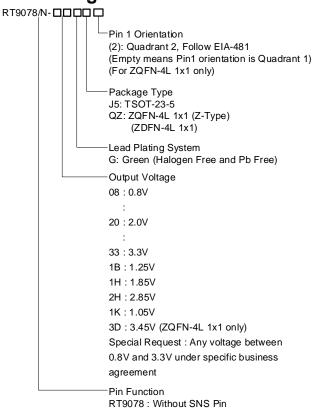


RT9078

2μA I_Q, 300mA Low-Dropout Linear Regulator


1 General Description

The RT9078 is a low-dropout (LDO) voltage regulator with an enable function that operates from a 1.2V to 5.5V supply. It provides up to 300mA of output current in miniaturized packaging.

The device features a 2µA low quiescent current and 0.5µA shutdown current, making it ideal for batterypowered applications requiring extended service life. Additional features include a current limit function, over-temperature protection, and output discharge function.

The recommended junction temperature range is -40°C to 125°C.

2 Ordering Information

Note:

DS9078-20

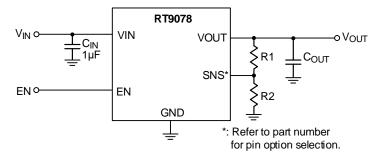
**Available for output target adjustment (For example: The RT9078N-08GJ5 with 0.8V reference level for output target adjustment)

RT9078N: With SNS Pin**

Richtek products are Richtek Green Policy compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.

3 Features

- Input Voltage Range: 1.2V to 5.5V
- 2μA Ground Current (IQ) at no Load
- PSRR = 75dB at 1kHz
- Adjustable Output Voltage Range:
 - ▶ 0.8V to 5V (TSOT-23-5 Package with SNS Pin Only)
- ±2% Output Accuracy
- Low (0.1µA) Shutdown Current
- Dropout Voltage: 0.15V at 300mA when Vvout≥ **3V**
- Support Fixed Output Voltage: 0.8V, 1.0V, 1.05V, 1.1V, 1.2V, 1.25V, 1.3V, 1.5V, 1.8V, 1.85V, 2V, 2.5V, 2.8V, 2.85V, 3V, 3.1V, 3.3V, 3.45V
- Current Limit Protection
- **Over Temperature Protection**
- **Output Active Discharge Function**
- Available in TSOT-23-5 and ZQFN-4L 1x1 (ZDFN-4L 1x1) Packages


4 Applications

- Portable, Battery Powered Equipment
- Ultra Low Power Microcontrollers
- Notebook Computers

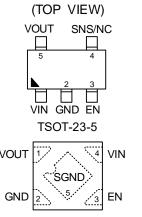
5 Marking Information

marking information, contact our representative directly or through a Richtek distributor located in your area.

6 Simplified Application Circuit

RICHTEK is a registered trademark of Richtek Technology Corporation.

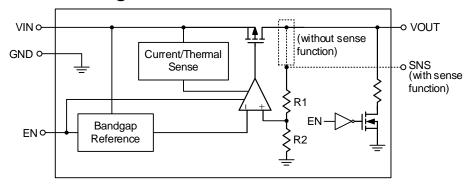
April 2024


Table of Contents

1	Genei	ral Description	1
2	Order	ing Information	1
3	Featu	res	1
4	Applic	cations	1
5	Marki	ng Information	1
6	Simpl	ified Application Circuit	1
7	Pin C	onfiguration	3
8	Funct	ional Pin Description	3
9	Funct	ional Block Diagram	4
10		ute Maximum Ratings	
11		Ratings	
12	Recor	nmended Operating Conditions.	5
13		nal Information	
14		ical Characteristics	
15		al Application Circuit	
16		al Operating Characteristics	
17	Opera	ition	
	17.1	Basic Operation	13
	17.2	Pass Transistor	
	17.3	Error Amplifier	13
	17.4	Chip Enable and Shutdown	
	17.5	Current-Limit Protection	
	17.6	Over-Temperature Protection	13
	17.7	Output Active Discharge	13

18	Applic	cation Information	14
	18.1	Dropout Voltage	14
	18.2	Adjustable Output Voltage Setting	14
	18.3	Thermal Considerations	14
	18.4	Layout Considerations	15
19	Outlin	e Dimension	17
	19.1	TSOT-23-5	17
	19.2	ZQFN-4L 1x1 Package	18
20	Footp	rint Information	19
	20.1	TSOT-23-5 Package	19
	20.2	ZQFN-4L 1x1 Package	20
21	Packi	ng Information	21
	21.1	Tape and Reel Data - TSOT-23-5	21
	21.2	Tape and Reel Packing	22
	21.3	Tape and Reel Data- ZQFN-4L 1x1	23
	21.4	Tape and Reel Packing	24
	21.5	Packing Material	
		Anti-ESD Property	25
22	Datas	heet Revision History	

