Two-Stage Hysteretic LED Driver Controller

General Description

The RT8476A is a two-stage controller with dual gate drivers consist of a Boost converter (first stage) and a Buck converter (second stage). The advantage of the two-stage topology is highly compatible with ET (Electronic Transformer) in MR16 / AR111 lighting market field applications.

The first stage is a Boost converter for constant voltage output with inductor peak current over-current protection.

The second stage is a Buck converter for constant output current by typical constant peak current regulation.

The RT8476A is equipped with dual output gate drivers for external power MOSFETs, suitable for higher power applications.

The RT8476A is available in the SOP-8 (Exposed pad) package.

Applications

- MR16 Lighting
- Signage and Decorative LED Lighting
- Architectural Lighting
- High Power LED Lighting
- Low Voltage Industrial Lighting
- Indicator and Emergency Lighting
- Automotive LED Lighting

Features

- Two-Stage Topology (Boost + Buck)
- Wide Input Voltage Range : 4.5V to 40V
- Adjustable Peak Input Current Control
- Adjustable Boost Output Voltage
- Independent Dual Stage Function
- Adjustable LED Current with ±5% LED Current Accuracy
- Input Under-Voltage Lockout Detection
- Thermal Shutdown Protection
- SOP-8 (Exposed Pad) Package
- RoHS Compliant and Halogen Free

Ordering Information

Note :
Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Simplified Application Circuit
Functional Pin Description

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Pin Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GATE1</td>
<td>Gate Driver Output for External MOSFET Switch in the First Stage.</td>
</tr>
<tr>
<td>2</td>
<td>CS</td>
<td>Current Sense Input for External MOSFET Switch.</td>
</tr>
<tr>
<td>3</td>
<td>OVP</td>
<td>Over-Voltage Protection Sense Input.</td>
</tr>
<tr>
<td>4</td>
<td>ACTL</td>
<td>Analog/PWM Dimming Control Input.</td>
</tr>
<tr>
<td>5</td>
<td>ISN</td>
<td>LED Current Sense Amplifier Negative Input.</td>
</tr>
<tr>
<td>6</td>
<td>VCC</td>
<td>Supply Voltage Input. For good bypass, place a ceramic capacitor near the VCC pin.</td>
</tr>
<tr>
<td>7</td>
<td>CREG</td>
<td>Internal Regulator Output. Place an (\mu)F capacitor between the CREG and GND pins.</td>
</tr>
<tr>
<td>8</td>
<td>GATE2</td>
<td>Gate Driver Output for External MOSFET Switch in the Second Stage.</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation. (Exposed Pad)</td>
</tr>
</tbody>
</table>

Operation

The VCC of the RT8476A is supplied from the first stage Boost output. The first stage is a constant output voltage Boost topology. The CS pin senses the peak inductor current for over-current protection. The peak inductor current level can be adjusted by the sense resistor between MOSFET Source and GND.

The second stage is a constant output current Buck topology. The current sense voltage threshold between the VCC and ISN pins is only 130mV to reduce power loss.
Absolute Maximum Ratings (Note 1)

- Supply Input Voltage, VCC to GND: −0.3V to 45V
- ACTL, CS, GATE1, GATE2, CREG, OVP to GND: −0.3V to 6V
- VCC to ISN: −1V to 3V
- Power Dissipation, PD @ TA = 25°C:
 SOP-8 (Exposed Pad): 3.44W
- Package Thermal Resistance (Note 2):
 SOP-8 (Exposed Pad), θJA: 29°C/W
 SOP-8 (Exposed Pad), θJC: 2°C/W
- Junction Temperature: 150°C
- Lead Temperature (Soldering, 10 sec.): 260°C
- Storage Temperature Range: −65°C to 150°C
- ESD Susceptibility (Note 3):
 HBM (Human Body Model): 2kV
 MM (Machine Model): 200V

Recommended Operating Conditions (Note 4)

- Supply Input Voltage, VCC: 4.5V to 40V
- Junction Temperature Range: −40°C to 125°C
- Ambient Temperature Range: −40°C to 85°C

