3A, 18V, 700kHz ACOT™ Synchronous Step-Down Converter

General Description

The RT7277 is a synchronous step-down DC/DC converter with Advanced Constant On-Time (ACOT™) mode control. It achieves high power density to deliver up to 3A output current from a 4.5V to 18V input supply. The proprietary ACOT™ mode offers an optimal transient response over a wide range of loads and all kinds of ceramic capacitors, which allows the device to adopt very low ESR output capacitors for ensuring performance stabilization. In addition, RT7277 keeps an excellent constant switching frequency under line and load variation and the integrated synchronous power switches with the ACOT™ mode operation provides high efficiency in whole output current load range. Cycle-by-cycle current limit provides an accurate protection by a valley detection of low side MOSFET and external soft-start setting eliminates input current surge during startup. Protection functions also include output under voltage protection, output over voltage protection, and thermal shutdown.

Marking Information

RT7277GSP : Product Number
YMDNN : Date Code

Features

- ACOT™ Mode Enables Fast Transient Response
- 4.5V to 18V Input Voltage Range
- 3A Output Current
- 60mΩ Internal Low Side N-MOSFET
- Advanced Constant On-Time Control
- Support All Ceramic Capacitors
- Up to 95% Efficiency
- 700kHz Switching Frequency
- Adjustable Output Voltage from 0.765V to 8V
- Adjustable Soft-Start
- Cycle-by-Cycle Current Limit
- Input Under Voltage Lockout
- Thermal Shutdown
- RoHS Compliant and Halogen Free

Applications

- Industrial and Commercial Low Power Systems
- Computer Peripherals
- LCD Monitors and TVs
- Green Electronics/Appliances
- Point of Load Regulation for High-Performance DSPs, FPGAs, and ASICs

Simplified Application Circuit
Functional Pin Description

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Pin Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EN</td>
<td>Enable Input. A logic-high enables the converter; a logic-low forces the IC into shutdown mode reducing the supply current to less than 10μA.</td>
</tr>
<tr>
<td>2</td>
<td>FB</td>
<td>Feedback Input. It is used to regulate the output of the converter to a set value via an external resistive voltage divider. The feedback threshold voltage is 0.765V typically.</td>
</tr>
<tr>
<td>3</td>
<td>PVCC</td>
<td>Internal Regulator Output. Connect a 1μF capacitor to GND to stabilize output voltage.</td>
</tr>
<tr>
<td>4</td>
<td>SS</td>
<td>Soft-Start Control Input. SS controls the soft-start period. Connect a capacitor from SS to GND to set the soft-start period. A 3.9nF capacitor sets the soft-start period of VOUT to 2.6ms.</td>
</tr>
<tr>
<td>5, 9</td>
<td>GND</td>
<td>Ground. The Exposed pad should be soldered to a large PCB and connected to GND for maximum thermal dissipation.</td>
</tr>
<tr>
<td>6</td>
<td>SW</td>
<td>Switch Node. Connect this pin to an external L-C filter.</td>
</tr>
<tr>
<td>7</td>
<td>BOOT</td>
<td>Bootstrap Supply for High Side Gate Driver. Connect a 0.1μF or greater ceramic capacitor from BOOT to SW pins.</td>
</tr>
<tr>
<td>8</td>
<td>VIN</td>
<td>Power Input. The input voltage range is from 4.5V to 18V. Must bypass with a suitably large (≥10μF x 2) ceramic capacitor.</td>
</tr>
</tbody>
</table>
Operation

In normal operation, the high side N-MOSFET is turned on when the FB Comparator sets the Switch Controller, and it is turned off when On-Time Controller resets the Switch Controller. While the high side N-MOSFET is turned off, the low side N-MOSFET is turned on and waits for the FB Comparator to set the beginning of next cycle.

The FB Comparator sets the Switch Controller by comparing the feedback signal (FB) from output voltage with the internal 0.765V reference. When load transient induces VOUT drop, the FB voltage will be less than its threshold voltage. This means that the high side N-MOSFET will turn on again immediately after minimum off-time expired. The switching frequency will vary during the transient period thus can provide a very fast transient response. After the load transient finished, the RT7277 will be back to steady state with a constant switching frequency.