7 Pin Configuration


ZQFN-4L 1x1 (ZDFN-4L 1x1)

8 Functional Pin Description

Pin No.		Dia Nama	Dia Famatian				
TSOT-23-5	ZQFN-4L 1x1 (ZDFN-4L 1x1)	Pin Name	Pin Function				
1	4	VIN	Supply input. A general $1\mu F$ ceramic capacitor should be placed as close as possible to this pin to improve noise suppression.				
2	2	GND	Ground. The exposed pad must be soldered to a large PCB area and connected to GND to optimize power dissipation.				
3	3	EN	Enable control input. Connecting this pin to a logic high signal enables the regulator. Pulling this pin below 0.4V turns the regulator off, significantly reducing the quiescent current to a fraction of its operating value.				
		SNS	Output voltage sense pin for the RT9078N only. This pin sets the desired output voltage using an external resistive divider. The typical voltage at the SNS pin is 0.8V.				
4		NC	No internal connection. These pins can be left unconnected without affecting device functionality. Alternatively, connecting these pins to GND can help increase the GND copper coverage on the PCB top layer, which may improve heat dissipation through conduction.				
5	1	VOUT	LDO output pins. A $1\mu F$ or larger ceramic capacitor (0.7 μF or greater effective capacitance) is required for stability. Place the output capacitor as close to the device as possible and minimize the impedance between the VOUT pin and the load.				
	5 (Exposed Pad)	SGND	Substrate of chip. Connect to the GND plane to enhance thermal dissipation.				

9 Functional Block Diagram

10 Absolute Maximum Ratings

(Note 1)

- • Lead Temperature (Soldering, 10 sec.) ------ 260°C • Junction Temperature------ 150°C

Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

11 ESD Ratings

(Note 2)

 ESD Susceptibility HBM (Human Body Model)----- 2kV

Note 2. Devices are ESD sensitive. Handling precautions are recommended.

12 Recommended Operating Conditions

(Note 3)

- Input Voltage, VIN ------ 1.2V to 5.5V

Note 3. The device is not guaranteed to function outside its operating conditions.

13 Thermal Information

(Note 4 and Note 5)

	Thermal Parameter	TSOT-23-5	ZQFN-4L 1x1 (ZDFN-4L 1x1)	Unit
θJΑ	Junction-to-ambient thermal resistance (JEDEC standard)	189.4	291.4	°C/W
θJC(Top)	Junction-to-case (top) thermal resistance	75.9	163	°C/W
θJC(Bottom)	Junction-to-case (bottom) thermal resistance	55.8	90.7	°C/W
θJA(EVB)	Junction-to-ambient thermal resistance (specific EVB)	100.7	236	°C/W
ΨJC(Top)	Junction-to-top characterization parameter	21.6	52.3	°C/W
ΨЈВ	Junction-to-board characterization parameter	67.2	189.1	°C/W

- Note 4. For more information about thermal parameter, see the Application and Definition of Thermal Resistances report, AN061.
- Note 5. θJA (EVB), ΨJC(Top), and ΨJB are measured on a high effective-thermal-conductivity four-layer test board which is in size of 70mm x 50mm; furthermore, all layers with 1 oz. Cu. Thermal resistance/parameter values may vary depending on the PCB material, layout, and test environmental conditions.

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

14 Electrical Characteristics

(VVOUT + 1 < VVIN < 5.5V, TA = 25°C, unless otherwise specified.)

