Small Package, High Performance, Asynchronies Boost for 10 WLED Driver

General Description
The RT9293 is a high frequency, asynchronous boost converter. The internal MOSFET can support up to 10 White LEDs for backlighting and OLED power application, and the internal soft start function can reduce the inrush current. The device operates with 1-MHz fixed switching frequency to allow small external components and to simplify possible EMI problems. For the protection, the RT9293A provides 50V OVP and the RT9293B provides 50V/20V OVP to allow inexpensive and small-output capacitors with lower voltage ratings. The LED current is initially set with the external sense resistor R_{SET}. The RT9293 is available in the tiny package type TSOT-23-6 and WDFN-8L 2x2 packages to provide the best solution for PCB space saving and total BOM cost.

Ordering Information
RT9293

<table>
<thead>
<tr>
<th>Package Type</th>
<th>J6 : TSOT-23-6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QW : WDFN-8L 2x2 (W-Type)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lead Plating System</th>
</tr>
</thead>
<tbody>
<tr>
<td>G : Green (Halogen Free and Pb Free)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OVP Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default : 50V (RT9293A/B)</td>
</tr>
<tr>
<td>20 : 20V (RT9293B)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feedback Voltage Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A : 104mV</td>
</tr>
<tr>
<td>B : 300mV</td>
</tr>
</tbody>
</table>

Features
- VIN Operating Range : 2.5V to 5.5V
- Internal Power N-MOSFET Switch
- Wide Range for PWM Dimming (100Hz to 200kHz)
- Minimize the External Component Counts
- Internal Soft Start
- Internal Compensation
- Under Voltage Protection
- Over Voltage Protection
- Over Temperature Protection
- Small TSOT-23-6 and 8-Lead WDFN Packages
- RoHS Compliant and Halogen Free

Applications
- Cellular Phones
- Digital Cameras
- PDAs and Smart Phones and MP3 and OLED.
- Portable Instruments

Pin Configurations

(TOP VIEW)

<table>
<thead>
<tr>
<th>VIN</th>
<th>VOUT</th>
<th>EN</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LX</th>
<th>GND</th>
<th>FB</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GND</th>
<th>VIN</th>
<th>VOUT</th>
<th>EN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NC</th>
<th>FB</th>
<th>GND</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Feedback Voltage Reference
- A : 104mV
- B : 300mV

OVP Voltage
- Default : 50V (RT9293A/B)
- 20 : 20V (RT9293B)

Marking Information
For marking information, contact our sales representative directly or through a Richtek distributor located in your area.

Note:
- Richtek products are:
 - RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
 - Suitable for use in SnPb or Pb-free soldering processes.

Copyright © 2015 Richtek Technology Corporation. All rights reserved. Richtek is a registered trademark of Richtek Technology Corporation.
Typical Application Circuit

Note: The IC is not suitable for unstable supply applications which caused by the external components of VIN.

Functional Pin Description

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Pin Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT9293 □GJ6</td>
<td>RT9293 □GQW</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>LX Switching Pin.</td>
</tr>
<tr>
<td>2</td>
<td>1, 5, 9 (Exposed pad)</td>
<td>GND Ground Pin. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>FB Feedback Pin, put a resistor to GND to setting the current.</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>EN Chip Enable (Active High).</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>VOUT Output Voltage Pin.</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>VIN Input Supply.</td>
</tr>
<tr>
<td>--</td>
<td>7</td>
<td>NC No Internal Connection.</td>
</tr>
</tbody>
</table>

Function Block Diagram
Absolute Maximum Ratings (Note 1)

- Supply Input Voltage, V_{IN}
 - $-0.3V$ to $6V$
- Switching Pin, LX
 - $-0.3V$ to $50V$
- V_{OUT}
 - $-0.3V$ to $50V$
- Other Pins
 - $-0.3V$ to $6V$
- Power Dissipation, $P_D @ T_A = 25^\circ C$
 - TSOT-23-6
 - $0.392W$
 - WDFN-8L 2x2
 - $0.606W$
- Package Thermal Resistance (Note 2)
 - TSOT-32-6, θ_{JA}
 - $255^\circ C/W$
 - WDFN-8L 2x2, θ_{JA}
 - $165^\circ C/W$
 - WDFN-8L 2x2, θ_{JC}
 - $20^\circ C/W$
- Lead Temperature (Soldering, 10 sec.)
 - $-40^\circ C$
- Junction Temperature
 - $150^\circ C$
- Storage Temperature Range
 - $-65^\circ C$ to $150^\circ C$
- ESD Susceptibility (Note 3)
 - HBM (Human Body Model)
 - $2kV$
 - MM (Machine Model)
 - $200V$

