2A, 18V, 340kHz Synchronous Step-Down Converter

General Description
The RT7237A is a high efficiency, monolithic synchronous step-down DC/DC converter that can deliver up to 2A output current from a 4.5V to 18V input supply. The RT7237A's current mode architecture and external compensation allow the transient response to be optimized over a wide input range and loads. Cycle-by-cycle current limit provides protection against shorted outputs, and soft-start eliminates input current surge during start-up. The RT7237A also provides under voltage protection and thermal shutdown protection. The low current (<3µA) shutdown mode provides output disconnection, enabling easy power management in battery-powered systems. The RT7237A is available in an SOP-8 (Exposed Pad) package.

Features
- ±1.5% High Accuracy Reference Voltage
- 4.5V to 18V Input Voltage Range
- 2A Output Current
- Integrated N-MOSFET Switches
- Current Mode Control
- Fixed Frequency Operation : 340kHz
- Output Adjustable from 0.8V to 15V
- Stable with Low ESR Ceramic Output Capacitors
- Up to 95% Efficiency
- Adjustable Soft-Start
- Cycle-by-Cycle Current Limit
- Input Under Voltage Lockout
- Output Under Voltage Protection
- Thermal Shutdown Protection
- RoHS Compliant and Halogen Free

Applications
- Wireless AP/Router
- Set-Top-Box
- Industrial and Commercial Low Power Systems
- LCD Monitors and TVs
- Green Electronics/Appliances
- Point of Load Regulation of High-Performance DSPs

Simplified Application Circuit

[Diagram of RT7237A with components and connections]
Functional Pin Description

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Pin Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BOOT</td>
<td>Bootstrap for High Side Gate Driver. Connect a 0.1μF or greater ceramic capacitor from BOOT to SW pin.</td>
</tr>
<tr>
<td>2</td>
<td>VIN</td>
<td>Supply Voltage Input, 4.5V to 18V. Must bypass with a suitable large ceramic capacitor.</td>
</tr>
<tr>
<td>3</td>
<td>SW</td>
<td>Switch Node. Connect this pin to an external L-C filter.</td>
</tr>
<tr>
<td>4, 9 (Exposed Pad)</td>
<td>GND</td>
<td>Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.</td>
</tr>
<tr>
<td>5</td>
<td>FB</td>
<td>Feedback Input. It is used to regulate the output of the converter to a set value via an external resistive voltage divider.</td>
</tr>
<tr>
<td>6</td>
<td>COMP</td>
<td>Compensation Node. COMP is used to compensate the regulation control loop. Connect a series RC network from COMP to GND. In some cases, an additional capacitor from COMP to GND is required.</td>
</tr>
<tr>
<td>7</td>
<td>EN</td>
<td>Enable Input. A logic high enables the converter; a logic low forces the IC into shutdown mode reducing the supply current to less than 3μA.</td>
</tr>
<tr>
<td>8</td>
<td>SS</td>
<td>Soft-Start Control Input. SS controls the soft-start period. Connect a capacitor from SS to GND to set the soft-start period. A 0.1μF capacitor sets the soft-start period to 13.5ms.</td>
</tr>
</tbody>
</table>
Function Block Diagram

- **Internal Regulator**
- **Oscillator**
- **Foldback Control**
- **Current Sense Amplifier**
- **UV Comparator**
- **Shutdown Comparator**
- **Lockout Comparator**
- **Slope Comp Amplifier**
- **Current Comparator**

Key Components:
- **VIN**
- **GND**
- **SW**
- **BOOT**
- **SSo**
- **ENO**
- **VCC**
- **0.8V**
- **6µA**
- **1.8V**
- **1.2V**
- **1.5V**
- **130mΩ**
- **150mΩ**
- **5kΩ**

Legend:
- **FB**
- **COMP**
- **EN**

Connections:
- VIN to Internal Regulator
- GND to Shutdown Comparator
- SW to Current Comparator
- BOOT to Oscillator
- SSO to Lockout Comparator
- EN to EN
- VCC to VCC

Current and Voltage Levels:
- 0.8V
- 5kΩ
- 6µA

Note:
- This diagram illustrates the functional blocks and their connections for the RT7237A device.
Absolute Maximum Ratings (Note 1)

