td>--</td>
<td>1</td>
<td>--</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{EN} = 0V$</td>
<td>--</td>
<td>0</td>
<td>--</td>
<td>μA</td>
</tr>
<tr>
<td>VCC UVLO Rising</td>
<td>V_{CCUVLO}</td>
<td></td>
<td>3.8</td>
<td>4.2</td>
<td>4.45</td>
<td>V</td>
</tr>
<tr>
<td>VCC UVLO Hysteresis</td>
<td>V_{CCHY}</td>
<td></td>
<td>75</td>
<td>400</td>
<td>650</td>
<td>mV</td>
</tr>
<tr>
<td>VCC Regulator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCC Regulator</td>
<td>V_{VCC}</td>
<td></td>
<td>4.805</td>
<td>5</td>
<td>5.295</td>
<td>V</td>
</tr>
<tr>
<td>VCC Switch Over Threshold to VBYP</td>
<td></td>
<td>V_{BYP} rising edge</td>
<td>4.4</td>
<td>4.6</td>
<td>4.8</td>
<td>V</td>
</tr>
<tr>
<td>VCC Switch Over Hysteresis</td>
<td></td>
<td></td>
<td>150</td>
<td>200</td>
<td>400</td>
<td>mV</td>
</tr>
<tr>
<td>Switch Over On-Resistance</td>
<td></td>
<td></td>
<td>--</td>
<td>3</td>
<td>5</td>
<td>Ω</td>
</tr>
<tr>
<td>Power Good Indicator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGOOD Threshold From Lower</td>
<td></td>
<td>V_{OUT} rising</td>
<td>86.5</td>
<td>91.5</td>
<td>96.5</td>
<td>%</td>
</tr>
<tr>
<td>PGOOD Low Hysteresis</td>
<td></td>
<td>V_{OUT} falling</td>
<td>--</td>
<td>10</td>
<td>--</td>
<td>%</td>
</tr>
<tr>
<td>PGOOD Low to High Delay</td>
<td>T_{PGDLY}</td>
<td></td>
<td>--</td>
<td>0.5</td>
<td>--</td>
<td>ms</td>
</tr>
<tr>
<td>PGOOD Sink Current Capability</td>
<td>V_{PGSINK}</td>
<td></td>
<td>--</td>
<td>--</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>PGOOD Leakage Current</td>
<td>I_{PGLEAK}</td>
<td></td>
<td>--</td>
<td>--</td>
<td>100</td>
<td>nA</td>
</tr>
</tbody>
</table>

Copyright ©2020 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.
Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Note 2. θ_{JA} is measured at $T_A = 25^\circ C$ on a high effective thermal conductivity four-layer Richtek test board.

Note 3. Devices are ESD sensitive. Handling precaution is recommended.

Note 4. The device is not guaranteed to function outside its operating conditions.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Shutdown Threshold</td>
<td>T_{SD}</td>
<td>T_J rising</td>
<td>135</td>
<td>150</td>
<td>--</td>
<td>°C</td>
</tr>
<tr>
<td>Thermal Shutdown Hysteresis</td>
<td></td>
<td></td>
<td>--</td>
<td>25</td>
<td>--</td>
<td>°C</td>
</tr>
</tbody>
</table>
Typical Application Circuit

Figure 1. Typical Application Circuit for $V_{OUT} = 5\text{V}$

Figure 2. Typical Application Circuit for $V_{OUT} = 3.3\text{V}$

Figure 3. Typical Application Circuit for $V_{OUT} = 1\text{V}$
Typical Operating Characteristics

Performance waveforms are tested on the evaluation board of the Typical Application Circuit, \(V_{IN} = 12V, V_{OUT} = 1V, L = 1\mu H, \) \(T_J = 25°C, \) unless otherwise noted.