Recommended Operating Conditions (Note 4)

- Junction Temperature Range
 - $-40^\circ C$ to $125^\circ C$
- Ambient Temperature Range
 - $-40^\circ C$ to $85^\circ C$

Electrical Characteristics

$(V_{IN} = 3.7V, C_{IN} = 2.2\mu F, C_{OUT} = 0.47\mu F, I_{OUT} = 20mA, L = 22\mu H, T_A = 25^\circ C$, unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>V_{IN}</td>
<td></td>
<td>2.5</td>
<td>--</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Under Voltage Lock Out</td>
<td>V_{UVLO}</td>
<td></td>
<td>2</td>
<td>2.2</td>
<td>2.45</td>
<td>V</td>
</tr>
<tr>
<td>UVLO Hysteresis</td>
<td></td>
<td></td>
<td>--</td>
<td>0.1</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>I_Q</td>
<td>FB = 1.5V, No Switching</td>
<td>--</td>
<td>400</td>
<td>600</td>
<td>μA</td>
</tr>
<tr>
<td>Supply Current</td>
<td>I_{IN}</td>
<td>FB = 0V, Switching</td>
<td>--</td>
<td>1</td>
<td>2</td>
<td>mA</td>
</tr>
<tr>
<td>Shutdown Current</td>
<td>I_{SHDN}</td>
<td>$V_{EN} < 0.4V$</td>
<td>--</td>
<td>1</td>
<td>4</td>
<td>μA</td>
</tr>
<tr>
<td>Line Regulation</td>
<td></td>
<td>$V_{IN} = 3$ to $4.3V$</td>
<td>--</td>
<td>1</td>
<td>--</td>
<td>%</td>
</tr>
<tr>
<td>Load Regulation</td>
<td></td>
<td>1mA to 20mA</td>
<td>--</td>
<td>1</td>
<td>--</td>
<td>%</td>
</tr>
<tr>
<td>Operation Frequency</td>
<td>f_{OSC}</td>
<td></td>
<td>0.75</td>
<td>1</td>
<td>1.25</td>
<td>MHz</td>
</tr>
<tr>
<td>Maximum Duty Cycle</td>
<td></td>
<td></td>
<td>90</td>
<td>92</td>
<td>--</td>
<td>%</td>
</tr>
<tr>
<td>Clock Rate</td>
<td></td>
<td></td>
<td>0.1</td>
<td>--</td>
<td>200</td>
<td>kHz</td>
</tr>
<tr>
<td>Feedback Reference Voltage</td>
<td>V_{REF}</td>
<td></td>
<td>94</td>
<td>104</td>
<td>114</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>RT9293A</td>
<td></td>
<td>285</td>
<td>300</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RT9293B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

DS9293-04 March 2015 www.richtek.com
Note 1. Stresses beyond those listed “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Note 2. θ_{JA} is measured at $T_A = 25^\circ\text{C}$ on a low effective thermal conductivity single-layer test board per JEDEC 51-3. θ_{JC} is measured at the exposed pad of the package.

Note 3. Devices are ESD sensitive. Handling precaution is recommended.