- Supply Input Voltage, VIN: −0.3V to 20V
- Switch Voltage, SW: −0.3V to (VIN + 0.3V)
- VBOOT − VSW: −0.3V to 6V
- Other Pins Voltage: −0.3V to 20V
- Power Dissipation, PD @ TA = 25°C:
 SOP-8 (Exposed Pad): 1.333W
- Package Thermal Resistance (Note 2):
 SOP-8 (Exposed Pad), θJA: 75°C/W
 SOP-8 (Exposed Pad), θJC: 15°C/W
- Lead Temperature (Soldering, 10 sec.): 260°C
- Junction Temperature: 150°C
- Storage Temperature Range: −65°C to 150°C
- ESD Susceptibility (Note 3):
 HBM (Human Body Model): 2kV

Recommended Operating Conditions (Note 4)

- Supply Input Voltage, VIN: 4.5V to 18V
- Junction Temperature Range: −40°C to 125°C
- Ambient Temperature Range: −40°C to 85°C

Electrical Characteristics
(VIN = 12V, TA = 25°C, unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shutdown Supply Current</td>
<td>VEN = 0V</td>
<td></td>
<td>--</td>
<td>0.5</td>
<td>3</td>
<td>µA</td>
</tr>
<tr>
<td>Quiescent Supply Current</td>
<td>VEN = 3V, VFB = 0.9V</td>
<td></td>
<td>--</td>
<td>0.8</td>
<td>1.2</td>
<td>mA</td>
</tr>
<tr>
<td>Reference Voltage</td>
<td>VREF</td>
<td>4.5V ≤ VIN ≤ 18V</td>
<td>0.788</td>
<td>0.8</td>
<td>0.812</td>
<td>V</td>
</tr>
<tr>
<td>Error Amplifier Transconductance</td>
<td>GEA</td>
<td>ΔIC = ±10µA</td>
<td>--</td>
<td>940</td>
<td>--</td>
<td>µA/V</td>
</tr>
<tr>
<td>High Side Switch On-Resistance</td>
<td>RDSON1</td>
<td></td>
<td>--</td>
<td>150</td>
<td>--</td>
<td>mΩ</td>
</tr>
<tr>
<td>Low Side Switch On-Resistance</td>
<td>RDSON2</td>
<td></td>
<td>--</td>
<td>130</td>
<td>--</td>
<td>mΩ</td>
</tr>
<tr>
<td>High Side Switch Leakage Current</td>
<td>VEN = 0V, VSW = 0V</td>
<td></td>
<td>--</td>
<td>0</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>High Side Switch Current Limit</td>
<td>Min. Duty Cycle, VBOOT − VSW = 4.8V</td>
<td></td>
<td>--</td>
<td>4</td>
<td>--</td>
<td>A</td>
</tr>
<tr>
<td>COMP to Current Sense Transconductance</td>
<td>GCS</td>
<td></td>
<td>--</td>
<td>3.7</td>
<td>--</td>
<td>A/V</td>
</tr>
<tr>
<td>Oscillator Frequency</td>
<td>fOSC1</td>
<td></td>
<td>300</td>
<td>340</td>
<td>380</td>
<td>kHz</td>
</tr>
<tr>
<td>Short Circuit Oscillation Frequency</td>
<td>fOSC2</td>
<td>VFB = 0V</td>
<td>--</td>
<td>100</td>
<td>--</td>
<td>kHz</td>
</tr>
<tr>
<td>Maximum Duty Cycle</td>
<td>DMAX</td>
<td>VFB = 0.7V</td>
<td>--</td>
<td>93</td>
<td>--</td>
<td>%</td>
</tr>
<tr>
<td>Minimum On-Time</td>
<td>tON</td>
<td></td>
<td>--</td>
<td>100</td>
<td>--</td>
<td>ns</td>
</tr>
</tbody>
</table>