Enable

Activate internal regulator once EN input level is higher than the target level. Force IC to enter shutdown mode when the EN input level is lower than 0.4V.

Internal Regulator

Provide internal power for logic control and switch gate drivers.

On-Time Controller

Control on-time according to VIN and SW to obtain constant switching frequency.
Absolute Maximum Ratings (Note 1)
- Supply Voltage, VIN -0.3V to 21V
- Switch Voltage, SW -0.8V to (VIN + 0.3V)
- <10ns -5V to 25V
- BOOT to SW, PVCC -0.3V to 6V
- Other Pins Voltage -0.3V to 21V
- Power Dissipation, P_D @ T_A = 25°C SOP-8 (Exposed Pad) 2.041W
- Package Thermal Resistance (Note 2)
 SOP-8 (Exposed Pad), θ_JA 49°C/W
 SOP-8 (Exposed Pad), θ_JC 15°C/W
- Junction Temperature Range 150°C
- Lead Temperature (Soldering, 10 sec.) 260°C
- Storage Temperature Range -65°C to 150°C
- ESD Susceptibility (Note 3)
 HBM (Human Body Model) 2kV

Recommended Operating Conditions (Note 4)
- Supply Voltage, VIN 4.5V to 18V
- Junction Temperature Range -40°C to 125°C
- Ambient Temperature Range -40°C to 85°C

Electrical Characteristics
(VIN = 12V, TA = 25°C, unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shutdown Current</td>
<td>I_SHDN</td>
<td>V_EN = 0V</td>
<td>--</td>
<td>1.5</td>
<td>10</td>
<td>μA</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>I_Q</td>
<td>V_EN = 3V, V_FB = 1V</td>
<td>--</td>
<td>0.7</td>
<td>--</td>
<td>mA</td>
</tr>
<tr>
<td>Logic Threshold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN Voltage</td>
<td>Logic-High</td>
<td></td>
<td>2</td>
<td>--</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Logic-Low</td>
<td></td>
<td>--</td>
<td>--</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>V_FB Voltage and Discharge Resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedback Threshold Voltage</td>
<td>V_FB</td>
<td>4.5V ≤ VIN ≤ 18V</td>
<td>0.757</td>
<td>0.765</td>
<td>0.773</td>
<td>V</td>
</tr>
<tr>
<td>Feedback Input Current</td>
<td>I_FB</td>
<td>V_FB = 0.8V</td>
<td>-0.1</td>
<td>0</td>
<td>0.1</td>
<td>μA</td>
</tr>
<tr>
<td>VPVCC Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VPVCC Output Voltage</td>
<td>V_PVCC</td>
<td>6V ≤ VIN ≤ 18V, 0 < IPVCC < 5mA</td>
<td>4.7</td>
<td>5.1</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Line Regulation</td>
<td></td>
<td>6V ≤ VIN ≤ 18V, IPVCC = 5mA</td>
<td>--</td>
<td>--</td>
<td>20</td>
<td>mV</td>
</tr>
<tr>
<td>Load Regulation</td>
<td></td>
<td>0 < IPVCC < 5mA</td>
<td>--</td>
<td>--</td>
<td>100</td>
<td>mV</td>
</tr>
<tr>
<td>Output Current</td>
<td>IPVCC</td>
<td>VIN = 6V, V_PVCC = 4V</td>
<td>--</td>
<td>110</td>
<td>--</td>
<td>mA</td>
</tr>
<tr>
<td>Parameter</td>
<td>Symbol</td>
<td>Test Conditions</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Unit</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------</td>
<td>-------------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>RDS(ON)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch On Resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Side</td>
<td>RDS(ON)_H</td>
<td>--</td>
<td>90</td>
<td></td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>Low Side</td>
<td>RDS(ON)_L</td>
<td>--</td>
<td>60</td>
<td></td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>Current Limit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Limit</td>
<td>I_LIM</td>
<td></td>
<td>3.5</td>
<td>4.1</td>
<td>5.7</td>
<td>A</td>
</tr>
<tr>
<td>Thermal Shutdown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Shutdown Threshold</td>
<td>T_SD</td>
<td></td>
<td>--</td>
<td>150</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Thermal Shutdown Hysteresis</td>
<td>ΔT_SD</td>
<td></td>
<td>--</td>
<td>20</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>On-Time Timer Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-Time</td>
<td>t_ON</td>
<td>V_IN = 12V, V_OUT = 1.05V</td>
<td>--</td>
<td>145</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Minimum On-Time</td>
<td>t_ON(MIN)</td>
<td></td>
<td>--</td>
<td>60</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Minimum Off-Time</td>
<td>t_OFF(MIN)</td>
<td></td>
<td>--</td>
<td>230</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Soft-Start</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS Charge Current</td>
<td></td>
<td>V_SS = 0V</td>
<td>1.4</td>
<td>2</td>
<td>2.6</td>
<td>μA</td>
</tr>
<tr>
<td>SS Discharge Current</td>
<td></td>
<td>V_SS = 0.5V</td>
<td>0.05</td>
<td>0.1</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>UVLO</td>
<td></td>
<td>VIN Rising to Wake up V_PVCC</td>
<td>3.55</td>
<td>3.85</td>
<td>4.15</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hysteresis</td>
<td>--</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1. Stresses beyond those listed “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Note 2. θ_JA is measured at T_A = 25°C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θ_JC is measured at the exposed pad of the package. The PCB copper area of exposed pad is 70mm².