- **Efficiency vs. Load Current**
 - \(V_{IN} = 7.4V, \) \(V_{IN} = 12V, \) \(V_{IN} = 19V \)
 - \(V_{OUT} = 1V, f_{SW} = 500kHz, \) \(L = 1\mu H, DCR = 3.3m\Omega, \) \(EN = 2V \)

- **Efficiency vs. Load Current**
 - \(V_{IN} = 7.4V, \) \(V_{IN} = 12V, \) \(V_{IN} = 19V \)
 - \(V_{OUT} = 3.3V, f_{SW} = 500kHz, \) \(L = 2.2\mu H, DCR = 7m\Omega, \) \(EN = 2V \)

- **Efficiency vs. Load Current**
 - \(V_{IN} = 7.4V, \) \(V_{IN} = 12V, \) \(V_{IN} = 19V \)
 - \(V_{BYP} = V_{OUT} = 5V, f_{SW} = 500kHz, \) \(L = 2.2\mu H, DCR = 7m\Omega, \) \(EN = 2V \)

- **Switching Frequency vs. Load Current**
 - \(V_{IN} = 7.4V \)
 - \(V_{OUT} = 1V, EN = 2V \)
Power Off Through EN

Load Transient Response

Load Transient Response

Load Transient Response

UVP

OVP
Application Information

The RT6220 is high-performance 500kHz 6A step-down regulators with internal power switches and synchronous rectifiers. It features an Advanced Constant On-Time (ACOT®) control architecture that provides stable operation for ceramic output capacitors without complicated external compensation, among other benefits. The input voltage range is from 4.5V to 23V, and the output voltage is adjustable from 0.6V to 5V.

The proprietary ACOT® control scheme improves conventional constant on-time architectures, achieving nearly constant switching frequency over line, load, and output voltage ranges. Since there is no internal clock, response to transients is nearly instantaneous and inductor current can ramp quickly to maintain output regulation without large bulk output capacitance.

ACOT® Control Architecture

In order to achieve good stability with low-ESR ceramic capacitors, ACOT® uses a virtual inductor current ramp generated inside the IC. This internal ramp signal replaces the ESR ramp normally provided by the output capacitor's ESR. The ramp signal and other internal compensations are optimized for low-ESR ceramic output capacitors.

Making the on-time proportional to V_{OUT} and inversely proportional to V_{IN} is not sufficient to achieve good constant-frequency behavior for several reasons. First, voltage drops across the MOSFET switches and inductor cause the effective input voltage to be less than the measured input voltage and the effective output voltage to be greater than the measured output voltage as sensing input and output voltage. When the load changes, the switch voltage drops change causing a switching frequency variation with load current. Also, at light loads if the inductor current goes negative, the switch dead-time between the synchronous rectifier turn-off and the high-side switch turn-on allows the switching node to rise to the input voltage. This increases the effective on-time and causes the switching frequency to drop noticeably.

One way to reduce these effects is to measure the actual switching frequency and compare it to the desired range. This has the added benefit eliminating the need to sense the actual output voltage, potentially saving one pin connection. The ACOT® uses this method, measuring the actual switching frequency and modifying the on-time with a feedback loop to keep the average switching frequency in the desired range.

ACOT® One-shot Operation

The RT6220 control algorithm is simple to understand. The feedback voltage, with the virtual inductor current ramp added, is compared to the reference voltage. When the combined signal is less than the reference, the on-time one-shot is triggered, as long as the minimum off-time one-shot is clear and the measured inductor current (through the synchronous rectifier) is below the current limit. The on-time one-shot turns on the high-side switch and the inductor current ramps up linearly. After the on-time, the high-side switch is turned off and the synchronous rectifier is turned on and the inductor current ramps down linearly. At the same time, the minimum off-time one-shot is kept short (200ns typical) so that rapidly-repeated on-times can raise the inductor current quickly when needed.

Diode Emulation Mode (DEM)

In diode emulation mode, the RT6220 automatically reduces switching frequency at light load conditions to maintain high efficiency. This reduction of frequency is achieved smoothly. As the output current decreases from heavy load conditions, the inductor current is also reduced, and eventually comes to the point that its current valley touches zero, which is the boundary between continuous conduction and discontinuous conduction modes. To emulate the behavior of diodes, the low-side MOSFET allows only partial negative current to flow when the inductor free wheeling current becomes negative. As the load current is further decreased, it takes longer and longer time to discharge the output capacitor to the level that requires the next “ON” cycle. In reverse, when the output current increases from light load to heavy load, the switching frequency increases to the preset value as the
inductor current reaches the continuous conduction. The transition load point to the light load operation is shown in Figure 4 and can be calculated as follows:

\[
I_{LOAD} = \frac{(V_{IN} - V_{OUT})}{2L} \times t_{ON}
\]

where \(t_{ON}\) is the on-time.