Note 4. The device is not guaranteed to function outside its operating conditions.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Resistance</td>
<td>$R_{\text{DS(ON)}}$</td>
<td>--</td>
<td>0.7</td>
<td>1.2</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>EN Threshold Voltage</td>
<td>Logic-High</td>
<td>V_{IH}</td>
<td>1.4</td>
<td>--</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Logic-Low</td>
<td>V_{IL}</td>
<td>--</td>
<td>--</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>EN Sink Current</td>
<td>I_{IH}</td>
<td>--</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>μA</td>
</tr>
<tr>
<td>EN Hysteresis</td>
<td></td>
<td>--</td>
<td>0.1</td>
<td>--</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td>Over-Voltage Threshold</td>
<td>OVP = 50V</td>
<td>V_{OV}</td>
<td>42</td>
<td>46</td>
<td>50</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>RT9293B-20</td>
<td></td>
<td>16</td>
<td>17.5</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>Over-Current Threshold</td>
<td>I_{OCP}</td>
<td>1</td>
<td>1.2</td>
<td>--</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>OTP</td>
<td>T_{OTP}</td>
<td>--</td>
<td>160</td>
<td>--</td>
<td>--</td>
<td>$^\circ\text{C}$</td>
</tr>
<tr>
<td>OTP Hysteresis</td>
<td></td>
<td>--</td>
<td>30</td>
<td>--</td>
<td></td>
<td>$^\circ\text{C}$</td>
</tr>
<tr>
<td>Shutdown Delay</td>
<td>T_{SHDN}</td>
<td>--</td>
<td>20</td>
<td>--</td>
<td>--</td>
<td>ms</td>
</tr>
</tbody>
</table>
Typical Operating Characteristics

Efficiency vs. Output Current

- **VIN = 4.5V**
- **VIN = 4V**
- **VOUT = 10V**

Output Voltage vs. Output Current

- **VOUT = 34V**

Quiescent Current vs. Input Voltage

- **VFB = 1.5V**

Frequency vs. Input Voltage

- **ILED = 20mA**

Efficiency vs. Input Voltage

- **ILOAD = 30mA**
- **ILOAD = 20mA**
- **ILOAD = 10mA**

Output Voltage vs. Output Current

- **VIN = 3.7V, VOUT = 34V**

Efficiency vs. Output Current

- **VOUT = 34V**

Frequency vs. Temperature

- **VIN = 3.7V, ILED = 20mA**

Copyright © 2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.
Reference Voltage vs. Input Voltage

- $V_{OUT} = 34V$, $I_{OUT} = \text{No Load}$
- 10W LED, $I_{LED} = 20mA$

Reference Voltage vs. Output Current

- $V_{OUT} = 34V$
- $V_{IN} = 3V$
- $V_{IN} = 3.7V$
- $V_{IN} = 4.2V$

Reference Voltage vs. Temperature

- $I_{LED} = 20mA$
- $V_{IN} = 3V$
- $V_{IN} = 3.7V$
- $V_{IN} = 4.2V$

Enable Threshold vs. Input Voltage

- Rising
- Falling

LED Current vs. Duty

- $f = 200Hz$
- $f = 2kHz$
- $f = 20kHz$
- $f = 200kHz$

Power On from EN

- V_{EN} (2V/Div)
- V_{OUT} (10V/Div)
- $V_{IN} = 3.7V$, $I_{LED} = 20mA$
Ripple Voltage

V_{EN} (2V/Div)

V_{OUT} (20mV/Div)

Time (500ns/Div)

Vin = 3.7V, I_{LED} = 20mA

Power Off from EN

V_{EN} (2V/Div)

V_{OUT} (10V/Div)

Time (1ms/Div)

Vin = 3.7V, I_{LED} = 20mA

PWM Dimming from EN

V_{EN} (4V/Div)

I_{LED} (10mA/Div)

Time (1ms/Div)

f = 200Hz

Vin = 3.7V, I_{LED} = 20mA

PWM Dimming from EN

V_{EN} (4V/Div)

I_{LED} (10mA/Div)

Time (10μs/Div)

f = 20kHz

Vin = 3.7V, I_{LED} = 20mA
Applications Information

LED Current Setting
The loop of Boost structure will keep the FB pin voltage equal to the reference voltage \(V_{\text{REF}} \). Therefore, when \(R_{\text{SET}} \) connects FB pin and GND, the current flows from \(V_{\text{OUT}} \) through LED and \(R_{\text{SET}} \) to GND will be decided by the current on \(R_{\text{SET}} \), which is equal to following equation:

\[
I_{\text{LED}} = \frac{V_{\text{REF}}}{R_{\text{SET}}}
\]

