Primary-Side Regulation LED Driver Controller with Active-PFC

General Description
The RT7304A is a constant current LED driver with active power factor correction. It supports high power factor across a wide range of line voltages, and it drives the converter in the Quasi-Resonant (QR) mode to achieve higher efficiency. By using Primary Side Regulation (PSR), the RT7304A controls the output current accurately without a shunt regulator and an opto-coupler at the secondary side, reducing the external component count, the cost, and the volume of the driver board.

The RT7304A embeds comprehensive protection functions for robust designs, including LED open-circuit protection, LED short-circuit protection, output diode short-circuit protection, VDD Under-Voltage Lockout (UVLO), VDD Over-Voltage Protection (VDD OVP), Over-Temperature Protection (OTP), and cycle-by-cycle current limitation.

Features
- Tight LED Current Regulation
- No Opto-Coupler and TL431 Required
- Power Factor Correction (PFC)
- Quasi-Resonant
- Maximum/Minimum Switching Frequency Clamping
- Maximum/Minimum on-Time Limitation
- Wide VDD Range (up to 34V)
- THD Optimization
- Input-Voltage Feed-Forward Compensation
- Multiple Protection Features
  - LED Open-Circuit Protection
  - LED Short-Circuit Protection
  - Output Diode Short-Circuit Protection
  - VDD Under-Voltage Lockout
  - VDD Over-Voltage Protection
  - Over-Temperature Protection
  - Cycle-by-Cycle Current Limitation

Applications
- AC/DC LED Lighting Driver

Simplified Application Circuit

Buck-Boost Converter
Ordering Information

RT7304A

Package Type
E : SOT-23-6

Lead Plating System
G : Green (Halogen Free and Pb Free)

Marking Information

4T= : Product Code
DNN : Date Code

Note:
Richtek products are:

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Functional Pin Description

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Pin Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground of the controller.</td>
</tr>
<tr>
<td>2</td>
<td>VDD</td>
<td>Supply voltage (VDD) input. The controller will be enabled when VDD exceeds VTH_ON and disabled when VDD is lower than VTH_OFF.</td>
</tr>
<tr>
<td>3</td>
<td>GD</td>
<td>Gate driver output for external power MOSFET.</td>
</tr>
<tr>
<td>4</td>
<td>CS</td>
<td>Current sense input. Connect this pin to the current sense resistor.</td>
</tr>
<tr>
<td>5</td>
<td>ZCD</td>
<td>Zero current detection input. This pin is used to sense the voltage at auxiliary winding of the transformer.</td>
</tr>
<tr>
<td>6</td>
<td>COMP</td>
<td>Compensation node. Output of the internal trans-conductance amplifier.</td>
</tr>
</tbody>
</table>
Operation

Critical-Conduction Mode (CRM) with Constant On-Time Control

Figure 1 shows a typical flyback converter with input voltage (V_{IN}). When main switch Q1 is turned on with a fixed on-time (t_{ON}), the peak current (I_{L_PK}) of the magnetic inductor (L_{m}) can be calculated by the following equation:

\[ I_{L_PK} = \frac{V_{IN} \times \sin(\theta) \times t_{ON}}{L_{m}} \]

When the converter operates in CRM with constant on-time control, the envelope of the peak inductor current will follow the input voltage waveform with in-phase. Thus, high power factor can be achieved, as shown in Figure 2.

Figure 1. Typical Flyback Converter

If the input voltage is the output voltage of the full-bridge rectifier with sinusoidal input voltage (V_{IN,PK}\sin(\theta)), the inductor peak current (I_{L_PK}) can be expressed as the following equation:

\[ I_{L_PK} = \frac{V_{IN,PK} \times |\sin(\theta)| \times t_{ON}}{L_{m}} \]

Figure 2. Inductor Current of CRM with Constant On-Time Control
The RT7304A needs no shunt regulator and opto-coupler at the secondary side to achieve the output current regulation. Figure 3 shows several key waveforms of a conventional flyback converter in Quasi-Resonant (QR) mode, in which \( V_{\text{aux}} \) is the voltage on the auxiliary winding of the transformer.