Copyright © 2018 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN Input Voltage</td>
<td>V_{IH}</td>
<td></td>
<td>2</td>
<td>--</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V_{IL}</td>
<td></td>
<td>--</td>
<td>--</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>Input Under Voltage Lockout</td>
<td>V_{UVLO}</td>
<td>V_{IN} Rising</td>
<td>3.8</td>
<td>4.2</td>
<td>4.5</td>
<td>V</td>
</tr>
<tr>
<td>Threshold</td>
<td>ΔV_{UVLO}</td>
<td></td>
<td>--</td>
<td>320</td>
<td>--</td>
<td>mV</td>
</tr>
<tr>
<td>Input Under Voltage Lockout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hysteresis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft-Start Current</td>
<td>I_{SS}</td>
<td>$V_{SS} = 0$V</td>
<td>--</td>
<td>6</td>
<td>--</td>
<td>μA</td>
</tr>
<tr>
<td>Soft-Start Period</td>
<td>t_{SS}</td>
<td>$C_{SS} = 0.1\mu$F</td>
<td>--</td>
<td>13.5</td>
<td>--</td>
<td>ms</td>
</tr>
<tr>
<td>Thermal Shutdown</td>
<td>T_{SD}</td>
<td></td>
<td>--</td>
<td>150</td>
<td>--</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Note 2. θ_{JA} is measured at $T_A = 25^\circ$C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θ_{JC} is measured at the exposed pad of the package.

Note 3. Devices are ESD sensitive. Handling precaution is recommended.

Note 4. The device is not guaranteed to function outside its operating conditions.
Typical Application Circuit

Table 1. Suggested Components Selection

<table>
<thead>
<tr>
<th>VOUT (V)</th>
<th>R1 (kΩ)</th>
<th>R2 (kΩ)</th>
<th>RC (kΩ)</th>
<th>CC (nF)</th>
<th>L (µH)</th>
<th>COUT (µF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>27</td>
<td>3</td>
<td>27</td>
<td>3.3</td>
<td>22</td>
<td>22 x 2</td>
</tr>
<tr>
<td>5</td>
<td>62</td>
<td>11.8</td>
<td>20</td>
<td>3.3</td>
<td>15</td>
<td>22 x 2</td>
</tr>
<tr>
<td>3.3</td>
<td>75</td>
<td>24</td>
<td>13</td>
<td>3.3</td>
<td>10</td>
<td>22 x 2</td>
</tr>
<tr>
<td>2.5</td>
<td>25.5</td>
<td>12</td>
<td>9.1</td>
<td>3.3</td>
<td>6.8</td>
<td>22 x 2</td>
</tr>
<tr>
<td>1.5</td>
<td>10.5</td>
<td>12</td>
<td>4.7</td>
<td>3.3</td>
<td>3.6</td>
<td>22 x 2</td>
</tr>
<tr>
<td>1.2</td>
<td>12</td>
<td>24</td>
<td>3.6</td>
<td>3.3</td>
<td>3.6</td>
<td>22 x 2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>12</td>
<td>3</td>
<td>3.3</td>
<td>3.6</td>
<td>22 x 2</td>
</tr>
</tbody>
</table>
Typical Operating Characteristics

- **Efficiency vs. Output Current**
 - $V_{IN} = 4.5V$
 - $V_{IN} = 12V$
 - $V_{IN} = 17V$
 - $V_{OUT} = 3.3V$

- **Output Voltage vs. Input Voltage**
 - $V_{OUT} = 3.3V$, $I_{OUT} = 1A$

- **Reference Voltage vs. Temperature**
 - $V_{OUT} = 3.3V$, $I_{OUT} = 1A$

- **Switching Frequency vs. Input Voltage**
 - $I_{OUT} = 0.5A$

- **Switching Frequency vs. Temperature**
 - $I_{OUT} = 0.5A$
Current Limit vs. Temperature

Load Transient Response

V_{OUT} (200mV/Div)

I_{OUT} (1A/Div)

\(V_{IN} = 12V, V_{OUT} = 3.3V, I_{OUT} = 0.5A \) to 2A

\(V_{IN} = 12V, V_{OUT} = 3.3V, I_{OUT} = 2A \)

Output Ripple Voltage

Power On from VIN

Power Off from VIN

\(V_{IN} = 12V, V_{OUT} = 3.3V, I_{OUT} = 2A \)
Time (10ms/Div)

Power On from EN

V_IN (5V/Div)
V_OUT (2V/Div)
I_L (1A/Div)

V_IN = 12V, V_OUT = 3.3V, I_OUT = 2A

Power Off from EN

V_IN (5V/Div)
V_OUT (2V/Div)
I_L (1A/Div)

V_IN = 12V, V_OUT = 3.3V, I_OUT = 2A
Application Information

Output Voltage Setting
The resistive divider allows the FB pin to sense the output voltage as shown in Figure 1.

![Figure 1. Output Voltage Setting](image)

The output voltage is set by an external resistive voltage divider according to the following equation:

\[
V_{OUT} = V_{REF} \left(1 + \frac{R1}{R2}\right)
\]

Where \(V_{REF}\) is the reference voltage (0.8V typ.).