Electrical Characteristics

(VCC = 10V, No Load, CLOAD = 1nF, TA = 25°C, unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREG UVLO_ ON</td>
<td>VUVOL_ON</td>
<td>CS/OVP = 0V</td>
<td>3.85</td>
<td>4.15</td>
<td>4.45</td>
<td>V</td>
</tr>
<tr>
<td>CREG UVLO_ OFF</td>
<td>VUVOL_OFF</td>
<td>CS/OVP = 0V</td>
<td>--</td>
<td>4.1</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td>Supply Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCC Shutdown Current</td>
<td>ISHDN</td>
<td>Before Start-Up, VCC = 3.5V</td>
<td>--</td>
<td>10</td>
<td>--</td>
<td>μA</td>
</tr>
<tr>
<td>VCC Quiescent Current</td>
<td>IQ</td>
<td>After Start-Up, VCC = 5V, GATE1 and GATE2 Stand Still</td>
<td>--</td>
<td>1.5</td>
<td>--</td>
<td>mA</td>
</tr>
<tr>
<td>Internal Reference Voltage</td>
<td>VCREG</td>
<td></td>
<td>--</td>
<td>5</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td>Internal Reference Voltage</td>
<td>ICREG</td>
<td>ICREG = 20mA</td>
<td>--</td>
<td>4.9</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td>Current Sense Comparator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS Threshold Voltage</td>
<td>VCS</td>
<td></td>
<td>215</td>
<td>240</td>
<td>265</td>
<td>mV</td>
</tr>
<tr>
<td>CS Pin Leakage Current</td>
<td>ICS</td>
<td></td>
<td>--</td>
<td>1</td>
<td>--</td>
<td>μA</td>
</tr>
<tr>
<td>ACTL Turn On Threshold</td>
<td>VACTL_ON</td>
<td></td>
<td>--</td>
<td>240</td>
<td>--</td>
<td>mV</td>
</tr>
<tr>
<td>ACTL Turn Off Threshold</td>
<td>VACTL_OFF</td>
<td></td>
<td>--</td>
<td>120</td>
<td>--</td>
<td>mV</td>
</tr>
<tr>
<td>ACTL Clamp Voltage</td>
<td></td>
<td></td>
<td>--</td>
<td>2.5</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td>ACTL Input Bias Current</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td>1</td>
<td>μA</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Note 2. θ_{JA} is measured at $T_A = 25^\circ C$ on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θ_{JC} is measured at the exposed pad of the package.

Note 3. Devices are ESD sensitive. Handling precaution is recommended.

Note 4. The device is not guaranteed to function outside its operating conditions.

Test Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVP Threshold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVP High-Level</td>
<td>V_{OVP_H}</td>
<td></td>
<td>1.71</td>
<td>1.9</td>
<td>2.09</td>
<td>V</td>
</tr>
<tr>
<td>OVP Low-Level</td>
<td>V_{OVP_L}</td>
<td></td>
<td>1.44</td>
<td>1.6</td>
<td>1.76</td>
<td>V</td>
</tr>
<tr>
<td>OVP Pin Leakage Current</td>
<td>I_{OVP}</td>
<td></td>
<td>--</td>
<td>1</td>
<td>--</td>
<td>μA</td>
</tr>
<tr>
<td>Gate Driver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GATE1 Duty Off-Time</td>
<td></td>
<td></td>
<td>--</td>
<td>1.5</td>
<td>--</td>
<td>μS</td>
</tr>
<tr>
<td>UGATE1 Drive Sink</td>
<td>$R_{UGATE1sk}$</td>
<td>$Sink = 50mA$</td>
<td>--</td>
<td>2</td>
<td>--</td>
<td>Ω</td>
</tr>
<tr>
<td>LGATE1 Drive Source</td>
<td>$R_{LGATE1sr}$</td>
<td>$Source = -50mA$</td>
<td>--</td>
<td>1.25</td>
<td>--</td>
<td>Ω</td>
</tr>
<tr>
<td>GATE1 Default Pull Down Resistor</td>
<td></td>
<td></td>
<td>--</td>
<td>90</td>
<td>--</td>
<td>kΩ</td>
</tr>
<tr>
<td>Buck Converter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISN Threshold</td>
<td>V_{ISN}</td>
<td></td>
<td>123.5</td>
<td>130</td>
<td>136.5</td>
<td>mV</td>
</tr>
<tr>
<td>ISN Hysteresis</td>
<td>ΔV_{ISN}</td>
<td></td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>%</td>
</tr>
<tr>
<td>ISN Pin Leakage Current</td>
<td>I_{ISN}</td>
<td></td>
<td>--</td>
<td>1</td>
<td>--</td>
<td>μA</td>
</tr>
<tr>
<td>UGATE2 Drive Sink</td>
<td>$R_{UGATE2sk}$</td>
<td>$Sink = 50mA$</td>
<td>--</td>
<td>2</td>
<td>--</td>
<td>Ω</td>
</tr>
<tr>
<td>LGATE2 Drive Source</td>
<td>$R_{LGATE2sr}$</td>
<td>$Source = -50mA$</td>
<td>--</td>
<td>1.25</td>
<td>--</td>
<td>Ω</td>
</tr>
<tr>
<td>GATE2 Default Pull Down Resistor</td>
<td></td>
<td></td>
<td>--</td>
<td>90</td>
<td>--</td>
<td>kΩ</td>
</tr>
<tr>
<td>Temperature Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Shutdown Threshold</td>
<td>T_{SD}</td>
<td></td>
<td>140</td>
<td>155</td>
<td>170</td>
<td>$^\circ C$</td>
</tr>
<tr>
<td>Thermal Shutdown Hysteresis</td>
<td>ΔT_{SD}</td>
<td></td>
<td>--</td>
<td>35</td>
<td>--</td>
<td>$^\circ C$</td>
</tr>
</tbody>
</table>
Typical Application Circuit