The switching waveforms may appear noisy and asynchronous when light load causes diode emulation operation. This is normal and results in high efficiency. Trade-offs in DEM noise vs. light load efficiency is made by varying the inductor value. Generally, low inductor values produce a broader efficiency vs. load curve, while higher values result in higher full load efficiency (assuming that the coil resistance remains fixed) and less output voltage ripple. Penalties for using higher inductor values include larger physical size and degraded load transient response (especially at low input voltage levels).

During discontinuous switching, the on-time is immediately increased to add “hysteresis” to discourage the IC from switching back to continuous switching unless the load increases substantially. The IC returns to continuous switching as soon as an on-time is generated before the inductor current reaches zero. The on-time is reduced back to the length needed for 500kHz switching and encouraging the circuit to remain in continuous conduction, preventing repetitive mode transitions between continuous switching and discontinuous switching.

Linear Regulators (VCC)
The RT6220 includes a 5V linear regulator (VCC). The VCC regulator steps down input voltage to supply both internal circuitry and gate drivers. Do not connect the VCC pin to external loads. When PGOOD is pulled high and BYP pin voltage is above 4.6V, an internal 3Ω P-MOSFET switch connects VCC to the BYP pin while the VCC linear regulator is simultaneously turned off.

Current Limit
The RT6220 current limit is a cycle-by-cycle “valley” type, measuring the inductor current through the synchronous rectifier during the off-time while the inductor current ramps down. The current is determined by measuring the voltage between Source and Drain of the synchronous rectifier, adding temperature compensation for greater accuracy. If the current exceeds the current limit, the on-time one-shot is inhibited until the inductor current ramps down below the current limit. If the output current exceeds the available inductor current (controlled by the current limit mechanism), the output voltage will drop. If it drops below the output under-voltage protection level (see next section), the IC will stop switching to avoid excessive heat.

Output Over-Voltage Protection and Under-Voltage Protection
The RT6220 features an output Over-Voltage Protection (OVP). For the RT6220A and the RT6220BL, if the output voltage rises above the regulation level, the IC stops switching and is latched off. On the other hand, for the RT6220AH and the RT6220BH, the IC will stop switching and restart automatically after a short period which is the so-called Hiccup mode. The RT6220 also features an output Under-Voltage Protection (UVP). If the output voltage drops below the UVP trip threshold for longer than 5μs (typical), the UVP is triggered, and the IC will shutdown. Likewise, for the RT6220A and the RT6220BL, the IC stops switching and is latched off. On the other hand, for the RT6220AH and the RT6220BH, the IC will stop switching and enter the Hiccup mode. To restart operation from latch off, toggle EN or power the IC off and then turn on again.

Input Under-Voltage Lockout
In addition to the enable function, the RT6220 features an Under-Voltage Lockout (UVLO) function that monitors the input voltage. To prevent operation without fully-enhanced internal MOSFET switches, this function inhibits switching
when input voltage drops below the UVLO-falling threshold. The IC resumes switching when input voltage exceeds the UVLO-rising threshold.

Over-Temperature Protection

The RT6220 features an Over-Temperature Protection (OTP) circuitry to prevent overheating due to excessive power dissipation. The OTP shuts down switching operation when the junction temperature exceeds 150°C. Once the junction temperature cools down by approximately 25°C the IC resumes normal operation with a complete soft-start. For continuous operation, provide adequate cooling so that the junction temperature does not exceed 150°C. Note that the VCC regulator remains on as the OTP is triggered.

Enable and Disable

The enable input (EN) has a logic-low level of 1.15V. When VEN is below this level, the IC enters shutdown mode and supply current drops to less than 5μA (typical). Besides, the switch-over switch is turned off and VCC LDO is also powered off. When VEN exceeds its logic-high level (1.35V typical), the IC is fully operational.

Soft-Start

The RT6220 provides an internal soft-start function to prevent large inrush current and output voltage overshoot when the converter starts up. The soft-start (SS) automatically begins once the chip is enabled. During soft-start, it clamps the ramp of internal reference voltage which is compared with FB signal. And it will correct the output voltage more accurately after soft-start. The typical soft-start duration is 1.5ms.