**Voltage Clamping Circuit**

The RT7304A provides a voltage clamping circuit at ZCD pin since the voltage on the auxiliary winding is negative when the main switch is turned on. The lowest voltage on ZCD pin is clamped near zero to prevent the IC from being damaged by the negative voltage. Meanwhile, the sourcing ZCD current (I_{ZCD_SH}), flowing through the upper resistor (R_{ZCD1}), is sampled and held to be a line-voltage-related signal for propagation delay compensation. The RT7304A embeds the programmable propagation delay compensation through CS pin. A sourcing current I_{CS} (equal to I_{ZCD_SH} x K_{PC}) applies a voltage offset (I_{CS} x R_{PC}) which is proportional to line voltage on CS to compensate the propagation delay effect. Thus, the output current can be equal at high and low line voltage.

**Quasi-Resonant Operation**

Figure 4 illustrates how valley signal triggers PWM. If no valley signal detected for a long time, the next PWM is triggered by a starter circuit at end of the interval (I_{START}, 130\mu s typ.) which starts at the rising edge of the previous PWM signal. A blanking time (t_{S(MIN)}, 8.5\mu s typ.), which starts at the rising edge of the previous PWM signal, limits minimum switching period.

When the t_{S(MIN)} interval is on-going, all of valley signals are not allowed to trigger the next PWM signal. After the end of the t_{S(MIN)} interval, the coming valley will trigger the next PWM signal. If one or more valley signals are detected during the t_{S(MIN)} interval and no valley is detected after the end of the t_{S(MIN)} interval, the next PWM signal will be triggered automatically at end of the t_{S(MIN)} + 5\mu s (typ.).

**LED Open-Circuit Protection**

In an event of output open circuit, the converter will be shut down to prevent being damaged, and it will be auto-restarted when the output is recovered. Once the LED is open-circuit, the output voltage keeps rising, causing the voltage on ZCD pin \( V_{\text{ZCD}} \) rising accordingly. When the sample-and-hold ZCD voltage (\( V_{\text{ZCD\_SH}} \))
exceeds its OVP threshold (VZCD_OVP, 3.2V typ.), output OVP will be activated and the PWM output (GD pin) will be forced low to turn off the main switch. If the output is still open-circuit when the converter restarts, the converter will be shut down again.

Output Diode Short-Circuit Protection

When the output diode is damaged as short-circuit, the transformer will be led to magnetic saturation and the main switch will suffer from a high current stress. To avoid the above situation, an output diode short-circuit protection is built-in. When CS voltage VCS exceeds the threshold (VCS_SD 1.7 typ.) of the output diode short-circuit protection, the RT7304A will shut down the PWM output (GD pin) in few cycles to prevent the converter from damage. It will be auto-restarted when the failure condition is recovered.

VDD Under-Voltage Lockout (UVLO) and Over-Voltage Protection (VDD OVP)

The RT7304A will be enabled when VDD voltage (VDD) exceeds rising UVLO threshold (VTH_ON, 17V typ.) and disabled when VDD is lower than falling UVLO threshold (VTH_OFF, 8.5V typ.).

When VDD exceeds its over-voltage threshold (VOVP, 37.4V typ.), the PWM output of the RT7304A is shut down. It will be auto-restarted when the VDD is recovered to a normal level.

Over-Temperature Protection (OTP)

The RT7304A provides an internal OTP function to protect the controller itself from suffering thermal stress and permanent damage. It's not suggested to use the function as precise control of over temperature. Once the junction temperature is higher than the OTP threshold (TSD, 150°C typ.), the controller will shut down until the temperature cools down by 30°C (typ.). Meanwhile, if VDD reaches falling UVLO threshold voltage (VTH_OFF), the controller will hiccup till the over temperature condition is removed.
Absolute Maximum Ratings  (Note 1)
- Supply Voltage, \( V_{\text{DD}} \) -0.3V to 40V
- Gate Driver Output, \( G_D \) -0.3V to 20V
- Other Pins -0.3V to 6V
- Power Dissipation, \( P_D \) @ \( T_A = 25^\circ \text{C} \)
  SOT-23-6 0.42W
- Package Thermal Resistance  (Note 2)
  SOT-23-6, \( \theta_{JA} \) 235.6°C/W
- Lead Temperature (Soldering, 10 sec.) -260°C
- Junction Temperature 150°C
- Storage Temperature Range -65°C to 150°C
- ESD Susceptibility  (Note 3)
  HBM (Human Body Model) 2kV
  MM (Machine Model) 200V

