RT8510

43V 4-CH LED Driver

General Description

The RT8510 is a high efficiency driver for white LEDs. It is designed for LCD panels that employ an array of LEDs as the lighting source. An integrated switch current mode boost controller drives four strings in parallel and supports up to 12 pieces of LED per string. The internal current sinks support a maximum of $\pm 2 \%$ current mismatching for excellent brightness uniformity in each string of LED. To provide enough headroom for current sink operation the boost controller monitors the minimum voltage of feedback pins and regulates an optimized output voltage for power efficiency.

The RT8510 has a wide input voltage range from 4.2 V to 24 V and provide an adjustable 10mA to 40mA LED current. The internal $200 \mathrm{~m} \Omega, 43 \mathrm{~V}$ power switch with current-mode control provides cycle-by-cycle over current protection. The RT8510 also integrates PWM dimming function for accurate LED current control. The input PWM dimming frequency can operate from 120 Hz to 30 kHz without inducing any inrush current through the LED or inductor. The switching frequency of the RT8510 is adjustable from 500 kHz to 2 MHz , allowing the user flexibility between efficiency and component size.

The RT8510 is available in a WQFN-16L 3x3 package.

Ordering Information

RT8510ロロ
-Package Type
QW : WQFN-16L 3x3 (W-Type)
Lead Plating System
G : Green (Halogen Free and Pb Free)
Z : ECO (Ecological Element with Halogen Free and Pb free)
Note :
Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Features

- Wide Input Voltage : 4.2V to 24 V
- High Output Voltage : Up to 43V
- Adjustable Channel Current : 10mA to 40 mA
- Channel Current Accuracy : $\pm 3 \%$
- Channel Current Matching : $\pm 2 \%$
- PWM Dimming Frequency : 120Hz to 30kHz
- Adjustable Switching Frequency : 500kHz to 2MHz
- Built-In Soft-Start
- Disconnects LED in Shutdown
- Open Current Sink Detection
- Adjustable Over Voltage Protection
- Over Temperature Protection
- Current Limit Protection
- Thin 16-Lead WQFN Package
- RoHS Compliant and Halogen Free

Applications

- UMPC and Notebook Computer Backlight
- GPS, Portable DVD Backlight

Pin Configuration

(TOP VIEW)

WQFN-16L 3×3

Marking Information

$H U=Y M$
$D N N$
:---
YMDNN : Date Code

Typical Application Circuit

Figure 1. General Application Circuit

Figure 2. Low Input Voltage Application Circuit

Functional Pin Description

Pin No.	Pin Name	Pin Function
1	AGND	Analog ground of LED driver.
2	COMP	Compensation pin for error amplifier. Connect a compensation network to ground.
3	ISET	LED current set pin. LED current is set by the value of the resistor RISET connected from the ISET pin to ground. Do not short the ISET pin. VISET is typically 0.6 V. ILED $\quad \frac{95}{R_{\text {ISET }}}$
4	RT	Frequency adjust pin. This pin allows setting the switching frequency with a resistor to 500kHz to 2MHz.
5	PWM	Dimming control input.
7	EN	Chip enable (Active High). Note that this pin is high impedance. There should be a pull low 100k resistor connected to GND when the control signal is floating.
8,9	LX	Power supply input.
10,11	PGND	Switching pin of boost converter.
12	OVP	Sener ground of boost converter.
$13,14,15,16$	CH1 to CH 4	Current sink for LED. Leave the pin unconnected, if not used.
17 (Exposed Pad)	GND	The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.

Functional Block Diagram

Copyright ©2021 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.
Absolute Maximum Ratings (Note 1)

- Supply Input Voltage to GND -0.3 V to 26.5 V
- EN, PWM, ISET, COMP, RT to GND -0.3 V to 26.5 V
- LX, OVP, CH1, CH2, CH3, CH4 to GND -0.3 V to 48 V
- Power Dissipation, $\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ WQFN-16L 3x3 1.471W
- Package Thermal Resistance (Note 2)
WQFN-16L $3 \times 3, \theta_{\mathrm{JA}}$ $68^{\circ} \mathrm{C} / \mathrm{W}$
WQFN-16L $3 \times 3, \theta_{\text {лс }}$ $7.5^{\circ} \mathrm{C} / \mathrm{W}$
- Lead Temperature (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
- Junction Temperature $150^{\circ} \mathrm{C}$
- Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$- ESD Susceptibility (Note 3)HBM2kV
MM 200V
Recommended Operating Conditions (Note 4)
- Supply Input Voltage, V_{IN} 4.2 V to 24 V
- Junction Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Ambient Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Electrical Characteristics