Power Off

When VEN is pulled to GND or lower than the logic-low level of 1.15V, there is an internal discharging resistor to discharge the residual charge inside the output capacitors. Besides, the value of discharging resistor is about twenty ohms.

Power Good Output (PGOOD)

The power good output is an open-drain output that requires a pull-up resistor. When the output voltage is 20% (typical) below its set voltage, PGOOD will be pulled low. It is held low until the output voltage returns to 90% of its set voltage once more. During soft-start, PGOOD is actively held low and only allowed to be pulled high after soft-start is over and the output reaches 90% of its set voltage and the PGOOD low to high delay (500μs typical) has passed. There is a 2μs PGOOD high to low delay built into PGOOD circuitry to prevent false triggering.

In addition, the PGOOD open drain driver is supplied by VCC power source or VBYP pin voltage source in switch-over mode. When converter is powered off by EN low signal, the pull-low strength of PGOOD open drain driver decreases after VCC voltage is lower than VCC_POR threshold (typ. = 3.8V). As a result, the PGOOD pin is floated and pulled up by external voltage source. In consideration of PGOOD status after EN power off, it is recommended that connecting PGOOD pin with a 100kΩ resistor to VCC (5V). DO NOT pull high to external voltage which is higher than VCC (5V).

External Bootstrap Capacitor (CBOOT)

Connect a 0.1μF low ESR ceramic capacitor between the BOOT and SW pins. This bootstrap capacitor provides the gate driver supply voltage for the high-side N-MOSFET switch.

The internal power MOSFET switch gate driver is optimized to turn the switch on fast enough for low power loss and good efficiency, and slow enough to reduce EMI. Switch turn-on is when most EMI occurs since VSW rises rapidly. During switch turn-off, SW is discharged relatively slowly by the inductor current during the dead-time between high-side and low-side switch on-times. In some cases it is desirable to reduce EMI further, at the expense of some additional power dissipation. The switch turn-on can be slowed by placing a small (<10Ω) resistance between BOOT and the external bootstrap capacitor. This will slow the high-side switch turn-on and VSW’s rise.

Setting the Output Voltage

The output voltage of the RT6220 is adjustable and with valley control. There is an easy way to determine the output voltage only by two resistors, R1 and R2. As the feedback circuit shown in Figure 5, the relation of VOUT and VREF can be derived as VOUT = (1+R1/R2) x VREF readily.
Generally, the stability is a serious issue for converter. In order to achieve better performance on stability and transient, a feed-forward capacitor, \(C_{FF} \), is added to increase the noise margin and transient response of loop control. However, there is a tradeoff of adding a feed-forward capacitor. An additional dc offset will be generated on output voltage due to the amplified feedback ripple by feed-forward compensator. This is not always the case that every \(C_{FF} \) makes the same value of dc offset, it is based on different pole and zero placement generated by \(R_1 \), \(R_2 \) and \(C_{FF} \). For simplicity, a symbol named \(V_{dc,offset} \) is supposed to be the value of dc offset. This value may influence the performance (e.g. regulation or peak value of \(V_{OUT} \)) of converter slightly, the suggested \(C_{FF} \) is to select a pair of pole and zero to provide the maximum phase lead at switching frequency.

\[
V_{OUT,\text{valley}} = \left(1 + \frac{R_1}{R_2} \right) V_{\text{REF}} + V_{dc,\text{offset}}
\]

\(V_{OUT,\text{valley}} \) is the valley of output voltage, and \(V_{dc,\text{offset}} \) is used for describing the additional dc offset on \(V_{OUT} \), the value is related to the output voltage ripple and \(C_{FF} \).