Parameter	Symbol	Test Conditions			Тур	Max	Unit
Output Voltage	VVOUT				-	3.45	V
Output Voltage Accuracy	VVOUT_ACC	ILOAD = 1mA		-2		2	%
Reference Voltage (for RT9078N-08GJ5 only)	VREF	ILOAD = 1mA		0.784	0.8	0.816	V
		$0.8V \leq VVOUT < 1.0$	05V, ILOAD = 300mA		0.7	0.97	
		1.05V ≤ VVOUT < 1	.2V, ILOAD = 300mA		0.5	0.92	
		1.2V ≤ VVOUT < 1.5	5V, ILOAD = 300mA		0.4	0.57	
		1.5V ≤ VVOUT < 1.8	BV, ILOAD = 300mA		0.3	0.47	
Dropout Voltage (Note 6)	VDROP	1.8V ≤ VVOUT < 2.1	IV, ILOAD = 300mA		0.24	0.33	V
		2.1V ≤ VVOUT < 2.5	5V, ILOAD = 300mA		0.21	0.3	
		2.5V ≤ VVOUT < 2.8	BV, ILOAD = 300mA		0.18	0.25	
		$2.8V \le VVOUT < 3V$, ILOAD = 300mA		0.16	0.23	
		3V ≤ VVOUT, ILOAD	= 300mA		0.15	0.2	
Dropout Voltage (Note 7)	VDROP	1.8V ≤ VVOUT < 2.1	V, ILOAD = 200mA		0.16	0.2	V
Quiescent Current	IQ	· ·	ILOAD = 0mA, VVOUT ≤ 5.5V VVIN ≥ VVOUT + VDROP			4	μА
Shutdown Current	louph	VEN = 0V			0.1	0.5	μА
(<u>Note 8</u>)	ISHDN	VEN = 0V, VVOUT =	= 0V		0.1	0.5	μΑ
EN Input Current	IEN	VEN = 5.5V				0.1	μΑ
	VLINE_REG		$1.2V \le VVIN < 1.5V$		0.3	0.6	
Line Regulation		ILOAD = 1mA	1.5V ≤ VVIN < 1.8V		0.15	0.3	%
				0.13	0.35		
Load Regulation	VLOAD_REG	1mA < ILOAD < 300	lmA		0.5	1	%
Power Supply Rejection Ratio	PSRR	VVIN = 3V, ILOAD = COUT = 1μF, VVOU			75		dB
		COUT = 1μ F,	VVOUT = 0.8V		38		
		ILOAD = 150mA,	VVOUT = 1.2V		46		
Output Voltage Noise	Vn	BW = 10Hz to 100kHz,	VVOUT = 1.8V		48		μVRMS
		VIN = VVOUT + 1V	VVOUT = 3.3V		51		
Current Limit	ILIM	VVOUT = 90% of V		350	600		mA
EN Input Voltage Rising threshold	VEN_R	VVIN = 5V	· (· · - · · ·)	0.5	0.7	0.9	
EN Input Voltage Falling threshold	VEN_F	VVIN = 5V		0.4	0.65	0.85	V
Over-Temperature Protection Threshold	ТОТР	ILOAD = 30mA, VVI		150		°C	
Over-Temperature Protection Hysteresis	TOTP_HYS				20		°C
Discharge Resistor	RDISCHG	EN = 0V, VVOUT =	0.1V		80		Ω

- Note 6. The dropout voltage is defined as VVIN VVOUT, when VVOUT is 98% of the normal value of VVOUT.
- Note 7. For the application under the following condition: 1.8V ≤ VVOUT < 2.1V, ILOAD = 200mA, TA = 85°C, the maximum dropout voltage is guaranteed by design to not exceed 0.28V.

Note 8. The specification is tested at wafer stage and guaranteed by design after assembly.

15 Typical Application Circuit

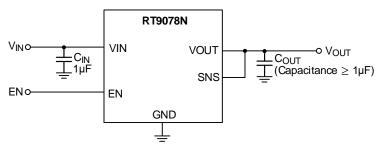


Figure 1. Application with Sense Function

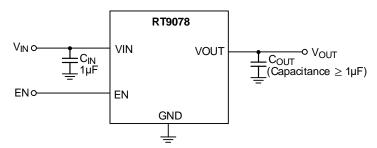
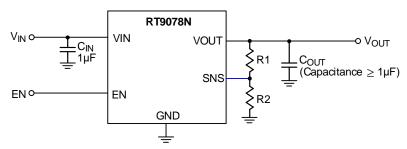
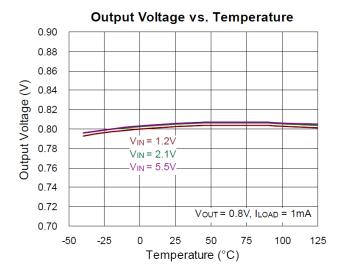
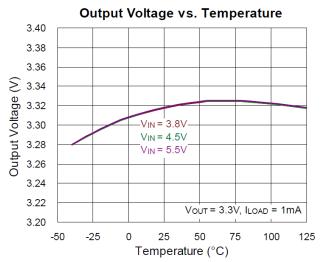


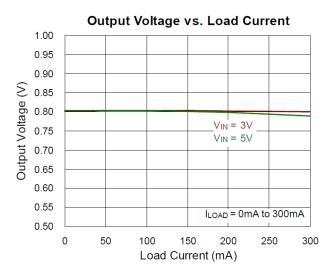
Figure 2. Application without Sense Function