[Diagram of the circuit with components labeled as follows:
- D1, D2, D3, D4
- L1 22µH
- CIN 1µF
- R4, R5
- M1
- L2 120µH
- COUT
- RSENSE 280m
- RT8476A
- VCC
- COUT
- LED+
- LED-]

Copyright © 2015 Richtek Technology Corporation. All rights reserved. Richmond is a registered trademark of Richtek Technology Corporation.
GATE1 Rising/Falling Time vs. VCC

- **GATE1 Rising/Falling Time (ns)** vs. **VCC (V)**
 - VCC = 4.5V to 30V

Power On from VCC

- I_OUT (500mA/Div)
- I_IN (2A/Div)
- V_OUT (10V/Div)
- V_CC (20V/Div)

Power Off from VCC

- I_OUT (500mA/Div)
- I_IN (2A/Div)
- V_OUT (10V/Div)
- V_CC (20V/Div)

Power On from AC-IN

- I_OUT (500mA/Div)
- I_IN (2A/Div)
- V_OUT (10V/Div)
- V_CC (20V/Div)

Power Off from AC-IN

- I_OUT (500mA/Div)
- I_IN (2A/Div)
- V_OUT (10V/Div)
- V_CC (20V/Div)

VCC = 10V, 4LEDs

AC = 12V, 4LEDs

Copyright © 2015 Richtek Technology Corporation. All rights reserved. Richtek is a registered trademark of Richtek Technology Corporation.
Application Information

The RT8476A consists of a constant output current Buck controller and a fixed off-time controlled Boost controller. The Boost controller is based on a peak current, fixed off-time control architecture and is designed to operate up to 800kHz to use a very small inductor for space constrained applications. A high-side current sense resistor is used to set the output current of the Buck controller. A 1% sense resistor performs a ±5% LED current accuracy for the best performance.

Under-Voltage Lockout (UVLO)

The RT8476A includes an under-voltage lookout function with 100mV hysteresis. The internal MOSFET turns off when VCC falls below 4.2V (typ.).

CREG Regulator

The CREG pin requires a capacitor for stable operation and to store the charge for the large GATE switching currents. Choose a 10V rated low ESR, X7R or X5R, ceramic capacitor for best performance. A 4.7μF capacitor will be adequate for many applications. Place the capacitor close to the IC to minimize the trace length to the CREG pin and to the IC ground. An internal current limit on the CREG output protects the RT8476A from excessive on-chip power dissipation.

The CREG pin has set the output to 4.3V (typ.) to protect the external FETs from excessive power dissipation caused by not being fully enhanced. If the CREG pin is used to drive extra circuits beside RT8476A, the extra loads should be limited to less than 10mA.

Gate Driver

There are two gate drivers, GATE1 and GATE2, in the RT8476A. The Gate driver consists of a CMOS buffer designed to drive the external power MOSFET. It features unbalanced source and sink capabilities to optimize switch on and off performance without additional external components. Whenever the IC supply voltage is lower than the under-voltage threshold, the Gate Driver is pulled low.