Dimming Control

a. Using a PWM Signal to EN Pin
For the brightness dimming control of the RT9293, the IC provides typically 300mV feedback voltage when the EN pin is pulled constantly high. However, EN pin allows a PWM signal to reduce this regulation voltage by changing the PWM duty cycle to achieve LED brightness dimming control. The relationship between the duty cycle and FB voltage can be calculated as following equation:

\[
V_{FB} = \text{Duty} \times 300 \text{mV}
\]

Where

Duty = duty cycle of the PWM signal
300mV = internal reference voltage

As shown in Figure 1, the duty cycle of the PWM signal is used to cut the internal 300mV reference voltage. An internal low pass filter is used to filter the pulse signal. And then the reference voltage can be made by connecting the output of the filter to the error amplifier for the FB pin voltage regulation.

However, the internal low pass filter 3db frequency is 500Hz. When the dimming frequency is lower than 500Hz, \(V_{A} \) is also a PWM signal and the LED current is controlled directly by this signal. When the frequency is higher than 500Hz, PWM is filtered by the internal low pass filter and the \(V_{A} \) approach a DC signal. And the LED current is a DC current which eliminate the audio noise. Two figures of PWM Dimming from EN are shown in Typical Operating Characteristics section and the PWM dimming frequency is 200Hz and 20kHz respectively.

But there is an offset in error amplifier which will cause the \(V_{A} \) variation. In low PWM duty signal situation, the filtered reference voltage is low and the offset can cause bigger variation of the output current. So the RT9293A is not recommend to be dimming by the EN pin. For the RT9293B, the minimum duty vs frequency is listed in following table.

<table>
<thead>
<tr>
<th>Duty Minimum</th>
<th>Dimming frequency < 500Hz</th>
<th>4%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimming frequency > 500Hz</td>
<td>10%</td>
<td></td>
</tr>
</tbody>
</table>

b. Using a DC Voltage
Using a variable DC voltage to adjust the brightness is a popular method in some applications. The dimming control using a DC voltage circuit is shown in Figure 2. As the DC voltage increases, the current flows through R3 increasingly and the voltage drop on R3 increase, i.e. the LED current decreases. For example, if the VDC range is from 0V to 2.8V and assume the RT9293 is selected which \(V_{\text{REF}} \) is equal to 0.3V, the selection of resistors in Figure 2 sets the LED current from 21mA to 0mA. The LED current can be calculated by the following equation.

\[
I_{\text{LED}} = \frac{V_{\text{REF}} - \frac{R_3 \times (V_{\text{DC}} - V_{\text{REF}})}{R_4}}{R_{\text{SET}}}
\]

Figure 1. Block Diagram of Programmable FB Voltage Using PWM Signal

Figure 2. Dimming Control Using a DC Voltage
c. Using a Filtered PWM signal

Another common application is using a filtered PWM signal as an adjustable DC voltage for LED dimming control. A filtered PWM signal acts as the DC voltage to regulate the output current. The recommended application circuit is shown as Figure 3. In this circuit, the output ripple depends on the frequency of PWM signal. For smaller output voltage ripple (<100mV), the recommended frequency of 2.8V PWM signal should be above 2kHz. To fix the frequency of PWM signal and change the duty cycle of PWM signal can get different output current. The LED current can be calculated by the following equation:

\[I_{LED} = \frac{V_{REF} \times R3 \times (V_{PWM} \times Duty - V_{REF})}{R4 + R_{DC}} \]

By the above equation and the application circuit shown in Figure 3, and assume the RT9293 is selected which V_{REF} is equal to 0.3V. Figure 4 shows the relationship between the LED current and PWM duty cycle. For example, when the PWM duty is equal to 60%, the LED current will be equal to 8.6mA. When the PWM duty is equal to 40%, the LED current will be equal to 12.7mA.