Note 3. Devices are ESD sensitive. Handling precaution is recommended.

Note 4. The device is not guaranteed to function outside its operating conditions.
Typical Application Circuit

![Typical Application Circuit Diagram](image)

<table>
<thead>
<tr>
<th>V_{OUT} (V)</th>
<th>$R1$ (kΩ)</th>
<th>$R2$ (kΩ)</th>
<th>$C3$ (pF)</th>
<th>$L1$ (μH)</th>
<th>$C7$ (μF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.81</td>
<td>22.1</td>
<td>--</td>
<td>1.4</td>
<td>22 to 68</td>
</tr>
<tr>
<td>1.05</td>
<td>8.25</td>
<td>22.1</td>
<td>--</td>
<td>1.4</td>
<td>22 to 68</td>
</tr>
<tr>
<td>1.2</td>
<td>12.7</td>
<td>22.1</td>
<td>--</td>
<td>1.4</td>
<td>22 to 68</td>
</tr>
<tr>
<td>1.8</td>
<td>30.1</td>
<td>22.1</td>
<td>5 to 22</td>
<td>2</td>
<td>22 to 68</td>
</tr>
<tr>
<td>2.5</td>
<td>49.9</td>
<td>22.1</td>
<td>5 to 22</td>
<td>2</td>
<td>22 to 68</td>
</tr>
<tr>
<td>3.3</td>
<td>73.2</td>
<td>22.1</td>
<td>5 to 22</td>
<td>2</td>
<td>22 to 68</td>
</tr>
<tr>
<td>5</td>
<td>124</td>
<td>22.1</td>
<td>5 to 22</td>
<td>3.3</td>
<td>22 to 68</td>
</tr>
<tr>
<td>7</td>
<td>180</td>
<td>22.1</td>
<td>5 to 22</td>
<td>3.3</td>
<td>22 to 68</td>
</tr>
</tbody>
</table>
Typical Operating Characteristics

- **Efficiency vs. Output Current**
 - Efficiency (%)
 - Output Current (A)
 - Typical current ranges:
 - $V_{IN} = 5V$
 - $V_{IN} = 12V$
 - $V_{IN} = 17V$
 - $V_{OUT} = 1.05V$

- **Output Voltage vs. Temperature**
 - Output Voltage (V)
 - Temperature (°C)
 - Typical voltage ranges:
 - $V_{IN} = 12V$
 - $V_{OUT} = 1.05V$
 - $I_{OUT} = 0A$