Analog Dimming Control

The ACTL terminal is driven by an external voltage, V_{ACTL}, to adjust the output current to an average value set by R_{SENSE}. The voltage range for V_{ACTL} to adjust the output current is from 0.24V to 2.5V. If V_{ACTL} becomes larger than 2.5V, the output current value will just be determined by the external/resistor, R_{SENSE}:

\[
I_{OUT\ avg} = \frac{0.13V \times V_{ACTL} - 0.24}{2.5} \times \frac{1}{R_{SENSE}}
\]

ACTL Control

The ACTL pin is the dimming function pin with the DC level proportional to the output LED current until ACTL clamp voltage that is the max output current (100%).

Average Output Current Setting

The output current that flows through the LED string is set by an external resistor, R_{SENSE}, which is connected between the VCC and ISN terminal. The relationship between output current, I_{OUT}, and R_{SENSE} is shown as below:

\[
I_{OUT} = \frac{130mV}{R_{SENSE}}
\]

LED Current Ripple Reduction

Higher LED current ripple will shorten the LED life time and increase heat accumulation of LED. To reduce the LED current ripple, an output capacitor in parallel with the LED should be added. The typical value of output capacitor is 4.7μF.

VCC Voltage Setting

The VCC voltage setting is equipped with an Over-Voltage Protection (OVP) function. When the voltage at the OVP pin exceeds threshold approximately 1.9V, the power switch is turned off. The power switch can be turned on again once the voltage at the OVP pin drops below 1.6V. For Boost applications, the output voltage can be set by the following equation:

\[
V_{CC\ (MAX)} = 1.9 \times (1 + R4 / R5)
\]

R4 and R5 are the voltage divider resistors from VOUT to GND with the divider center node connected to the OVP pin. For MR16 LED lamp application, the minimum voltage of VCC should maintain above 25V for stable operation.
Step-Down Converter Inductor Selection
The RT8476A implemented a simple high efficiency, continuous mode inductive step-down converter. The inductance L2 in Buck converter is determined by the following factors: inductor ripple current, switching frequency, VOUT/VIN ratio, internal MOSFET, topology specifications, and component parameter. The inductance L2 is calculated according to the following equation:
\[
L2 \geq \frac{[VCC(MAX) - VOUT - VISN - (RDS2(ON) x IOUT)] x D}{[fSW x \Delta IOUT]}
\]
where
fsw is the switching frequency (Hz).
RDS2(ON) is the low-side switch on-resistance of external MOSFET (M2). The typical value is 0.35Ω.
D is the duty cycle = VOUT / VIN
IOUT is the required LED current (A)
\(\Delta IOUT\) is the inductor peak-peak ripple current (internally set to 0.3 x IOUT)
VCC is the supply input voltage (V)
VOUT is the total LED forward voltage (V)
VISN is the voltage cross current sense resistor (V)
L2 is the inductance (H)
The selected inductor must have saturation current higher than the peak output LED current and continuous current rating above the required average output LED current. In general, the inductor saturation current should be 1.5 times the LED current. In order to minimize output current ripple, higher values of inductance are recommended at higher supply voltages. Because high values of inductance have high line resistance, it will cause lower efficiency.

Step-Up Converter Inductor Selection
The RT8476A uses a constant off-time control to provide high efficiency step-up converter. The resistor, R6, between the Source of the external N-MOSFET and GND should be selected to provide adequate switch maximum current to drive the application. The current limit threshold on the CS pin of the RT8476A is 240mV (typ.). When the CS pin voltage is higher than the 240mV reference, the comparator will disable the power section. The GATE1 will pull low after fixed delay time 1.5μs (typ.) and then turn on again after OVP operation is removed. This cycle repeats, keeping the output voltage within a small window. Following the constant off-time mechanism, the inductance L1 is calculated according to the following equation:
\[
L1 > t_{OFF} \times (VCC(MAX) - VIN(MIN) + VF) / I_{LIM}
\]
where
\(t_{OFF}\) is Off-Time. The typical value is 1.5μs.
I_{LIM} is the input current. The typical value is 2A for MR16 application.
VCC is the supply input voltage (V)
VIN is the input voltage after bridge diodes (V)
VF is the forward voltage (V)
L1 is the inductance (H)
D = 1 - (VIN / VOUT)
f_{SW} = (1 - D) / t_{OFF}
where
D is the operation duty
f_{SW} is the switching frequency of Boost controller.
Check the I_{LIM} setting satisfied the output LED current request by the following equation:
\[
(IOUT + \Delta IOUT) < \frac{[2 x L1 x I_{LIM} + t_{OFF} x (VIN - VOUT - VF)] x VIN}{[2 x L1 x (VCC)]}
\]
Diode Selection
To obtain better efficiency, the Schottky diode is recommended for its low reverse leakage current, low recovery time and low forward voltage. With its low power dissipation, the Schottky diode outperforms other silicon diodes and increases overall efficiency.