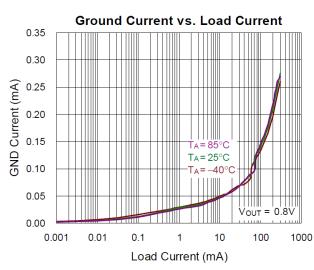


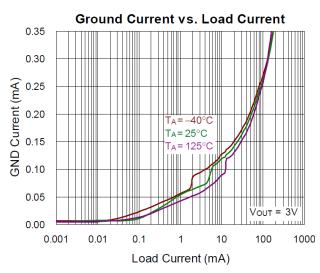

Figure 3. Adjustable Output Voltage Application Circuit

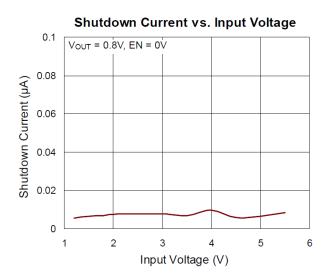

Component	Description	Vendor P/N
CIN	1μF, 10V, X5R, 0402	GRM155R61A105KE15 (Murata)
	1μF, 6.3V, X5R, 0402	GRM153R60J105ME95(Murata) CGB2A3X5R0J105M033BB(TDK)
COUT ⁽¹⁾	2.2μF, 6.3V, X5R, 0402	GRM153R60J225ME95 (Murata) C1005X5R0J225M050BC (TDK)
	4.7μF, 6.3V, X5R, 0402	GRM153R60J475ME15 (Murata) C1005X5R0J475K050BE(TDK)

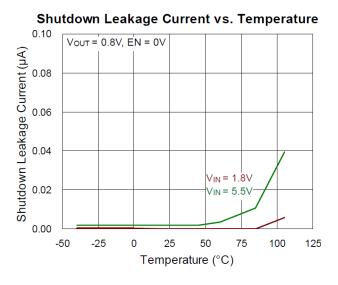
Note 9. Marked with $^{(1)}$: Considering the effective capacitance derated with biased voltage level, the C_{OUT} component needs satisfy the effective capacitance at least $0.7\,\mu\text{F}$ or above at targeted output level for stable and normal operation.