($\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter		Symbol	Test Conditions	Min	Typ	Max	Unit	
VIN Quiescent Current		lQ	VCOMP $=0 \mathrm{~V}$, no switching	0.7	1	1.5	mA	
		$\mathrm{V}_{\text {COMP }}=2 \mathrm{~V}$, switching	1.6	2	3			
VIN Shutdown Current			ISHDN	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{EN}=0 \mathrm{~V}$	0.01	--	10	$\mu \mathrm{A}$
VIN Under Voltage Lockout		UVLO	Rising	2.07	2.3	2.53	V	
		Falling	1.98	2.2	2.42			
Control Input								
EN Threshold Voltage	Logic-High		V_{IH}	$\mathrm{V}_{\mathrm{IN}}=4.2 \mathrm{~V}$ to 24 V	2	--	--	V
	Logic-Low	VIL	--		--	0.8		
PWM Threshold Voltage	Logic-High	V_{IH}	$\mathrm{V}_{\mathrm{IN}}=4.2 \mathrm{~V}$ to 24 V	1.5				
	Logic-Low	$V_{\text {IL }}$				0.6		
PWM Dimming Frequency		fPWM		120	--	30k	Hz	
EN, PWM Leakage Current		ILKG		2	--	6	$\mu \mathrm{A}$	
EN Shutdown Delay		ten	$\mathrm{R}_{\mathrm{RT}}=51 \mathrm{k} \Omega$	28	32	36	ms	
Boost Converter								
Switching Frequency		fosc	$\mathrm{R}_{\mathrm{RT}}=25 \mathrm{k} \Omega$	1.65	1.94	2.23	MHz	
		$\mathrm{R}_{\mathrm{RT}}=51 \mathrm{k} \Omega$	0.94	1.1	1.27			
		$\mathrm{R}_{\mathrm{RT}}=102 \mathrm{k} \Omega$	0.48	0.57	0.66			

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
LX On Resistance (N-MOSFET)	RdS(ON)_N	VIN $>4.5 \mathrm{~V}$	0.18	0.25	0.33	Ω
Minimum ON Time	tMON		59	90	121	ns
Maximum Duty	DMAX	$\mathrm{V}_{\text {COMP }}=2 \mathrm{~V}$, switching	85	90	95	\%
LX Current Limit	ILIM		1.5	2	2.7	A
LED Current Programming						
LED Current Matching	ILEDM	$\begin{aligned} & \hline 2 \mathrm{~V}>\mathrm{CHx}>0.4 \mathrm{~V} \text { calculating } \\ & \left.\mathrm{I}_{(\mathrm{MAX})}-\mathrm{I}_{(\mathrm{AVG})}\right) / \mathrm{I}_{(\mathrm{AVG})} \times 100 \%, \\ & \mathrm{R}_{\mathrm{ISET}}=4.75 \mathrm{k} \Omega \\ & \hline \end{aligned}$	-2	--	2	\%
LED Current Accuracy	ILEDA	$\begin{array}{\|l} \hline 2 \mathrm{~V}>\mathrm{CHx}>0.4 \mathrm{~V} \text { calculating } \\ (\mathrm{ICH}-\mathrm{ISET}) / \mathrm{I} \text { SET } \times 100 \%, \\ \mathrm{R}_{\mathrm{ISET}}=4.75 \mathrm{k} \Omega \\ \hline \end{array}$	-3		3	\%
ISET Pin Voltage	VISET		0.56	0.6	0.64	V
LED Current	ICHx	$2 \mathrm{~V}>\mathrm{CHx}>0.4 \mathrm{~V}, \mathrm{R}_{\text {ISET }}=4.75 \mathrm{k} \Omega$	19.4	20	20.6	mA
Fault Protection						
OVP Threshold	Vovp		1.16	1.2	1.24	V
OVP Fail Threshold	VovpF		33	55	77	mV
Thermal Shutdown Temperature	TSD		145	160	175	${ }^{\circ} \mathrm{C}$
LED Pin Under Voltage Threshold	VLSD	No connection	18	60	100	mV
Regulated $\mathrm{V}_{\mathrm{CHx}}$	VCHx	Highest LED string voltage, $\mathrm{R}_{\mathrm{ISET}}=4.75 \mathrm{k} \Omega$	0.3	0.4	0.5	V

Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
Note 2. θ_{JA} is measured under natural convection (still air) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ with the component mounted on a high effective-thermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θ_{Jc} is measured at the exposed pad of the package.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.
Note 5. Guaranteed by design; not subject to production testing.

Typical Operating Characteristics

OVP Threshold vs. Input Voltage

Line Transient Response

Switch Off Current vs. Temperature

Line Transient Response

Application Information

The RT8510 is a general purpose 4-CH LED driver capable of delivering an adjustable 10 to 40 mA LED current. The IC is a current mode boost converter integrated with a $43 \mathrm{~V} / 2 \mathrm{~A}$ power switch and can cover a wide $\mathrm{V}_{\text {IN }}$ range from 4.2 V to 24 V . The switching frequency is adjustable by an external resistor from 500 kHz to 2 MHz . The part integrates built-in soft start, with PWM dimming control; moreover, it provides over voltage, over temperature and current limiting protection features.

Soft-Start

The RT8510 equips a built-in soft-start feature to prevent high inrush current during start-up. The soft-start function prevents excessive input current and input voltage droop during power on state.

Compensation

The control loop can be compensates by adjusting the external components connected to the COMP pin. The COMP pin is the output of the internal error amplifier. The compensation capacitors, C3 and C4, will adjust the integrator zero and pole respectively to maintain stability. Moreover, the resistor, R3, will adjust the frequency integrator gain for fast transient response.

Switching Frequency

The LED driver switching frequency is able to adjusted as the following equation :
$\mathrm{f}_{\mathrm{OSC}} \cong \frac{51 \mathrm{k}}{\mathrm{R}_{\mathrm{RT}}}(\mathrm{MHz})$

LED Connection

The RT8510 equips 4-CH LED divers with each channel supporting up to 12 LEDs. The LED strings are connected from the output of the boost converter to pins 13, 14, 15 and 16 respectively. If one of the LED channel is not used, the LED pin should be opened directly.

Light Load Mode

When the input voltage is close to the output voltage, $V_{\text {Out }}$ ripple will increase. The $\mathrm{V}_{\text {out }}$ should be set at higher than $1.2 \times \mathrm{V}_{\mathrm{IN}}$. If duty pulse is close to minimum on-time and smaller than 120 ns , the duty pulse will be skipped. Figure 3 shows the timing diagram with skipped pulse.

Figure 3. Pulse Skip Mode

Setting and Regulation of LED Current

The LED current can be calculated by the following equation :
$\mathrm{I}_{\mathrm{LED}} \cong \frac{95}{\mathrm{R}_{\text {ISET }}}$
where $\mathrm{R}_{\text {ISET }}$ is the resistor between the ISET pin and GND. This setting is the reference for the LED current at channel 1-4 and represents the sensed LED current for each string. The DC/DC converter regulates the LED current according to $\mathrm{R}_{\text {ISET }}$.

Power Sequence

LED Driver is without power sequence concern. Figure 4, Figure 5 and Figure 6 are different power sequences respectively. There is no concern in the above condition.

Figure 4

Power Off Mode 1-2
Figure 5

Power On Mode 2

Power On Mode 2
Figure 6

Over Voltage Protection

The RT8510 integrates over voltage protection (OVP) function. When the voltage at the OVP pin reaches the threshold voltage, the internal switch will be turned off. The internal switch will be turned on again once the voltage at OVP pin drops below its threshold voltage.