Inductor Selection

Selecting an inductor involves specifying its inductance and also its required peak current. The exact inductor value is generally flexible and is ultimately chosen to obtain the best mix of cost, physical size, and circuit efficiency. Lower inductor values benefit from reduced size and cost and they can improve the circuit’s transient response. However, they increase the inductor ripple current and output voltage ripple and reduce the efficiency due to the resulting higher peak currents. Conversely, higher inductor values increase efficiency, but the inductor will either be physically larger or have higher resistance since more turns of wire are required and transient response will be slower since more time is required to change current (up or down) in the inductor. A good compromise between size, efficiency, and transient response is to use a ripple current (\(\Delta L \)) about 20-50% of the desired full output load current. Calculate the approximate inductor value by selecting the input and output voltages, the switching frequency (\(f_{SW} \)), the maximum output current (\(I_{OUT(MAX)} \)) and estimating a \(\Delta L \) as some percentage of that current.

\[
L = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{V_{IN} \times f_{SW} \times \Delta L}
\]

Once an inductor value is chosen, the ripple current (\(\Delta I_L \)) is calculated to determine the required peak inductor current.

\[
\Delta I_L = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{V_{IN} \times f_{SW} \times L}
\]

\(I_{(PEAK)} \) is calculated to determine the required peak inductor current.

\[
I_{(PEAK)} = I_{OUT(MAX)} + \frac{\Delta I_L}{2}
\]

To guarantee the required output current, the inductor needs a saturation current rating and a thermal rating that exceeds \(I_{(PEAK)} \). These are minimum requirements. To maintain control of inductor current in overload and short-circuit conditions, some applications may desire current ratings up to the current limit value. However, the IC’s output under-voltage shutdown feature makes this unnecessary for most applications.

For best efficiency, choose an inductor with a low DC resistance that meets the cost and size requirements. For low inductor core losses some type of ferrite core is usually best and a shielded core type, although possibly larger or more expensive, will probably give fewer EMI and other noise problems.

Input Capacitor Selection

High quality ceramic input decoupling capacitor, such as X5R or X7R, with values greater than 20\(\mu F \) are recommended for the input capacitor. The X5R and X7R ceramic capacitors are usually selected for power regulator capacitors because the dielectric material has less capacitance variation and more temperature stability. Voltage rating and current rating are the key parameters when selecting an input capacitor. Generally, selecting an input capacitor with voltage rating 1.5 times greater than the maximum input voltage is a conservatively safe design. The input capacitor is used to supply the input RMS
current, which can be calculated using the following equation:

$$I_{\text{RMS}} = \sqrt{\frac{V_{\text{OUT}}^2}{V_{\text{IN}}} \times \left[1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right] \times \Delta I^2 + \frac{\Delta L^2}{12}}$$

The next step is to select a proper capacitor for RMS current rating. One good design uses more than one capacitor with low Equivalent Series Resistance (ESR) in parallel to form a capacitor bank. The input capacitance value determines the input ripple voltage of the regulator.

The input voltage ripple can be approximately calculated using the following equation:

$$\Delta V_{\text{IN}} = \frac{I_{\text{OUT}} \times V_{\text{IN}}}{C_{\text{IN}} \times f_{\text{SW}} \times V_{\text{OUT}}} \times (1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}})$$

The typical operating circuit is recommended to use two 10μF low ESR ceramic capacitors on the input.

Output Capacitor Selection

The RT6220 is optimized for ceramic output capacitors and best performance will be obtained by using them. The total output capacitance value is usually determined by the desired output voltage ripple level and transient response requirements for sag (undershoot on positive load steps) and soar (overshoot on negative load steps).

Output ripple at the switching frequency is caused by the inductor current ripple and its effect on the output capacitor’s ESR and stored charge. These two ripple components are called ESR ripple and capacitive ripple. Since ceramic capacitors have extremely low ESR and relatively little capacitance, both components are similar in amplitude and both should be considered if ripple is critical.

$$\Delta V_{\text{Ripple}} = V_{\text{Ripple (ESR)}} + V_{\text{Ripple (C)}}$$

$$V_{\text{Ripple (ESR)}} = \Delta L \times \text{Resr}$$

$$V_{\text{Ripple (C)}} = \frac{\Delta L}{8 \times C_{\text{Out}} \times f_{\text{SW}}}$$

In addition to voltage ripple at the switching frequency, the output capacitor and its ESR also affect the voltage sag (undershoot) and soar (overshoot) when the load steps up and down abruptly. The ACOT® transient response is very quick and output transients are usually small. However, the combination of small ceramic output capacitors (with little capacitance), low output voltages (with little stored charge in the output capacitors), and low duty cycle applications (which require high inductance to get reasonable ripple currents with high input voltages) increases the size of voltage variations in response to very quick load changes. Typically, load changes occur slowly with respect to the IC’s 500kHz switching frequency. However, some modern digital loads can exhibit nearly instantaneous load changes and the following section shows how to calculate the worst-case voltage swings in response to very fast load steps.