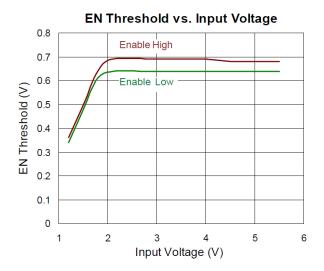


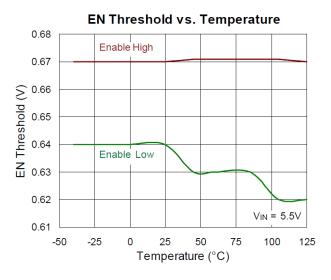

16 Typical Operating Characteristics

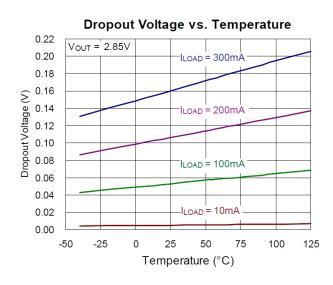


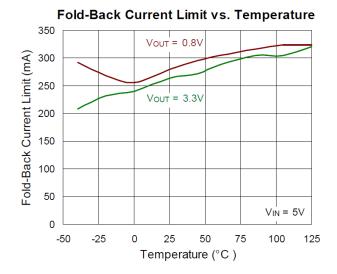


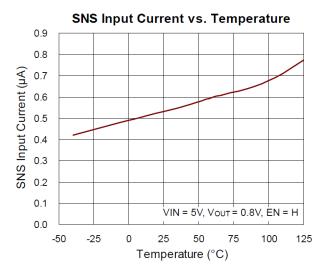


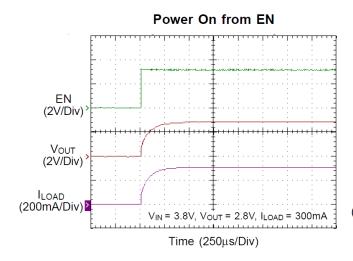

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

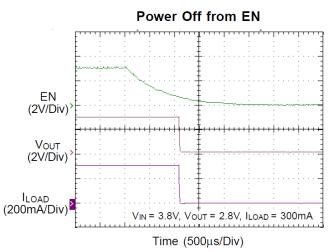

DS9078-20 April 2024 www.richtek.com

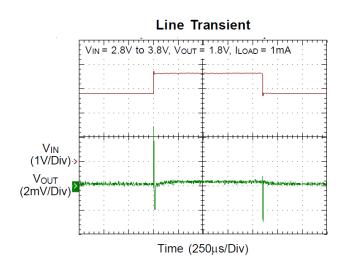


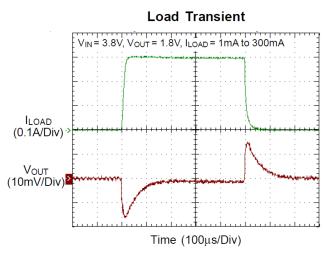


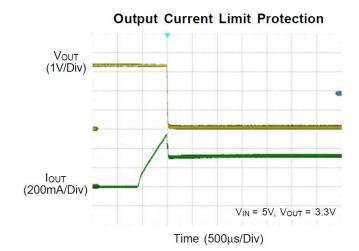


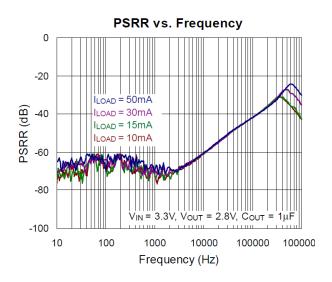


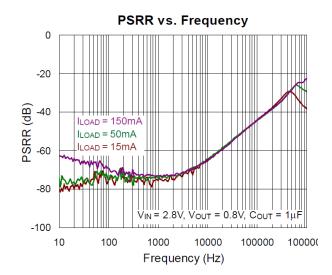


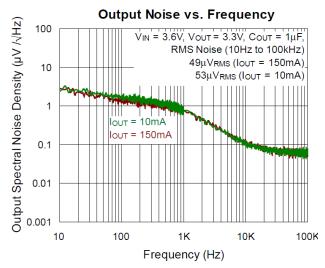







Copyright © 2024 Richtek Technology Corporation. All rights reserved.


is a registered trademark of Richtek Technology Corporation.


RICHTEK DS9078-20 April 2024 www.richtek.com

17 Operation

17.1 Basic Operation

The RT9078 is a low quiescent current linear regulator optimized for systems that require minimal external components. It supports an input voltage range from 1.2V to 5.5V.

To maintain stable operation, a minimum output capacitance of 1 µF is required, considering the temperature variations and voltage coefficient of the capacitor.

17.2 Pass Transistor

The RT9078 incorporates a P-MOSFET pass transistor, which provides low on-resistance for low dropout voltage applications.

17.3 Error Amplifier

The Error Amplifier compares the internal reference voltage with the output feedback voltage from the internal divider and controls the gate voltage of the P-MOSFET.

17.4 IC Enable and Shutdown

The RT9078 provides an EN pin, as an external IC enable control, to enable or disable the device. If VEN below 0.4V, it turns the regulator off and the device enters shutdown mode, while VEN above 0.9V activates the regulator. When the regulator is shutdown, the ground current is reduced to a maximum of 0.5 μA.

17.5 Current-Limit Protection

The RT9078 includes an independent current limiter that monitors and controls the pass transistor's gate voltage, restricting the output current to 0.6A (typical). The current limiting level drops to approximately 0.3A, referred to as fold-back current limiting when the output voltage decreases further. The output may be shorted to ground indefinitely without damaging the device.

17.6 Over-Temperature Protection

The over-temperature protection function turns off the P-MOSFET when the junction temperature exceeds 150°C (typical), and the output current exceeds 30mA. Once the junction temperature decreases by approximately 20°C, the regulator automatically resumes operation.

17.7 Output Active Discharge

When the RT9078 operates in shutdown mode, the device features an internal active pull-down circuit that connects the output to GND via a resistor, facilitating output discharging.

DS9078-20

18 Application Information

Richtek's component specification does not include the following information in the Application Information section. Thereby no warranty is given regarding its validity and accuracy. Customers should take responsibility to verify their own designs and reserve suitable design margin to ensure the functional suitability of their components and systems.

Like any low dropout linear regulator, the RT9078's external input and output capacitors must be properly selected to ensure stability and performance. Utilize a $1\mu F$ or larger input capacitor and place it close to the IC's VIN and GND pins. An output capacitor that meets the minimum $1m\Omega$ ESR (Equivalent Series Resistance) and has a capacitance greater than $1\mu F$ may be used. Place the output capacitor close to the IC's VOUT and GND pins. Enhancing capacitance and reducing ESR can improve the circuit's PSRR and line transient response.

18.1 Dropout Voltage

The dropout voltage refers to the voltage difference between the VIN and VOUT pins while operating at a specific output current. The dropout voltage (VDROP) can also be expressed as the voltage drop across the pass-FET at a specific output current (IRATED) while the pass-FET is operating fully in the ohmic region, and the pass-FET can be characterized as a resistance (RDS(ON)). Thus, the dropout voltage can be defined as VDROP = VVIN - VVOUT = RDS(ON) x IRATED. For normal operation, the suggested LDO operating range is VVIN > VVOUT + VDROP for good transient response and PSRR ability. Conversely, operating in the ohmic region will severely degrade the performance.