The OVP threshold voltage is adjustable and can be clamped at a certain voltage level and it can be calculated by the following equation :
$\mathrm{V}_{\mathrm{OUT}(\mathrm{OVP})}=\mathrm{V}_{\mathrm{OVP}} \times\left(1+\frac{\mathrm{R}_{\mathrm{OVP} 2}}{\mathrm{R}_{\mathrm{OVP} 1}}\right)$
where $\mathrm{V}_{\mathrm{OVP}}=1.2 \mathrm{~V}$ (typ.).
RovP1 and RovP2 are the resistors in the voltage divider connected to the OVP pin. If at least one string is in normal operation, the controller will automatically ignore the open strings and continue to regulate the current for the strings in normal operation. It is suggested to use $2 \mathrm{M} \Omega$ for Rovp2 to reduce loading effect.

Current Limit Protection

The RT8510 can limit the peak current to achieve over current protection. The RT8510 senses the inductor current during the "ON" period that flows through the LX pin. The duty cycle depends on the current signal and internal slope compensation in comparison with the error signal. The internal switch will be turned off when the current signal is larger than the internal slope compensation. In the "OFF" period, the inductor current will be decreased until the internal switch is turned on by the oscillator.

Brightness Control

The RT8510 brightness dimming control is determined by the signal on the PWM pin with a suggested PWM frequency range from 120 Hz to 30 kHz . However, the LED current cannot be 100% proportional to duty cycle especially for high frequency and low duty ratio because of physical limitation caused by inductor rising time. Please refer to Table 1 and Figure 7.

Table 1.

Dimming Frequency (Hz)	Duty (Min.)	Duty (Max.)
$120<\mathrm{f}_{\mathrm{PWM}} \leq 500$	0.2%	100%
$500<\mathrm{f}_{\mathrm{PWM}} \leq 1 \mathrm{k}$	0.4%	100%
$1 \mathrm{k}<\mathrm{f}_{\mathrm{PWM}} \leq 2 \mathrm{k}$	0.8%	100%
$2 \mathrm{k}<\mathrm{f}_{\mathrm{PWM}} \leq 5 \mathrm{k}$	1.5%	100%
$5 \mathrm{k}<\mathrm{f}_{\mathrm{PWM}} \leq 10 \mathrm{k}$	3%	100%
$10 \mathrm{k}<\mathrm{fPWM} \leq 30 \mathrm{k}$	10%	100%

Note : The minimum duty in Table 1 is based on the application circuit and does not consider the deviation of current linearity.

LED Current vs. PWM Duty Cycle

Figure 7

Over Temperature Protection

The RT8510 has over temperature protection function to prevent the IC from overheating due to excessive power dissipation. The OTP function will shutdown the IC when junction temperature exceeds $160^{\circ} \mathrm{C}$.

Inductor Selection

The value of the inductance L can be approximated by the following equation, where the transition is from discontinuous conduction mode (DCM) to continuous conduction mode (CCM) :
$\mathrm{L}=\frac{\mathrm{D} \times(1-\mathrm{D})^{2} \times \mathrm{V}_{\mathrm{OUT}}}{2 \times \mathrm{f}_{\mathrm{OSC}} \times \mathrm{l}_{\mathrm{OUT}}}$
The duty cycle can be calculated according to the following equation :
$\mathrm{D}=\frac{\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}}{\mathrm{V}_{\text {OUT }}}$
where $\mathrm{V}_{\text {Out }}$ is the maximum output voltage, $\mathrm{V}_{\text {IN }}$ is the minimum input voltage, fosc is the operating frequency and lout is the total current from all LED strings.

The boost converter operates in DCM over the entire input voltage range when the inductor value is below this value L. When inductance greater is than L , the converter operates in CCM at the minimum input voltage and may be discontinuous at higher voltages.

The inductor must be selected with a saturated current rating that is greater than the peak current provided by the following equation :
$\mathrm{I}_{\text {PEAK }}=\frac{\mathrm{V}_{\text {OUT }} \times \mathrm{I}_{\text {OUT }}}{\eta \times \mathrm{V}_{\text {IN }}}+\frac{\mathrm{V}_{\text {IN }} \times \mathrm{D} \times \mathrm{T}}{2 \times \mathrm{L}}$
where η is the efficiency of the power converter and T is the operating period.