Recommended Operating Conditions  (Note 4)
- Supply Input Voltage, \( V_{\text{DD}} \) 11V to 34V
- COMP Voltage, \( V_{\text{COMP}} \) 0.7V to 4.3V
- Junction Temperature Range -40°C to 125°C

Electrical Characteristics  
\( V_{\text{DD}} = 15\text{V}, \ T_A = 25^\circ \text{C}, \text{unless otherwise specified} \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD Section</td>
<td>( V_{\text{OVP}} )</td>
<td>( V_{\text{DD}} ) rising</td>
<td>35.4</td>
<td>37.4</td>
<td>39.4</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>( V_{\text{TH}_{\text{ON}}} )</td>
<td></td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>( V_{\text{TH}_{\text{OFF}}} )</td>
<td></td>
<td>7.5</td>
<td>8.5</td>
<td>9.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>( I_{\text{DD} _\text{OP}} )</td>
<td>( V_{\text{DD}} = 15\text{V}, I_{\text{ZCD}} = 0, G_D ) open</td>
<td>--</td>
<td>2</td>
<td>3</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>( I_{\text{VDD} _\text{ST}} )</td>
<td>( V_{\text{DD}} = V_{\text{TH}_{\text{ON}} - 1\text{V}} )</td>
<td>--</td>
<td>15</td>
<td>30</td>
<td>( \mu\text{A} )</td>
</tr>
<tr>
<td>ZCD Section</td>
<td>( V_{\text{ZCDL}} )</td>
<td>( I_{\text{ZCD}} = 0 ) to -2.5mA</td>
<td>-50</td>
<td>0</td>
<td>60</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>( V_{\text{ZCD_OVP}} )</td>
<td></td>
<td>3.04</td>
<td>3.2</td>
<td>3.36</td>
<td>V</td>
</tr>
<tr>
<td>Constant Current Control Section</td>
<td>( K_{\text{CC(MAX)}} )</td>
<td>( V_{\text{DIM}} = 3\text{V} )</td>
<td>246.25</td>
<td>250</td>
<td>253.75</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>( V_{\text{COMP(MAX)}} )</td>
<td></td>
<td>4.8</td>
<td>5.5</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>( V_{\text{COMP(MIN)}} )</td>
<td></td>
<td>--</td>
<td>0.5</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>( I_{\text{COMP(MAX)}} )</td>
<td>During start-up period</td>
<td>--</td>
<td>100</td>
<td>--</td>
<td>( \mu\text{A} )</td>
</tr>
<tr>
<td>Leading Edge Blanking Time</td>
<td>( t_{\text{LEB}} )</td>
<td></td>
<td>240</td>
<td>400</td>
<td>570</td>
<td>ns</td>
</tr>
<tr>
<td>Parameter</td>
<td>Symbol</td>
<td>Test Conditions</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Unit</td>
</tr>
<tr>
<td>-----------------------------------------------</td>
<td>--------</td>
<td>-----------------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Peak Current Shutdown Voltage Threshold</td>
<td>VCS_SD</td>
<td></td>
<td>1.53</td>
<td>1.7</td>
<td>1.87</td>
<td>V</td>
</tr>
<tr>
<td>Peak Current Limitation at Normal Operation</td>
<td>VCS_CL</td>
<td></td>
<td>1.08</td>
<td>1.2</td>
<td>1.32</td>
<td>V</td>
</tr>
<tr>
<td>Propagation Delay Compensation Factor</td>
<td>KPC</td>
<td>(I_{CS} = K_{PC} \times I_{ZCD}, I_{ZCD} = -150\mu A)</td>
<td>--</td>
<td>0.042</td>
<td>--</td>
<td>A/A</td>
</tr>
</tbody>
</table>