18.2 Adjustable Output Voltage Setting

Due to the small input current at the SNS pin, the RT9078N with the SNS pin can function as an adjustable output voltage LDO. Figure 3 illustrates the connections for the adjustable output voltage application. The resistor divider from VOUT to SNS determines the output voltage when in regulation. The voltage on the SNS pin sets the output voltage and is determined by the values of R1 and R2. The adjustable output voltage is calculated using the formula provided in Equation (1):

$$V_{OUT} = \frac{R1 + R2}{R2} \times V_{SNS} \tag{1}$$

where VSNS is determined by the output voltage selections in the ordering information of the RT9078N (for example, for the RT9078N-08GJ5, VSNS is 0.8V). The maximum adjustable output voltage may reach up to the input voltage minus the dropout voltage. The total value of the resistive divider R1 and R2 should not exceed $50k\Omega$.

18.3 Thermal Considerations

For continuous operation, do not exceed the absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula:

$$PD(MAX) = (TJ(MAX) - TA)/\theta JA$$

where $T_{J(MAX)}$ is the maximum junction temperature, TA is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications the maximum junction temperature is 125 °C and TA is the ambient temperature. The junction to ambient thermal resistance, θ JA(EVB), is highly package dependent. For TSOT-23-5 package, the thermal resistance, θ JA, is 100.7 °C/W on a standard JEDEC 51-7 four-layer thermal test board. For ZQFN-4L 1x1 (ZDFN-4L 1x1) package, the thermal resistance, θ JA, is 236 °C /W on a two-layer Richtek evaluation board. The maximum power dissipation at TA = 25 °C can be calculated by the following formula :

 $PD(MAX) = (125^{\circ}C - 25^{\circ}C) / (100.7^{\circ}C/W) = 0.99W \text{ for TSOT-23-5 package.}$

 $PD(MAX) = (125^{\circ}C - 25^{\circ}C) / (236^{\circ}C/W) = 0.42W \text{ for ZQFN-4L 1x1 (ZDFN-4L 1x1) package.}$

The maximum power dissipation depends on the operating ambient temperature for fixed TJ(MAX) and thermal resistance, θ JA. The derating curves in <u>Figure 4</u> allow the designer to see the effect of rising ambient temperature on the maximum power dissipation.

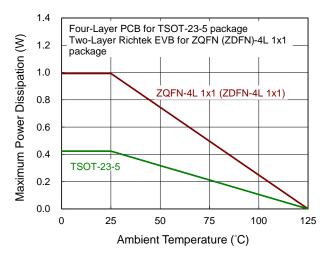


Figure 4. Derating Curve of Maximum Power Dissipation

18.4 Layout Considerations

For best performance of the RT9078, the PCB layout suggestions below are highly recommended:

- ▶ Input capacitors must be placed as close as possible to the IC to minimize the power loop area.
- ▶ Minimize the power trace length and avoid using vias for the input and output capacitors connection.

<u>Figure 5</u> and <u>Figure 6</u> show layout reference examples, which help in minimizing inductive parasitic components, reducing load transients, and ensuring good circuit stability.

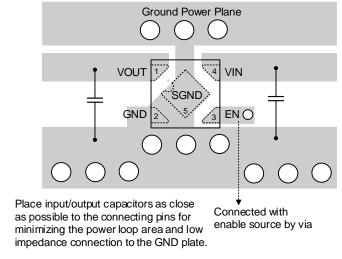


Figure 5. PCB Layout Guide for ZQFN-4L 1x1 Package

is a registered trademark of Richtek Technology Corporation.

Place input/output capacitors as close as possible to the connecting pins for minimizing the power loop area and low impedance connection to the GND plate.

Resistive divider is for output voltage adjustment (RT9078N package only).