Diode Selection

Schottky diodes are recommended for most applications because of their fast recovery time and low forward voltage. The power dissipation, reverse voltage rating and pulsating peak current are the important parameters for Schottky diode selection. Make sure that the diode's peak current rating exceeds $I_{\text {PEAK }}$ and reverse voltage rating exceeds the maximum output voltage.

Output Capacitor Selection

The input capacitor reduces current spikes from the input supply and minimizes noise injection to the converter. For most applications, a $10 \mu \mathrm{~F}$ ceramic capacitor is sufficient. A value higher or lower may be used depending on the noise level from the input supply and the input current to the converter.

For lower output voltage ripple, a low ESR ceramic capacitor is recommended. The output voltage ripple consists of two components: one is the pulsating output ripple current flowing through the ESR, and the other is

$$
\begin{aligned}
\mathrm{V}_{\text {RIPPLE }} & =\mathrm{V}_{\text {RIPPLE_ESR }}+\mathrm{V}_{\text {RIPPLE_C }} \\
& \cong \mathrm{I}_{\text {PEAK }} \times \mathrm{R}_{\mathrm{ESR}}+\frac{\mathrm{I}_{\text {PEAK }}}{\mathrm{C}_{\mathrm{OUT} 1}}\left(\frac{\mathrm{~V}_{\text {AVDD }}-\mathrm{V}_{\mathrm{IN} 1}}{\mathrm{~V}_{\text {AVDD }} \times \mathrm{f} \times \eta}\right)
\end{aligned}
$$

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}$, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula :
$P_{D(\text { MAX })}=\left(T_{J(M A X)}-T_{A}\right) / \theta_{J A}$
where $T_{J(M A X)}$ is the maximum junction temperature, T_{A} is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is $125^{\circ} \mathrm{C}$. The junction-to-ambient thermal resistance, θ_{JA}, is highly package dependent. For a WQFN-16L 3×3, the thermal resistance, θ_{JA}, is $68^{\circ \circ} \mathrm{C} / \mathrm{W}$ on a standard JEDEC 51-7 high effective-thermalconductivity four-layer test board. The maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ can be calculated as below :
$P_{D(\text { max })}=\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) /\left(68^{\circ} \mathrm{C} / \mathrm{W}\right)=1.471 \mathrm{~W}$ for a WQFN-16L 3×3 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $\mathrm{T}_{J(\text { MAX })}$ and the thermal resistance, θ_{JA}. The derating curves in Figure 1 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Figure 8. Derating Curve of Maximum Power Dissipation

Layout Considerations

PCB layout is very important for designing switching power converter circuits. The following layout guides should be strictly followed for best performance of the RT8510.

- The power components, L1, D1, $\mathrm{C}_{\mathrm{IN}}, \mathrm{C}_{\text {out }}$ must be placed as close as possible to reduce current loop. The PCB trace between power components must be as short and wide as possible.
- Place L1 and D1as close as possible to LX pin. The trace should be as short and wide as possible.
- The compensation circuit should be kept away from the power loops and should be shielded with a ground trace to prevent any noise coupling. Place the compensation components as close as possible to COMP pin.
- The exposed pad of the chip should be connected to ground plane for thermal consideration.

The compensation circuit should be kept away from the power loops and should be shielded with a ground trace to prevent any noise coupling.

Place the power components as close as possible. The traces should be wide and short especially for the highcurrent loop

c

Outline Dimension

Note : The configuration of the Pin \#1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions In Millimeters		Dimensions In Inches					
	Min	Max	Min	Max				
A	0.700	0.800	0.028	0.031				
A1	0.000	0.050	0.000	0.002				
A3	0.175	0.250	0.007	0.010				
b	0.180	0.300	0.007	0.012				
D	2.950	3.050	0.116	0.120				
D2	1.300	1.750	0.051	0.069				
E	2.950	3.050	0.116	0.120				
E2	1.300	1.750	0.051	0.069				
e	0.500							0.020
L	0.350	0.450	0.014	0.018				

W-Type 16L QRN 3x3 Package

Richtek Technology Corporation

14F, No. 8, Tai Yuen $1^{\text {st }}$ Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789
RICHTEK
Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