The amplitude of the ESR step up or down is a function of the load step and the ESR of the output capacitor:

$$\Delta V_{\text{ESR Step}} = \Delta I_{\text{Out}} \times \text{Resr}$$

The amplitude of the capacitive sag is a function of the load step, the output capacitor value, the inductor value, the input-to-output voltage differential, and the maximum duty cycle.

$$\Delta V_{\text{Sag}} = \frac{L \times (\Delta I_{\text{Out}})^2}{2 \times C_{\text{Out}} \times (V_{\text{IN (MIN)}} + D_{\text{MAX}} - V_{\text{Out}})}$$

The actual on-time will be slightly longer as the IC compensates for voltage drops in the circuit, but we can neglect both of these since the on-time increases compensations for the voltage losses. Calculate the output voltage sag as:

$$\Delta V_{\text{Sag}} = \frac{L \times (\Delta I_{\text{Out}})^2}{2 \times C_{\text{Out}} \times (V_{\text{IN (MIN)}} + D_{\text{MAX}} - V_{\text{Out}})}$$

The next step is to select a proper capacitor for RMS current rating. One good design uses more than one capacitor with low Equivalent Series Resistance (ESR) in parallel to form a capacitor bank. The input capacitance value determines the input ripple voltage of the regulator.

The input voltage ripple can be approximately calculated using the following equation:

$$\Delta V_{\text{IN}} = \frac{I_{\text{OUT}} \times V_{\text{IN}}}{C_{\text{IN}} \times f_{\text{SW}} \times V_{\text{OUT}}} \times (1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}})$$

The typical operating circuit is recommended to use two 10μF low ESR ceramic capacitors on the input.

Output Capacitor Selection

The RT6220 is optimized for ceramic output capacitors and best performance will be obtained by using them. The total output capacitance value is usually determined by the desired output voltage ripple level and transient response requirements for sag (undershoot on positive load steps) and soar (overshoot on negative load steps).

Output ripple at the switching frequency is caused by the inductor current ripple and its effect on the output capacitor’s ESR and stored charge. These two ripple components are called ESR ripple and capacitive ripple. Since ceramic capacitors have extremely low ESR and relatively little capacitance, both components are similar in amplitude and both should be considered if ripple is critical.

$$\Delta V_{\text{Ripple}} = V_{\text{Ripple (ESR)}} + V_{\text{Ripple (C)}}$$

$$V_{\text{Ripple (ESR)}} = \Delta L \times \text{Resr}$$

$$V_{\text{Ripple (C)}} = \frac{\Delta L}{8 \times C_{\text{Out}} \times f_{\text{SW}}}$$

In addition to voltage ripple at the switching frequency, the output capacitor and its ESR also affect the voltage sag (undershoot) and soar (overshoot) when the load steps up and down abruptly. The ACOT® transient response is very quick and output transients are usually small. However, the combination of small ceramic output capacitors (with little capacitance), low output voltages (with little stored charge in the output capacitors), and
of ceramic output capacitor (sag and soar are directly proportional to capacitance) or adding extra bulk capacitance can easily eliminate any excessive voltage transients.

In any application with large quick transients, it should calculate soar and sag to make sure that over-voltage protection and under-voltage protection will not be triggered.