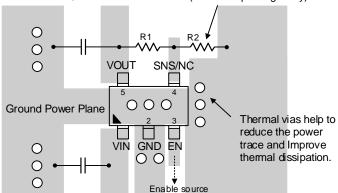
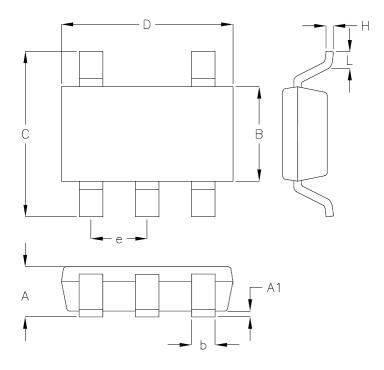
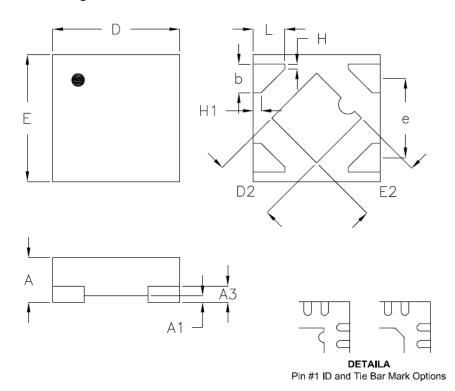



Figure 6. PCB Layout Guide for TSOT-23-5 Package

19 Outline Dimension

19.1 TSOT-23-5

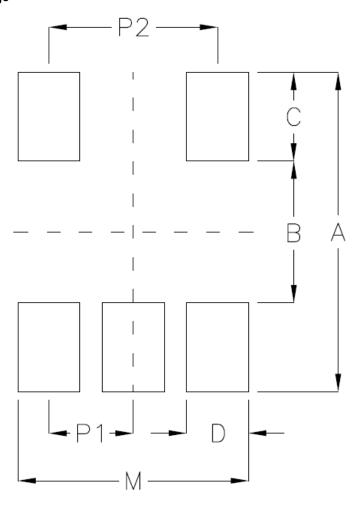

Symbol	Dimensions	In Millimeters	Dimension	s In Inches
	Min	Max	Min	Max
А	0.700	1.000	0.028	0.039
A1	0.000	0.100	0.000	0.004
В	1.397	1.803	0.055	0.071
b	0.300	0.559	0.012	0.022
С	2.591	3.000	0.102	0.118
D	2.692	3.099	0.106	0.122
е	0.838	1.041	0.033	0.041
Н	0.080	0.254	0.003	0.010
L	0.300	0.610	0.012	0.024

TSOT-23-5 Surface Mount Package

DS9078-20 April 2024

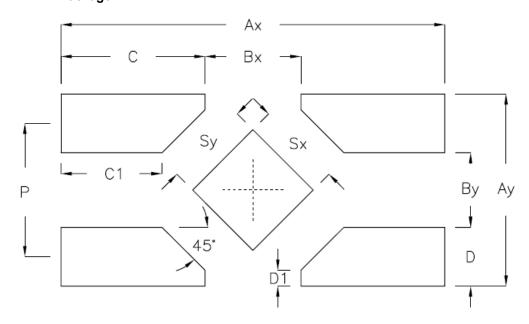
19.2 ZQFN-4L 1x1 Package

Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.


Symbol	Dimensions	In Millimeters	Dimension	s In Inches
	Min	Max	Min	Max
А	0.300	0.400	0.012	0.016
A1	0.000	0.050	0.000	0.002
А3	0.117	0.162	0.005	0.006
b	0.175	0.275	0.007	0.011
D	0.900	1.100	0.035	0.043
D2	0.450	0.550	0.018	0.022
E	0.900	1.100	0.035	0.043
E2	0.450	0.550	0.018	0.022
е	0.625		0.025	
L	0.200	0.300	0.008	0.012
Н	0.039		0.002	
H1	0.064		0.003	

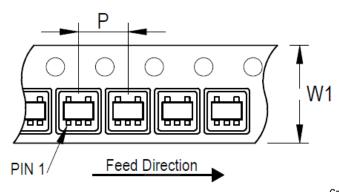
Z-Type 4L QFN 1x1 Package

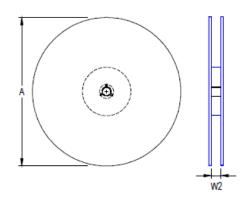
20 Footprint Information

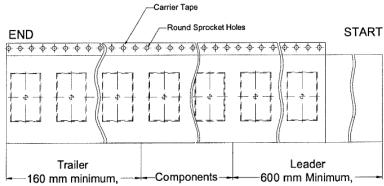

20.1 TSOT-23-5 Package

Package	Number Footprint Dimension (mm)							Tolerance	
rackage	of Pin	P1	P2	Α	В	С	D	М	Tolerance
TSOT-25/TSOT-25(FC)/SOT-25	5	0.95	1.90	3.60	1.60	1.00	0.70	2.60	±0.10