**Gate Driver Section**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rising Time</td>
<td>(t_R)</td>
<td>(V_{DD} = 15V, CL = 1nF)</td>
<td>--</td>
<td>140</td>
<td>250</td>
<td>ns</td>
</tr>
<tr>
<td>Falling Time</td>
<td>(t_F)</td>
<td>(V_{DD} = 15V, CL = 1nF)</td>
<td>--</td>
<td>40</td>
<td>70</td>
<td>ns</td>
</tr>
<tr>
<td>Gate Output Clamping Voltage</td>
<td>(V_{CLAMP})</td>
<td>(V_{DD} = 15V, CL = 1nF)</td>
<td>10.8</td>
<td>12</td>
<td>13.2</td>
<td>V</td>
</tr>
</tbody>
</table>

**Timing Control Section**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum on-Time</td>
<td>(I_{ON(MIN)})</td>
<td>(I_{ZCD} = -150\mu A)</td>
<td>0.9</td>
<td>1.25</td>
<td>1.6</td>
<td>\mu s</td>
</tr>
<tr>
<td>Minimum Switching Period</td>
<td>(I_{S(MIN)})</td>
<td></td>
<td>7</td>
<td>8.5</td>
<td>10</td>
<td>\mu s</td>
</tr>
<tr>
<td>Duration of Starter at Normal Operation</td>
<td>(I_{START})</td>
<td></td>
<td>75</td>
<td>130</td>
<td>300</td>
<td>\mu s</td>
</tr>
<tr>
<td>Maximum on-Time</td>
<td>(I_{ON(MAX)})</td>
<td></td>
<td>29</td>
<td>47</td>
<td>65</td>
<td>\mu s</td>
</tr>
</tbody>
</table>

**Over-Temperature Protection (OTP) Section**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTP Temperature Threshold</td>
<td>(T_{OTP})</td>
<td>(Note 5)</td>
<td>--</td>
<td>150</td>
<td>--</td>
<td>°C</td>
</tr>
<tr>
<td>OTP Temperature Hysteresis</td>
<td>(T_{OTP-HYS})</td>
<td>(Note 5)</td>
<td>--</td>
<td>30</td>
<td>--</td>
<td>°C</td>
</tr>
</tbody>
</table>

**Notes**

1. Stresses beyond those listed “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

2. \(\theta_{JA}\) is measured under natural convection (still air) at \(T_A = 25^\circ C\) with the component mounted on a low effective-thermal-conductivity two-layer test board on a JEDEC thermal measurement standard.

3. Devices are ESD sensitive. Handling precaution recommended.

4. The device is not guaranteed to function outside its operating conditions.

5. Guarantee by design.
Typical Application Circuit

Flyback Converter

Buck-Boost Converter
Typical Operating Characteristics

- **$V_{OVP}$ vs. Junction Temperature**
- **$V_{TH\_OFF}$ vs. Junction Temperature**
- **$I_{DD\_OP}$ vs. Junction Temperature**
- **$V_{ZCDL}$ vs. Junction Temperature**
- **$K_{CC}$ vs. Junction Temperature**
- **$V_{COMP\_MAX}$ vs. Junction Temperature**
Application Information

Output Current Setting
Considering the conversion efficiency, the programmed DC level of the average output current (I_{OUT(t)}) can be derived as:

\[ I_{OUT\_CC} = \frac{1}{2} \times \frac{N_P}{N_S} \times \frac{K_{CC}}{R_{CS}} \times CTR_{TX1} \]

\[ CTR_{TX1} = \frac{I_{SEC\_PK}}{I_{PRI\_PK}} \times \frac{N_S}{N_P} \]

in which CTR_{TX1} is the current transfer ratio of the transformer TX1, I_{SEC\_PK} is the peak current of the secondary side, and I_{PRI\_PK} is the peak current of the primary side. CTR_{TX1} can be estimated to be 0.9. According to the above parameters, current sense resistor R_{CS} can be determined as the following equation:

\[ R_{CS} = \frac{1}{2} \times \frac{N_P}{N_S} \times \frac{K_{CC}}{I_{OUT\_CC}} \times CTR_{TX1} \]