- **Output Voltage vs. Input Voltage**
 - Output Voltage (V)
 - Input Voltage (V)
 - $V_{OUT} = 1.05V$
 - $V_{IN} = 17V$
 - $V_{IN} = 12V$
 - $V_{IN} = 5V$

- **Frequency vs. Input Voltage**
 - Frequency (kHz)
 - Input Voltage (V)

- **Reference Voltage vs. Temperature**
 - Reference Voltage (V)
 - Temperature (°C)
Current Limit vs. Temperature

![Graph showing current limit vs. temperature.](image)

Current Limit vs. Input Voltage

![Graph showing current limit vs. input voltage.](image)

Load Transient Response

![Graph showing load transient response.](image)

Switching

![Graph showing switching behavior.](image)

Power On from VIN

![Graph showing power on from VIN.](image)

Power Off from VIN

![Graph showing power off from VIN.](image)
Application Information

The RT7277 is a synchronous high voltage Buck converter that can support the input voltage range from 4.5V to 18V and the output current up to 3A. It adopts ACOT™ mode control to provide a very fast transient response with few external compensation components.

PWM Operation

It is suitable for low external component count configuration with appropriate amount of Equivalent Series Resistance (ESR) capacitors at the output. The output ripple voltage is monitored at a feedback point voltage. The synchronous high side MOSFET is turned on at the beginning of each cycle. After the internal on-time timer expires, the MOSFET is turned off. The pulse width of this on-time is determined by the converter’s input and output voltages to keep the frequency fairly constant over the entire input voltage range.

Advanced Constant On-Time Control

The RT7277 has a unique circuit which sets the on-time by monitoring the input voltage and SW signal. The circuit ensures the switching frequency operating at 700kHz over input voltage range and loading range.

Soft-Start

The RT7277 contains an external soft-start clamp that gradually raises the output voltage. The soft-start timing can be programmed by the external capacitor between SS pin and GND. The chip provides a 2μA charge current for the external capacitor. If a 3.9nF capacitor is used, the soft-start will be 2.6ms (typ.). The available capacitance range is from 2.7nF to 220nF.

\[t_{SS} (\text{ms}) = \frac{C_5 (\text{nF}) \times 1.365}{I_{SS} (\mu\text{A})} \]

Chip Enable Operation

The EN pin is the chip enable input. Pulling the EN pin low (<0.4V) will shut down the device. During shutdown mode, the RT7277 quiescent current drops to lower than 10μA. Driving the EN pin high (>2V, <18V) will turn on the device again. For external timing control, the EN pin can also be externally pulled high by adding a \(R_{EN} \) resistor and \(C_{EN} \) capacitor from the VIN pin (see Figure 1).

An external MOSFET can be added to implement digital control on the EN pin when no system voltage above 2V is available, as shown in Figure 2. In this case, a 100kΩ pull-up resistor, \(R_{EN} \), is connected between VIN and the EN pin. MOSFET Q1 will be under logic control to pull down the EN pin.

To prevent enabling circuit when \(V_{IN} \) is smaller than the \(V_{OUT} \) target value, a resistive voltage divider can be placed between the input voltage and ground and connected to the EN pin to adjust IC lockout threshold, as shown in Figure 3. For example, if an 8V output voltage is regulated from a 12V input voltage, the resistor \(R_{EN} \) can be selected to set input lockout threshold larger than 8V.

Figure 1. External Timing Control

Figure 2. Digital Enable Control Circuit

Figure 3. Resistor Divider for Lockout Threshold Setting
Output Voltage Setting
The resistive divider allows the FB pin to sense the output voltage as shown in Figure 4.

\[V_{OUT} = 0.765 \times (1 + \frac{R_1}{R_2}) \]

Under Voltage Lockout Protection
The RT7277 has Under Voltage Lockout Protection (UVLO) that monitors the voltage of PVCC pin. When the \(V_{PVCC} \) voltage is lower than UVLO threshold voltage, the RT7277 will be turned off in this state. This is non-latch protection.