Constant Output Voltage Control

The output voltage of the R9293 can be adjusted by the divider circuit on the FB pin. Figure 5 shows the application circuit for the constant output voltage. The output voltage can be calculated by the following equations:

\[V_{OUT} = \frac{V_{REF} \times R1 + R2}{R2} ; R2 > 10k \]

Figure 3. Dimming Control Using a Filtered PWM Signal

Figure 4. PWM Duty Cycle vs. LED Current

Figure 5. Constant Output Voltage Application

Figure 6. Application for Driving 3 X 13 WLEDs
Application for Driving 3 x 13 WLEDs
The RT9293 can drive different WLEDs topology. For example, the Figure 6 shows the 3x13 WLEDs and total current is equal to 260mA. The total WLEDs current can be set by the RSET which is equal to following equation.
\[I_{\text{Total}} = \frac{V_{\text{REF}}}{R_{\text{SET}}} \]

Power Sequence
In order to assure the normal soft start function for suppressing the inrush current the input voltage should be ready before EN pulls high.

Soft-Start
The function of soft-start is made for suppressing the inrush current to an acceptable value at the beginning of power-on. The RT9293 provides a built-in soft-start function by clamping the output voltage of error amplifier so that the duty cycle of the PWM will be increased gradually in the soft-start period.

Current Limiting
The current flow through inductor as charging period is detected by a current sensing circuit. As the value comes across the current limiting threshold, the N-MOSFET will be turned off so that the inductor will be forced to leave charging stage and enter discharging stage. Therefore, the inductor current will not increase over the current limiting threshold.

OVP/UVLO/OTP
The Over Voltage Protection is detected by a junction breakdown detecting circuit. Once VOUT goes over the detecting voltage, LX pin stops switching and the power N-MOSFET will be turned off. Then, the VOUT will be clamped to be near Voref. As the output voltage is higher than a specified value or input voltage is lower than a specified value, the chip will enter protection mode to prevent abnormal function. As the die temperature is higher than 160°C, the chip also will enter protection mode. The power MOSFET will be turned off during protection mode to prevent abnormal operation.

Inductor Selection
The recommended value of inductor for 10 WLEDs applications is from 10μH to 47μH. Small size and better efficiency are the major concerns for portable devices, such as the RT9293 used for mobile phone. The inductor should have low core loss at 1MHz and low DCR for better efficiency. The inductor saturation current rating should be considered to cover the inductor peak current.

Capacitor Selection
Input ceramic capacitor of 2.2μF and output ceramic capacitor of 1μF are recommended for the RT9293 applications for driving 10 series WLEDs. For better voltage filtering, ceramic capacitors with low ESR are recommended. X5R and X7R types are suitable because of their wider voltage and temperature ranges.

Thermal Considerations
For continuous operation, do not exceed absolute maximum operation junction temperature. The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula :
\[P_{D(\text{MAX})} = \left(T_{J(\text{MAX})} - T_{A} \right) / \theta_{JA} \]
Where \(T_{J(\text{MAX})} \) is the maximum operation junction temperature, \(T_{A} \) is the ambient temperature and the \(\theta_{JA} \) is the junction to ambient thermal resistance.

For the recommended operating conditions specification of RT9293, the maximum junction temperature of the die is 125°C. The junction to ambient thermal resistance \(\theta_{JA} \) is layout dependent. The junction to ambient thermal resistance for TSOT-23-6 package is 255°C/W and for WDFN-8L 2x2 package is 165°C/W on the standard JEDEC 51-3 single layer thermal test board. The maximum power dissipation at \(T_{A} = 25^\circ C \) can be calculated by following formula :
\[P_{D(\text{MAX})} = \frac{(125^\circ C - 25^\circ C)}{(165^\circ C/W)} = 0.606W \text{ for WDFN-8L 2x2 packages} \]
\[P_{D(\text{MAX})} = \frac{(125^\circ C - 25^\circ C)}{(255^\circ C/W)} = 0.392W \text{ for TSOT-23-6 packages} \]
The maximum power dissipation depends on operating ambient temperature for fixed $T_{J(MAX)}$ and thermal resistance θ_{JA}. For RT9293 packages, the Figure 7 of derating curves allows the designer to see the effect of rising ambient temperature on the maximum power allowed.

![Figure 7. Derating Curves for RT9293 Packages](image)

Layout Consideration

For best performance of the RT9293, the following guidelines must be strictly followed.