Propagation Delay Compensation Design
The V_{CS} deviation (\Delta V_{CS}) caused by propagation delay effect can be derived as:

\[ \Delta V_{CS} = \frac{V_{IN} \cdot t_D \cdot R_{CS}}{L_m} \]

in which t_D is the delay period which includes the propagation delay of the RT7304A and the turn-off transition of the main MOSFET. The sourcing current from CS pin of the RT7304A (I_{CS}) can be expressed as:

\[ I_{CS} = K_{PC} \cdot V_{IN} \cdot \frac{N_A}{N_P} \cdot \frac{1}{R_{ZCD1}} \]

where N_A is the turns number of the auxiliary winding. R_PC can be designed by:

\[ R_PC = \frac{\Delta V_{CS}}{I_{CS}} = \frac{t_D \cdot R_{CS} \cdot R_{ZCD1}}{L_m \cdot K_{PC}} \times \frac{N_P}{N_A} \]

Feed-Forward Compensation Design
The COMP voltage, V_{COMP}, is a function of the resistor R_{ZCD1} as following:

\[ R_{ZCD1} = \left( V_{IN\_pk} \times \frac{N_A}{N_P} \times K_{IV} \right) \times \frac{1}{R_{ramp}} \times \frac{G_{m\_ramp} \times I_{ON}}{2 \times C_{ramp} \times (V_{COMP} - V_D)} \]

in which K_{IV}, G_{m\_ramp}, and C_{ramp} are fixed parameters in the RT7304A, and the typical value are : K_{IV} = 2.5V/mA, G_{m\_ramp} = 8μA/V, C_{ramp} = 6.5pF.

V_D is the offset of the constant on-time comparator, and its typical value is 0.63V. It is recommended to design V_{COMP} = 2 to 3V. If the COMP voltage is over its recommended operating range (0.7 to 4.3V), output current regulation may be affected. Thus, the resistors R_{ZCD1} can be determined according to the above parameters.

Minimum On-Time Setting
The RT7304A limits a minimum on-time (I_{ON\(MIN\)}) for each switching cycle. The I_{ON\(MIN\)} can be derived from the following equations.

\[ I_{ON\(MIN\)} \times I_{ZCD\_SH} = 187.5p\cdot\text{sec}\cdot\text{A} \text{ (typ.)} \]

Thus, R_{ZCD1} can be determined by:

\[ R_{ZCD1} = \frac{I_{ON\(MIN\)}}{187.5p} \times \frac{V_{IN}}{N_A \times N_P} \text{ (typ.)} \]

In addition, the current flowing out of ZCD pin must be lower than 2.5mA (typ.). Thus, the R_{ZCD1} is also determined by:

\[ R_{ZCD1} > \frac{\sqrt{2} \times V_{AC(MAX)}}{2.5m} \times \frac{N_A}{N_P} \]

where the V_{AC(MAX)} is maximum input AC voltage.

Output Over-Voltage Protection Setting
Output OVP is achieved by sensing the voltage on the auxiliary winging. It is recommended that output OV level (V_{OUT\_OVP}) is set at 120% of nominal output voltage (V_{OUT}). Thus, R_{ZCD1} and R_{ZCD2} can be determined by the equation as:

\[ V_{OUT} \times \frac{N_A}{N_S} \times \frac{R_{ZCD2}}{R_{ZCD1} + R_{ZCD2}} \times 120\% = 3.2V \text{ (typ.)} \]
Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula:

\[
P_{D(MAX)} = \frac{(T_J(MAX) - T_A)}{\theta_{JA}} \]