Over Temperature Protection
The RT7277 equips an Over Temperature Protection (OTP) circuitry to prevent overheating due to excessive power dissipation. The OTP will shut down switching operation when junction temperature exceeds 150°C. Once the junction temperature cools down by approximately 20°C the main converter will resume operation. To keep operating at maximum, the junction temperature should be prevented from rising above 150°C.

Inductor Selection
The inductor value and operating frequency determine the ripple current according to a specific input and an output voltage. The ripple current \(\Delta I_L \) increases with higher \(V_{IN} \) and decreases with higher inductance.

\[\Delta I_L = \left[\frac{V_{OUT}}{F \times L} \right] \times \left[1 - \frac{V_{OUT}}{V_{IN}} \right] \]

Having a lower ripple current reduces not only the ESR losses in the output capacitors but also the output voltage ripple. High frequency with small ripple current can achieve highest efficiency operation. However, it requires a large inductor to achieve this goal. For the ripple current selection, the value of \(\Delta I_L = 0.2(I_{MAX}) \) will be a reasonable starting point. The largest ripple current occurs at the highest \(V_{IN} \). To guarantee that the ripple current stays below the specified maximum, the inductor value should be chosen according to the following equation:

\[L = \left[\frac{V_{OUT}}{F \times L_{(MAX)}} \right] \times \left[1 - \frac{V_{OUT}}{V_{IN_{(MAX)}}} \right] \]

Input and Output Capacitors Selection
The input capacitance, \(C_{IN} \), is needed to filter the trapezoidal current at the source of the high side MOSFET. A low ESR input capacitor with larger ripple current rating should be used for the maximum RMS current. The RMS current is given by:

\[I_{RMS} = I_{OUT_{(MAX)}} \sqrt{\frac{V_{IN}}{V_{OUT}}} - 1 \]

This formula has a maximum at \(V_{IN} = 2V_{OUT} \), where \(I_{RMS} = I_{OUT} / 2 \). This simple worst-case condition is commonly used for design because even significant deviations do not offer much relief.

Choose a capacitor rated at a higher temperature than required. Several capacitors may also be paralleled to meet size or height requirements in the design. For the input capacitor, two 10\(\mu \)F and 0.1\(\mu \)F low ESR ceramic capacitors are recommended.

The selection of \(C_{OUT} \) is determined by the required ESR to minimize voltage ripple.

Moreover, the amount of bulk capacitance is also a key for \(C_{OUT} \) selection to ensure that the control loop is stable. The output ripple, \(\Delta V_{OUT} \), is determined by:

\[\Delta V_{OUT} \leq \Delta L \left[\frac{ESR + \frac{1}{8I_{OUT}}}{R} \right] \]

The output ripple will be highest at the maximum input voltage since \(\Delta L \) increases with input voltage. Multiple capacitors placed in parallel may need to meet the ESR and RMS current handling requirements.

Higher values, lower cost ceramic capacitors are now becoming available in smaller case sizes. Their high ripple current, high voltage rating and low ESR make them ideal for switching regulator applications. However, care must be taken when these capacitors are used at input and...
output. When a ceramic capacitor is used at the input and the power is supplied by a wall adapter through long wires, a load step at the output can induce ringing at the input, V_{IN}. A sudden inrush of current through the long wires can potentially cause a voltage spike at V_{IN} large enough to damage the part.

External Bootstrap Diode
Connect a $0.1\mu F$ low ESR ceramic capacitor between the BOOT and SW pins. This capacitor provides the gate driver voltage for the high side MOSFET. It is recommended to add an external bootstrap diode between an external 5V and the BOOT pin for efficiency improvement when input voltage is lower than 5.5V or duty ratio is higher than 65%. The bootstrap diode can be a low cost one such as 1N4148 or BAT54. The external 5V can be a 5V fixed input from system or a 5V output of the RT7277. Note that the external boot voltage must be lower than 5.5V.