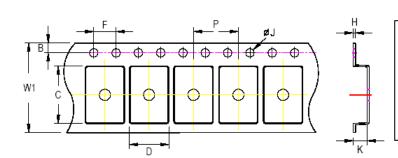
20.2 ZQFN-4L 1x1 Package




Package Numbe of Pin	Number	Footprint Dimension (mm)										Toloropoo	
	of Pin	Р	Ax	Ау	Вх	Ву	С	C1	D	D1	Sx	Sy	Tolerance
U/X/ZQFN1x1-4	4	0.625	1.800	0.900	0.450	0.350	0.675	0.474	0.275	0.074	0.400	0.400	±0.050



21 Packing Information


21.1 Tape and Reel Data - TSOT-23-5 SOT/TSOT-23-5

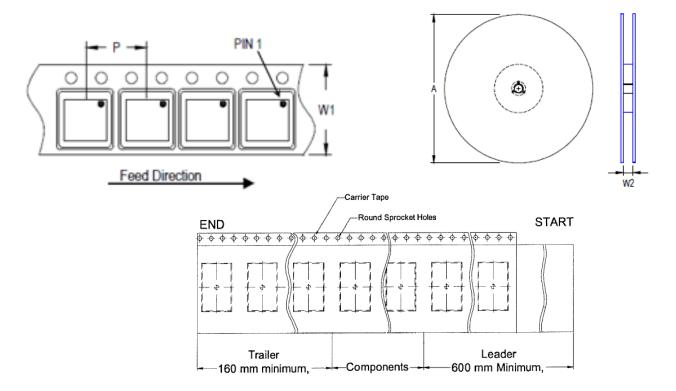
		Tape Size	Pocket Pitch	Reel Si	ze (A)	Units	Trailer	Leade	Reel Width (W2)
Pa	ickage Type	(W1) (mm)	(P) (mm)	per IIIII	(mm)	r(mm)	Min./Max. (mm)		
S	OT/TSOT- 23-5	8	4	180	7	3,000	160	600	8.4/9.9

C, D, and K are determined by component size. The clearance between the components and the cavity is as follows:

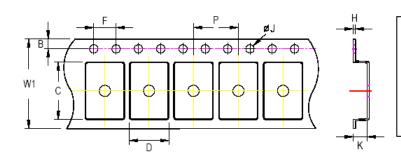
- For 8mm carrier tape: 0.5mm max.

Tape Size	W1	Р		В		F		ØJ		Н
	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
8mm	8.3mm	3.9mm	4.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

RICHTEK is a registered trademark of Richtek Technology Corporation.


21.2 Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1	Reel 7"	4	RICHTEK / NOW 1 TO STORY OF THE PROPERTY OF TH
2	HIC & Desiccant (1 Unit) inside	5	12 inner boxes per outer box
3	Caution label is on backside of Al bag	6	Outer box Carton A


Container	F	Reel		Вох				Carton			
Package	Size	Units	Item	Size(cm)	Reels	Units	Item	Size(cm)	Boxes	Unit	
007/7007 00 5	7"	3.000	Box A	18.3*18.3*8.0	3	9,000	Carton A	38.3*27.2*40.0	12	108,000	
SOT/TSOT-23-5		-,	Box E	18.6*18.6*3.5	1	3,000		For Combined or I	Partial Reel.		

21.3 Tape and Reel Data- ZQFN-4L 1x1

	Tape Size	Pocket Pitch	Reel Size (A)		Units	Trailer	Leade	Reel Width (W2)	
Package Type	(W1) (mm)	(P) (mm)	(mm)	(in)	per Reel	(mm)	r(mm)	Min./Max. (mm)	
QFN/DFN 1x1	8	4	180	7	2,500	160	600	8.4/9.9	

C, D, and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 12mm carrier tape: 0.5mm max.

Tape Size	W1	F	>	В		F		Ø١		Н
	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
8mm	8.3mm	3.9mm	4.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

RICHTEK is a registered trademark of Richtek Technology Corporation.

21.4 Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1	Reel 7"	4	3 reels per inner box Box A
2	HIC & Desiccant (1 Unit) inside	5	12 inner boxes per outer box
3	Caution label is on backside of Al bag	6	Outer box Carton A

Container	F	Reel		Вох			Carton			
Package	Size	Units	Item	Size(cm)	Reels	Units	Item	Size(cm)	Boxes	Unit
OEN O DEN 4.4	FN & DFN 1x1 7" 2,500		Box A	18.3*18.3*8.0	3	7,500	Carton A	38.3*27.2*40.0	12	90,000
QFN & DFN 1X1			Box E	18.6*18.6*3.5	1	2,500	For Combined or Partial Reel.			

21.5 Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω /cm 2	10 ⁴ to 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

DS9078-20 April 2024 www.richtek.com

RT9078

22 Datasheet Revision History

Version	Date	Description	Item
20	2024/4/15	Modify	Rewrite