Where \(T_J(MAX)\) is the maximum junction temperature, \(T_A\) is the ambient temperature, and \(\theta_{JA}\) is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is 125°C. The junction to ambient thermal resistance, \(\theta_{JA}\), is layout dependent. For SOT-23-6 packages, the thermal resistance, \(\theta_{JA}\), is 235.6°C/W on a standard JEDEC 51-3 two-layer thermal test board. The maximum power dissipation at \(T_A = 25°C\) can be calculated by the following formula:

\[
P_{D(MAX)} = \frac{(125°C - 25°C)}{(235.6°C/W)} = 0.42W \text{ for a SOT-23-6 package.}
\]

The maximum power dissipation depends on the operating ambient temperature for fixed \(T_J(MAX)\) and thermal resistance, \(\theta_{JA}\). The derating curve in Figure 5 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

```
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0 25 50 75 100 125
Ambient Temperature (°C)

0.6
0.5
0.4
0.3
0.2
0.1
0.0

Two-Layer PCB

Maximum Power Dissipation (W)

Figure 5. Derating Curve of Maximum Power Dissipation
```

Layout Considerations

A proper PCB layout can abate unknown noise interference and EMI issue in the switching power supply. Please refer to the guidelines when designing a PCB layout for switching power supply:

- The current path(1) from input capacitor, transformer, MOSFET, \(R_{CS}\) return to input capacitor is a high frequency current loop. The path(2) from GD pin, MOSFET, \(R_{CS}\) return to the ground of the IC is also a high frequency current loop. They must be as short as possible to decrease noise coupling and kept a space to other low voltage traces, such as IC control circuit paths, especially. Besides, the path(3) between MOSFET ground(b) and IC ground(d) is recommended to be as short as possible, too.

- The path(4) from RCD snubber circuit to MOSFET is a high switching loop. Keep it as small as possible.

- It is good for reducing noise, output ripple and EMI issue to separate ground traces of input capacitor(a), MOSFET(b), auxiliary winding(c) and IC control circuit(d). Finally, connect them together on input capacitor ground(a). The areas of these ground traces should be kept large.

- To minimize parasitic trace inductance and EMI, minimize the area of the loop connecting the secondary winding, the output diode, and the output filter capacitor. In addition, apply sufficient copper area at the anode and cathode terminal of the diode for heat-sinking. It is recommended to apply a larger area at the quiet cathode terminal. A large anode area will induce high-frequency radiated EMI.
Figure 6. PCB Layout Guide
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions In Millimeters</th>
<th>Dimensions In Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.889 - 1.295</td>
<td>0.031 - 0.051</td>
</tr>
<tr>
<td>A1</td>
<td>0.000 - 0.152</td>
<td>0.000 - 0.006</td>
</tr>
<tr>
<td>B</td>
<td>1.397 - 1.803</td>
<td>0.055 - 0.071</td>
</tr>
<tr>
<td>b</td>
<td>0.250 - 0.560</td>
<td>0.010 - 0.022</td>
</tr>
<tr>
<td>C</td>
<td>2.591 - 2.997</td>
<td>0.102 - 0.118</td>
</tr>
<tr>
<td>D</td>
<td>2.692 - 3.099</td>
<td>0.106 - 0.122</td>
</tr>
<tr>
<td>e</td>
<td>0.838 - 1.041</td>
<td>0.033 - 0.041</td>
</tr>
<tr>
<td>H</td>
<td>0.080 - 0.254</td>
<td>0.003 - 0.010</td>
</tr>
<tr>
<td>L</td>
<td>0.300 - 0.610</td>
<td>0.012 - 0.024</td>
</tr>
</tbody>
</table>

SOT-23-6 Surface Mount Package
## Footprint Information

![Footprint Diagram]

<table>
<thead>
<tr>
<th>Package</th>
<th>Number of Pin</th>
<th>Footprint Dimension (mm)</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSOT-26/TSOT-26(FC)/SOT-26</td>
<td>6</td>
<td>P1: 0.95, A: 3.60, B: 1.60, C: 1.00, D: 0.70, M: 2.60</td>
<td>±0.10</td>
</tr>
</tbody>
</table>

---

**Richtek Technology Corporation**  
14F, No. 8, Tai Yuen 1st Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.