![Bootstrap Diode Diagram](image)

PVCC Capacitor Selection
Decouple with a $1\mu F$ ceramic capacitor. X7R or X5R grade dielectric ceramic capacitors are recommended for their stable temperature characteristics.

Over Current Protection
When the output shorts to ground, the inductor current decays very slowly during a single switching cycle. An over current detector is used to monitor inductor current to prevent current runaway. The over current detector monitors the voltage between SW and GND during the low side MOS turn-on state. This is cycle-by-cycle protection. The over current detector also supports temperature compensated.

Thermal Considerations
For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula:

$$P_{D(MAX)} = \frac{T_{J(MAX)} - T_A}{\theta_{JA}}$$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is $125^\circ C$. The junction to ambient thermal resistance, θ_{JA}, is layout dependent. For SOP-8 (Exposed Pad) package, the thermal resistance, θ_{JA}, is $49^\circ C/W$ on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at $T_A = 25^\circ C$ can be calculated by the following formulas:

$$P_{D(MAX)} = \frac{(125^\circ C - 25^\circ C)}{(49^\circ C/W)} = 2.041W$$

for SOP-8 (Exposed Pad) package.

The maximum power dissipation depends on the operating ambient temperature for fixed $T_{J(MAX)}$ and thermal resistance, θ_{JA}. The derating curve in Figure 6 allow the designer to see the effect of rising ambient temperature on the maximum power dissipation.

![Derating Curve](image)
Layout Consideration

Follow the PCB layout guidelines for optimal performance of the RT7277

- Keep the traces of the main current paths as short and wide as possible.
- Put the input capacitor as close as possible to the device pins (VIN and GND).

- SW node is with high frequency voltage swing and should be kept at small area. Keep sensitive components away from the SW node to prevent stray capacitive noise pickup.
- Connect feedback network behind the output capacitors. Keep the loop area small. Place the feedback components near the RT7277 feedback pin.
- The GND and Exposed Pad should be connected to a strong ground plane for heat sinking and noise protection.

The resistor divider must be connected as close to the device as possible.

Input capacitor must be placed as close to the IC as possible.

SW should be connected to inductor by wide and short trace. Keep sensitive components away from this trace.

Figure 7. PCB Layout Guide
Outline Dimension

![8-Lead SOP (Exposed Pad) Plastic Package](image)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions In Millimeters</th>
<th>Dimensions In Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.801 - 5.004</td>
<td>0.189 - 0.197</td>
</tr>
<tr>
<td>B</td>
<td>3.810 - 4.000</td>
<td>0.150 - 0.157</td>
</tr>
<tr>
<td>C</td>
<td>1.346 - 1.753</td>
<td>0.053 - 0.069</td>
</tr>
<tr>
<td>D</td>
<td>0.330 - 0.510</td>
<td>0.013 - 0.020</td>
</tr>
<tr>
<td>F</td>
<td>1.194 - 1.346</td>
<td>0.047 - 0.053</td>
</tr>
<tr>
<td>H</td>
<td>0.170 - 0.254</td>
<td>0.007 - 0.010</td>
</tr>
<tr>
<td>I</td>
<td>0.000 - 0.152</td>
<td>0.000 - 0.006</td>
</tr>
<tr>
<td>J</td>
<td>5.791 - 6.200</td>
<td>0.228 - 0.244</td>
</tr>
<tr>
<td>M</td>
<td>0.406 - 1.270</td>
<td>0.016 - 0.050</td>
</tr>
<tr>
<td>X</td>
<td>2.000 - 2.300</td>
<td>0.079 - 0.091</td>
</tr>
<tr>
<td>Y</td>
<td>2.000 - 2.300</td>
<td>0.079 - 0.091</td>
</tr>
<tr>
<td>Option 1</td>
<td>X 2.100 - 2.500</td>
<td>0.083 - 0.098</td>
</tr>
<tr>
<td></td>
<td>Y 3.000 - 3.500</td>
<td>0.118 - 0.138</td>
</tr>
</tbody>
</table>

8-Lead SOP (Exposed Pad) Plastic Package

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.