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula:

\[
P_{D(MAX)} = \frac{(T_{J(MAX)} - T_A)}{\theta_{JA}}
\]

where \(T_{J(MAX)}\) is the maximum junction temperature, \(T_A\) is the ambient temperature, and \(\theta_{JA}\) is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is 125°C. The junction to ambient thermal resistance, \(\theta_{JA}\), is layout dependent. For UQFN-16L 3x3 (FC) package, the thermal resistance, \(\theta_{JA}\), is 43°C/W on a high thermal conductivity four-layer evaluation board made by Richtek. The maximum power dissipation at \(T_A = 25^\circ C\) can be calculated by the following formula:

\[
P_{D(MAX)} = \frac{(125^\circ C - 25^\circ C)}{(43^\circ C/W)} = 2.33W \text{ for UQFN-16L 3x3 (FC) package}
\]

The maximum power dissipation depends on the operating ambient temperature for fixed \(T_{J(MAX)}\) and thermal resistance, \(\theta_{JA}\). The derating curve in Figure 6 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

![Figure 6. Derating Curve of Maximum Power Dissipation](image)

Layout Considerations

Layout is very important in high frequency switching converter design. The PCB can radiate excessive noise and contribute to converter instability with improper layout. Certain points must be considered before starting a layout using the RT6220.

- Make traces of the high current paths as short and wide as possible.
- Put the input capacitor as close as possible to the device pins (VIN and PGND).
- The SW node encounters high frequency voltage swings so it should be kept in a small area. Keep sensitive components away from the SW node to prevent noise coupling.
- The PGND pin should be connected to a strong ground plane for heat sinking and noise protection.
- Avoid using vias in the power path connections that have switched currents (from \(C_{IN}\) to \(PGND\) and \(C_{IN}\) to \(V_{IN}\)) and the switching node (SW).
- The ground of VCC is recommended to connect to GND layer through via, and the decoupling capacitor (\(C_{VCC}\)) should be placed near VCC pin. No via connection is recommended.

An example of PCB layout guide is shown in Figure 7 for reference.
Trace Width Design

For thermal, efficiency and PCB handling current capability, the trace width design is very important. According to IPC-2221 formally IDC-D-275 PWB, the following formulas can be used to calculate the trace width for printed circuit boards.

Inner trace:

\[
I(\text{Amp}) = 0.015 \times \Delta T(\text{°C})^{0.5453} \times \text{Area(mils}^2)^{0.7349}
\]

Outer trace:

\[
I(\text{Amp}) = 0.0647 \times \Delta T(\text{°C})^{0.4281} \times \text{Area(mils}^2)^{0.6732}
\]

Width(mil) = \[
\frac{\text{Area(mils}^2)}{\text{Thickness(oz)} \times 1.37 / 12 \text{mil/in}}
\]

where
- \(I(\text{Amp})\) = Current,
- \(\Delta T(\text{°C})\) = Temperature rise,
- \(\text{Area(mils}^2)\) = Cross sectional area = Width x Thickness,
- \(\text{Width(mil)}\) = Trace width, and
- \(\text{Thickness(oz)}\) = Layer Cu thickness.
Outline Dimension

U-Type 16L QFN 3x3 (FC) Package

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions In Millimeters</th>
<th>Dimensions In Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>A</td>
<td>0.500</td>
<td>0.600</td>
</tr>
<tr>
<td>A1</td>
<td>0.000</td>
<td>0.050</td>
</tr>
<tr>
<td>A3</td>
<td>0.100</td>
<td>0.200</td>
</tr>
<tr>
<td>D</td>
<td>2.900</td>
<td>3.100</td>
</tr>
<tr>
<td>E</td>
<td>2.900</td>
<td>3.100</td>
</tr>
<tr>
<td>b</td>
<td>0.150</td>
<td>0.250</td>
</tr>
<tr>
<td>b1</td>
<td>0.100</td>
<td>0.200</td>
</tr>
<tr>
<td>L</td>
<td>0.350</td>
<td>0.450</td>
</tr>
<tr>
<td>L1</td>
<td>0.750</td>
<td>0.850</td>
</tr>
<tr>
<td>L2</td>
<td>0.550</td>
<td>0.650</td>
</tr>
<tr>
<td>e</td>
<td>0.400</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0.975</td>
<td></td>
</tr>
<tr>
<td>K1</td>
<td>1.335</td>
<td></td>
</tr>
<tr>
<td>K2</td>
<td>1.675</td>
<td></td>
</tr>
<tr>
<td>K3</td>
<td>1.935</td>
<td></td>
</tr>
<tr>
<td>K4</td>
<td>0.975</td>
<td></td>
</tr>
<tr>
<td>K5</td>
<td>1.675</td>
<td></td>
</tr>
</tbody>
</table>

U-Type 16L QFN 3x3 (FC) Package