External Bootstrap Diode
Connect a 0.1\(\mu\)F low ESR ceramic capacitor between the BOOT pin and SW pin. This capacitor provides the gate driver voltage for the high side MOSFET.

It is recommended to add an external bootstrap diode between an external 5V and BOOT pin for efficiency improvement when input voltage is lower than 5.5V or duty ratio is higher than 65%. The bootstrap diode can be a low cost one such as IN4148 or BAT54. The external 5V can be a 5V fixed input from system or a 5V output of the RT7237A. Note that the external boot voltage must be lower than 5.5V.

![Figure 2. External Bootstrap Diode](image)

Soft-Start
The RT7237A provides soft-start function. The soft-start function is used to prevent large inrush current while converter is being powered-up. The soft-start timing can be programmed by the external capacitor between SS and GND. An internal current source \(I_{SS}\) (6\(\mu\)A) charges an external capacitor to build a soft-start ramp voltage. The \(V_{FB}\) voltage will track the internal ramp voltage during soft-start interval. The typical soft start time is calculated as follows:

\[
\text{Soft-Start time } t_{SS} = \frac{0.8 \times C_{SS}}{I_{SS}} \text{, if } C_{SS} \text{ capacitor is } 0.1\mu\text{F, then soft-start time } = \frac{0.8 \times 0.1 \mu}{6\mu} = 13.5\text{ms}
\]

Chip Enable Operation
The EN pin is the chip enable input. Pulling the EN pin low (<0.4V) will shut down the device. During shutdown mode, the RT7237A quiescent current drops to lower than 3\(\mu\)A. Driving the EN pin high (>2V, <18V) will turn on the device again. For external timing control, the EN pin can also be externally pulled high by adding a \(R_{EN}\) resistor and \(C_{EN}\) capacitor from the VIN pin (see Figure 3).

![Figure 3. Enable Timing Control](image)

An external MOSFET can be added to implement digital control on the EN pin when no system voltage above 2.5V is available, as shown in Figure 4. In this case, a 100k\(\Omega\) pull-up resistor, \(R_{EN}\), is connected between \(V_{IN}\) and the EN pin. MOSFET Q1 will be under logic control to pull down the EN pin.

![Figure 4. Digital Enable Control Circuit](image)
Under Voltage Protection

Hiccup Mode
For the RT7237AH, it provides Hiccup Mode Under Voltage Protection (UVP). When the V_{FB} voltage drops below 0.4V, the UVP function will be triggered to shut down switching operation. If the UVP condition remains for a period, the RT7237AH will retry automatically. When the UVP condition is removed, the converter will resume operation. The UVP is disabled during soft-start period.

Latch-Off Mode
For the RT7237AL, it provides Latch-Off Mode Under Voltage Protection (UVP). When the FB voltage drops below half of the feedback reference voltage, V_{FB}, UVP will be triggered and the RT7237AL will shutdown in Latch-Off Mode. In shutdown condition, the RT7237AL can be reset by EN pin or power input VIN.

Over Temperature Protection
The RT7237A features an Over Temperature Protection (OTP) circuitry to prevent from overheating due to excessive power dissipation. The OTP will shut down switching operation when junction temperature exceeds 150°C. Once the junction temperature cools down by approximately 20°C, the converter will resume operation. To maintain continuous operation, the maximum junction temperature should be lower than 125°C.

Inductor Selection
The inductor value and operating frequency determine the ripple current according to a specific input and output voltage. The ripple current ΔI_L increases with higher V_{IN} and decreases with higher inductance.

$$\Delta I_L = \left[\frac{V_{OUT}}{F \times L} \right] \times \left[1 - \frac{V_{OUT}}{V_{IN}} \right]$$

Having a lower ripple current reduces not only the ESR losses in the output capacitors but also the output voltage ripple. High frequency with small ripple current can achieve the highest efficiency operation. However, it requires a large inductor to achieve this goal.