Input Capacitor selection
Input capacitor has to supply peak current to the inductor and flatten the current ripple on the input. The low ESR condition is required to avoid increasing power loss. The ceramic capacitor is recommended due to its excellent high frequency characteristic and low ESR, which are suitable for the RT8476A. For maximum stability over the entire operating temperature range, capacitors with better dielectric are suggested.
Thermal Protection
A thermal protection feature is to protect the RT8476A from excessive heat damage. When the junction temperature exceeds 150°C, the thermal protection will turn off the LX terminal. When the junction temperature drops below 125°C, the RT8476A will turn on the LX terminal and return to normal operation.

Thermal Considerations
For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula:

\[P_{D\text{MAX}} = \frac{(T_{J\text{MAX}} - T_A)}{\theta_{JA}} \]

where \(T_{J\text{MAX}} \) is the maximum junction temperature, \(T_A \) is the ambient temperature, and \(\theta_{JA} \) is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is 125°C. The junction to ambient thermal resistance, \(\theta_{JA} \), is layout dependent. For SOP-8 (Exposed Pad) package, the thermal resistance, \(\theta_{JA} \), is 29°C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at \(T_A = 25°C \) can be calculated by the following formula:

\[P_{D\text{MAX}} = \frac{(125°C - 25°C)}{29°C/W} = 3.44\text{W} \]

The maximum power dissipation depends on the operating ambient temperature for fixed \(T_{J\text{MAX}} \) and thermal resistance, \(\theta_{JA} \). The derating curve in Figure 1 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Layout Consideration
PCB layout is very important to design power switching converter circuits. Some recommended layout guidelines are suggested as follows:

- The power components L1, D6, M1, C\text{IN}, and C\text{OUT} must be placed as close to each other as possible to reduce the ac current loop area. The power components L2, D7, and M2 must be placed as close to each other as possible to reduce the ac current loop area. The PCB trace between power components must be as short and wide as possible due to large current flow through these traces during operation.
- The capacitor C\text{OUT}, C6 and external resistor, R\text{SENSE}, must be placed as close as possible to the VCC and ISN pins of the device respectively.
- The GND should be connected to a strong ground plane.
- Keep the main current traces as short and wide as possible.
Figure 2. PCB Layout Guide
Outline Dimension

![Diagram of 8-Lead SOP (Exposed Pad) Plastic Package]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions in Millimeters</th>
<th>Dimensions in Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>A</td>
<td>4.801</td>
<td>5.004</td>
</tr>
<tr>
<td>B</td>
<td>3.810</td>
<td>4.000</td>
</tr>
<tr>
<td>C</td>
<td>1.346</td>
<td>1.753</td>
</tr>
<tr>
<td>D</td>
<td>0.330</td>
<td>0.510</td>
</tr>
<tr>
<td>F</td>
<td>1.194</td>
<td>1.346</td>
</tr>
<tr>
<td>H</td>
<td>0.170</td>
<td>0.254</td>
</tr>
<tr>
<td>I</td>
<td>0.000</td>
<td>0.152</td>
</tr>
<tr>
<td>J</td>
<td>5.791</td>
<td>6.200</td>
</tr>
<tr>
<td>M</td>
<td>0.406</td>
<td>1.270</td>
</tr>
<tr>
<td>Option 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>2.000</td>
<td>2.300</td>
</tr>
<tr>
<td>Y</td>
<td>2.000</td>
<td>2.300</td>
</tr>
<tr>
<td>Option 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>2.100</td>
<td>2.500</td>
</tr>
<tr>
<td>Y</td>
<td>3.000</td>
<td>3.500</td>
</tr>
</tbody>
</table>

8-Lead SOP (Exposed Pad) Plastic Package

Richtek Technology Corporation
14F, No. 8, Tai Yuen 1st Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.