- Input and Output capacitors should be placed close to the IC and connected to ground plane to reduce noise coupling.
- The GND and Exposed Pad should be connected to a strong ground plane for heat sinking and noise protection.
- Keep the main current traces as possible as short and wide.
- LX node of DC-DC converter is with high frequency voltage swing. It should be kept at a small area.
- Place the feedback components as close as possible to the IC and keep away from the noisy devices.

![Figure 8. The Layout Consideration of the RT9293](image)

Table 1. Recommended Components for Typical Application Circuit

<table>
<thead>
<tr>
<th>Reference</th>
<th>Qty</th>
<th>Part Number</th>
<th>Description</th>
<th>Manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>1</td>
<td>SR26</td>
<td>Schottky Diode</td>
<td>PANJIT</td>
</tr>
<tr>
<td>C_{IN}</td>
<td>1</td>
<td>EMK107BJ225MA-T</td>
<td>Capacitor, Ceramic, 2.2μF/16V X5R</td>
<td>Taiyo Yuden</td>
</tr>
<tr>
<td>C_{OUT}</td>
<td>1</td>
<td>GMK107BJ105KA</td>
<td>Capacitor, Ceramic, 1μF/50V X5R</td>
<td>Taiyo Yuden</td>
</tr>
<tr>
<td>R_{SET}</td>
<td>1</td>
<td>RC0603FR</td>
<td>Resistor 15Ω, 1%</td>
<td>YAGEO</td>
</tr>
<tr>
<td>L</td>
<td>1</td>
<td>NR4018T220M</td>
<td>Inductor, 22μH</td>
<td>Taiyo Yuden</td>
</tr>
</tbody>
</table>
Outline Dimension

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions In Millimeters</th>
<th>Dimensions In Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.700 – 1.000</td>
<td>0.028 – 0.039</td>
</tr>
<tr>
<td>A1</td>
<td>0.000 – 0.100</td>
<td>0.000 – 0.004</td>
</tr>
<tr>
<td>B</td>
<td>1.397 – 1.803</td>
<td>0.055 – 0.071</td>
</tr>
<tr>
<td>b</td>
<td>0.300 – 0.559</td>
<td>0.012 – 0.022</td>
</tr>
<tr>
<td>C</td>
<td>2.591 – 3.000</td>
<td>0.102 – 0.118</td>
</tr>
<tr>
<td>D</td>
<td>2.692 – 3.099</td>
<td>0.106 – 0.122</td>
</tr>
<tr>
<td>e</td>
<td>0.838 – 1.041</td>
<td>0.033 – 0.041</td>
</tr>
<tr>
<td>H</td>
<td>0.080 – 0.254</td>
<td>0.003 – 0.010</td>
</tr>
<tr>
<td>L</td>
<td>0.300 – 0.610</td>
<td>0.012 – 0.024</td>
</tr>
</tbody>
</table>

TSOT-23-6 Surface Mount Package
W-Type 8L DFN 2x2 Package

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions In Millimeters</th>
<th>Dimensions In Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>A</td>
<td>0.700</td>
<td>0.800</td>
</tr>
<tr>
<td>A1</td>
<td>0.000</td>
<td>0.050</td>
</tr>
<tr>
<td>A3</td>
<td>0.175</td>
<td>0.250</td>
</tr>
<tr>
<td>b</td>
<td>0.200</td>
<td>0.300</td>
</tr>
<tr>
<td>D</td>
<td>1.950</td>
<td>2.050</td>
</tr>
<tr>
<td>D2</td>
<td>1.000</td>
<td>1.250</td>
</tr>
<tr>
<td>E</td>
<td>1.950</td>
<td>2.050</td>
</tr>
<tr>
<td>E2</td>
<td>0.400</td>
<td>0.650</td>
</tr>
<tr>
<td>e</td>
<td>0.500</td>
<td>0.020</td>
</tr>
<tr>
<td>L</td>
<td>0.300</td>
<td>0.400</td>
</tr>
</tbody>
</table>

Note: The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Richtek Technology Corporation
14F, No. 8, Tai Yuen 1st Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.