For the ripple current selection, the value of $\Delta I_L = 0.24(I_{MAX})$ will be a reasonable starting point. The largest ripple current occurs at the highest V_{IN}. To guarantee that the
The output ripple will be the highest at the maximum input voltage since ΔI_L increases with input voltage. Multiple capacitors placed in parallel may be needed to meet the ESR and RMS current handling requirement. Higher values, lower cost ceramic capacitors are now becoming available in smaller case sizes. Their high ripple current, high voltage rating and low ESR make them ideal for switching regulator applications. However, care must be taken when these capacitors are used at input and output. When a ceramic capacitor is used at the input and the power is supplied by a wall adapter through long wires, a load step at the output can induce ringing at the input, V_{IN}. At worst, a sudden inrush of current through the long wires can potentially cause a voltage spike at V_{IN} large enough to damage the part.

Thermal Considerations

For continuous operation, do not exceed the maximum operation junction temperature $125^\circ C$. The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula:

$$P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$$

Where $T_{J(MAX)}$ is the maximum operation junction temperature, T_A is the ambient temperature and the θ_{JA} is the junction to ambient thermal resistance.

For recommended operating conditions specification, the maximum junction temperature is $125^\circ C$. The junction to ambient thermal resistance θ_{JA} is layout dependent. For SOP-8 (Exposed Pad) package, the thermal resistance θ_{JA} is $75^\circ C/W$ on the standard JEDEC 51-7 four-layers thermal test board. The maximum power dissipation at $T_A = 25^\circ C$ can be calculated by following formula:

$$P_{D(MAX)} = (125^\circ C - 25^\circ C) / (75^\circ C/W) = 1.333W$$ (min.copper area PCB layout)

$$P_{D(MAX)} = (125^\circ C - 25^\circ C) / (49^\circ C/W) = 2.04W$$ (70mm² copper area PCB layout)

C_{IN} and C_{OUT} Selection

The input capacitance, C_{IN}, is needed to filter the trapezoidal current at the source of the high side MOSFET. To prevent large ripple current, a low ESR input capacitor sized for the maximum RMS current should be used. The approximate RMS current equation is given:

$$I_{RMS} = I_{OUT(MAX)} \frac{V_{OUT}}{V_{IN}} \sqrt{\frac{V_{IN}}{V_{OUT}} - 1}$$

This formula has a maximum at $V_{IN} = 2V_{OUT}$, where $I_{RMS} = I_{OUT} / 2$. This simple worst case condition is commonly used for design because even significant deviations do not offer much relief.

Choose a capacitor rated at a higher temperature than required. Several capacitors may also be paralleled to meet size or height requirements in the design.

For the input capacitor, two $10 \mu F$ low ESR ceramic capacitors are suggested. For the suggested capacitor, please refer to Table 3 for more details.

The selection of C_{OUT} is determined by the required ESR to minimize voltage ripple.

Moreover, the amount of bulk capacitance is also a key for C_{OUT} selection to ensure that the control loop is stable. Loop stability can be checked by viewing the load transient response as described in a later section.
The thermal resistance θ_{JA} of SOP-8 (Exposed Pad) is determined by the package architecture design and the PCB layout design. However, the package architecture design had been designed. If possible, it's useful to increase thermal performance by the PCB layout copper design. The thermal resistance θ_{JA} can be decreased by adding copper area under the exposed pad of SOP-8 (Exposed Pad) package.

As shown in Figure 8, the amount of copper area to which the SOP-8 (Exposed Pad) is mounted affects thermal performance. When mounted to the standard SOP-8 (Exposed Pad) pad (Figure 8.a), θ_{JA} is 75°C/W. Adding copper area of pad under the SOP-8 (Exposed Pad) (Figure 8.b) reduces the θ_{JA} to 64°C/W. Even further, increasing the copper area of pad to 70mm² (Figure 8.e) reduces the θ_{JA} to 49°C/W.

The maximum power dissipation depends on operating ambient temperature for fixed $T_{J(MAX)}$ and thermal resistance θ_{JA}. The Figure 9 of derating curves allows the designer to see the effect of rising ambient temperature on the maximum power dissipation allowed.

```
Figure 8. Thermal Resistance vs. Copper Area Layout Design
```

```
(a) Copper Area = (2.3 x 2.3) mm², $\theta_{JA} = 75^\circ$C/W

(b) Copper Area = 10mm², $\theta_{JA} = 64^\circ$C/W

(c) Copper Area = 30mm², $\theta_{JA} = 54^\circ$C/W

(d) Copper Area = 50mm², $\theta_{JA} = 51^\circ$C/W

(e) Copper Area = 70mm², $\theta_{JA} = 49^\circ$C/W
```

```
Figure 9. Derating Curve of Maximum Power Dissipation
```

```
Ambient Temperature (°C)

<table>
<thead>
<tr>
<th>Power Dissipation (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
</tr>
<tr>
<td>2.0</td>
</tr>
<tr>
<td>1.8</td>
</tr>
<tr>
<td>1.6</td>
</tr>
<tr>
<td>1.4</td>
</tr>
<tr>
<td>1.2</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>0.8</td>
</tr>
<tr>
<td>0.6</td>
</tr>
<tr>
<td>0.4</td>
</tr>
<tr>
<td>0.2</td>
</tr>
<tr>
<td>0.0</td>
</tr>
</tbody>
</table>

Four-Layer PCB

Copper Area
70mm²
50mm²
30mm²
10mm²
Min.Layout

Copyright © 2018 Richtek Technology Corporation. All rights reserved. Richtek is a registered trademark of Richtek Technology Corporation.
Layout Consideration
Follow the PCB layout guidelines for optimal performance of the RT7237A.

- Keep the traces of the main current paths as short and wide as possible.
- Put the input capacitor as close as possible to the device pins (VIN and GND).
- SW node is with high frequency voltage swing and should be kept at small area. Keep analog components away from the SW node to prevent stray capacitive noise pick-up.
- Connect feedback network behind the output capacitors. Keep the loop area small. Place the feedback components near the RT7237A.
- An example of PCB layout guide is shown in Figure 10 for reference.

Table 3. Suggested Capacitors for $C_{IN}$ and $C_{OUT}$

<table>
<thead>
<tr>
<th>Location</th>
<th>Component Supplier</th>
<th>Part No.</th>
<th>Capacitance (µF)</th>
<th>Case Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{IN}$</td>
<td>MURATA</td>
<td>GRM31CR61E106K</td>
<td>10</td>
<td>1206</td>
</tr>
<tr>
<td>$C_{IN}$</td>
<td>TDK</td>
<td>C3225X5R1E106K</td>
<td>10</td>
<td>1206</td>
</tr>
<tr>
<td>$C_{IN}$</td>
<td>TAIYO YUDEN</td>
<td>TMK316BJ106ML</td>
<td>10</td>
<td>1206</td>
</tr>
<tr>
<td>$C_{OUT}$</td>
<td>MURATA</td>
<td>GRM31CR60J476M</td>
<td>47</td>
<td>1206</td>
</tr>
<tr>
<td>$C_{OUT}$</td>
<td>TDK</td>
<td>C3225X5R0J476M</td>
<td>47</td>
<td>1210</td>
</tr>
<tr>
<td>$C_{OUT}$</td>
<td>MURATA</td>
<td>GRM32ER71C226M</td>
<td>22</td>
<td>1210</td>
</tr>
<tr>
<td>$C_{OUT}$</td>
<td>TDK</td>
<td>C3225X5R1C22M</td>
<td>22</td>
<td>1210</td>
</tr>
</tbody>
</table>

Figure 10. PCB Layout Guide
### Outline Dimension

![Diagram of 8-Lead SOP (Exposed Pad) Plastic Package](image)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions In Millimeters</th>
<th>Dimensions In Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>A</td>
<td>4.801</td>
<td>5.004</td>
</tr>
<tr>
<td>B</td>
<td>3.810</td>
<td>4.000</td>
</tr>
<tr>
<td>C</td>
<td>1.346</td>
<td>1.753</td>
</tr>
<tr>
<td>D</td>
<td>0.330</td>
<td>0.510</td>
</tr>
<tr>
<td>F</td>
<td>1.194</td>
<td>1.346</td>
</tr>
<tr>
<td>H</td>
<td>0.170</td>
<td>0.254</td>
</tr>
<tr>
<td>I</td>
<td>0.000</td>
<td>0.152</td>
</tr>
<tr>
<td>J</td>
<td>5.791</td>
<td>6.200</td>
</tr>
<tr>
<td>M</td>
<td>0.406</td>
<td>1.270</td>
</tr>
<tr>
<td>Option 1</td>
<td>X</td>
<td>2.000</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>2.000</td>
</tr>
<tr>
<td>Option 2</td>
<td>X</td>
<td>2.100</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>3.000</td>
</tr>
</tbody>
</table>

**8-Lead SOP (Exposed Pad) Plastic Package**

---

**Richtek Technology Corporation**

14F, No. 8, Tai Yuen 1st Street, Chupei City

Hsinchu, Taiwan, R.O.C.

Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.