Host-Side Single Cell Lithium Battery Gauge

General Description
The RT9420 is a compact, host-side fuel gauge IC for lithium-ion (Li+) battery-powered systems.

For the embedded Fuel Gauge function, the state-of-charge (SOC) calculation is based on the battery voltage information and the dynamic difference between battery voltage and relaxed OCV, by using iteration to estimate the increasing or decreasing SOC.

Voltage-based algorithm can support smoothly SOC and does not accumulate error with time and current. That is an advantage compared to coulomb counter which suffer from SOC drift caused by current-sense error and battery self-discharge. The disadvantage of voltage-based fuel gauge, it can report incremental SOC(%), but can’t report capacity (mAh).

A quick sensing operation provides a good initial estimate of the battery’s SOC. This feature allows the IC to be located on system side, reducing cost and supply chain constraints on the battery. Measurement and estimated capacity data sets are accessed through an I2C interface.

The RT9420 is available in the WDFN-8L 2x3 package.

Features
- Host-Side Fuel Gauging
- Precision Voltage Measurement ±12.5mV Accuracy
- Accurate Relative Capacity (RSOC) Calculated from Voltac Gauge Algorithm with Temperature Compensation
- No Accumulation Error on Capacity Calculation
- No Battery Relearning Necessary
- No Current Sense Resistor Required
- External Alarm/Interrupt for Low Battery Alert
- I2C Compatible Interface
- Low Power Consumption

Applications
- Smartphones
- Tablet PC
- Digital Still Cameras
- Digital Video Cameras
- Handheld and Portable Applications

Simplified Application Circuit
Ordering Information

RT9420

- Package Type
 QW : WDFN-8L 2x3 (W-Type)
- Lead Plating System
 G : Green (Halogen Free and Pb Free)

Note:
- Richtek products are:
 - RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
 - Suitable for use in SnPb or Pb-free soldering processes.

Pin Configurations

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Pin Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TEST</td>
<td>Test Pin. Connect to GND pin during normal operation.</td>
</tr>
<tr>
<td>2</td>
<td>VBAT</td>
<td>Battery Voltage Measurement Input.</td>
</tr>
<tr>
<td>3</td>
<td>VDD</td>
<td>Processor Power Input. Decouple with a 10nF capacitor.</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>5</td>
<td>ALERT</td>
<td>Alert Output. When SOCLow condition is detected, it outputs low as interrupt signal. Connect to interrupt input of the system processor. Connect to GND if not used.</td>
</tr>
<tr>
<td>6</td>
<td>QS</td>
<td>Quick Sensing Input. Active high to restart the calculation. Pull low to GND during normal operation.</td>
</tr>
<tr>
<td>7</td>
<td>SCL</td>
<td>Serial Clock Input. Slave (\text{I}^2\text{C}) clock line for communication with system.</td>
</tr>
<tr>
<td>8</td>
<td>SDA</td>
<td>Serial Data Input. Slave (\text{I}^2\text{C}) data line for communication with system.</td>
</tr>
<tr>
<td>9 (Exposed Pad)</td>
<td>GND</td>
<td>The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.</td>
</tr>
</tbody>
</table>
Function Block Diagram

Operation

12-bit ADC
Analog-to-Digital Converter. It converts the voltage input from VBAT pin to target value.

Battery OCV Model
Parameters for battery characteristics.

Voltaic Gauge Algorithm
The RT9428 calculates and determines that the embedded Fuel Gauge calculates and determines the Li+ battery SOC according to battery voltage only.

The algorithm estimates the increasing or decreasing SOC by an iteration model according to the difference between battery voltage and the battery OCV. The dynamic voltaic information can effectively emulate the Li+ battery behavior and determines the SOC (%), but can't report capacity (mAh).

Controller
The controller takes care of the control flow of system routine, ADC measurement flow, algorithm calculation and alert determined.

I²C Interface
The fuel gauge registers can be accessed through the I²C Interface.
Absolute Maximum Ratings (Note 1)

- Voltage on TEST Pin Relative to GND: -0.3V to 5.5V
- Voltage on VBAT Pin Relative to GND: -0.3V to 5.5V
- Voltage on All Other Pins Relative to GND: -0.3V to 6V
- SCL, SDA, QS, ALERT to GND: -0.3V to 5.5V
- VBAT to GND: -0.3V to 5V
- Power Dissipation, $P_D @ T_A = 25^\circ C$: 3.17W
- Package Thermal Resistance (Note 2)
 - WDFN-8L 2x3, θ_J: 31.5°C/W
 - WDFN-8L 2x3, θ_C: 7.5°C/W
- Lead Temperature (Soldering, 10 sec.): 260°C
- Junction Temperature Range: -65°C to 150°C
- Storage Temperature Range: -65°C to 150°C

Recommended Operating Conditions (Note 3)

- Supply Voltage, VDD: 2.5V to 4.5V
- Junction Temperature Range: -40°C to 125°C
- Ambient Temperature Range: -40°C to 85°C

Electrical Characteristics

(2.5V $\leq V_{DD} \leq$ 4.5V, $T_A = 25^\circ C$ unless otherwise specified) (Note 4)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Section</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Active Current | I_{ACTIVE} | $V_{DD} = 2.5V$ | -- | 22 | 40 | μA
| Sleep-Mode Current (Note 5) | I_{SLEEP} | $V_{DD} = 2.5V$ | -- | 0.5 | 1 | μA
| | | -- | 1 | 3 | | |
| Time-Base Accuracy | t_{ERR} | $T_A = -20^\circ C$ to $70^\circ C$ (Note 4) | -- | 3.5 | ±1 | %
| Voltage Measurement Error | V_{GERR} | $V_{BAT} = 4V$ | -- | 12.5 | -- | 12.5 | mV |
| | | -- | 25 | -- | 25 | | |
| VBAT Pin Input Impedance | R_{VBAT} | | 15 | -- | -- | $M\Omega$
| SCL, SDA, QS Input Voltage | Logic-High | All voltage reference to GND | 1.4 | -- | -- | V | |
| | Logic-Low | All voltage reference to GND | -- | -- | 0.5 | | |
| SDA Output Logic-Low | $V_{OL_{-SDA}}$ | $I_{OL_{-SDA}} = 4mA$, All voltage reference to GND | -- | -- | 0.4 | V |
| ALERT Output Logic-Low | $V_{OL_{-ALERT}}$ | $I_{OL_{-ALERT}} = 2mA$, All voltage reference to GND | -- | -- | 0.4 | V |
| SCL, SDA Pull-Down Current | I_{PD} | $V_{DD} = 4.5V$, $V_{SCL} = V_{SDA} = 0.4V$ | -- | 0.2 | 0.4 | μA
| Bus Low Timeout | t_{SLEEP} (Note 6) | | 2 | -- | 3 | s |
Parameter | Symbol | Test Conditions | Min | Typ | Max | Unit
--- | --- | --- | --- | --- | --- | ---
I²C Interface | | | | | | |
Clock Operating Frequency | f_{SCL} (Note 7) | | 10 | -- | 250 | kHz
Bus Free Time Between a STOP and START Condition | t_{BUF} | | 1.3 | -- | -- | μs
Hold Time After START Condition | t_{HD_STA} (Note 7) | | 0.6 | -- | -- | μs
Low Period of the SCL Clock | t_{LOW} | | 1.3 | -- | -- | μs
High Period of the SCL Clock | t_{HIGH} | | 0.6 | -- | -- | μs
Setup Time for a Repeated START Condition | t_{SU_STA} | | 0.6 | -- | -- | μs
Data Hold Time | t_{HD_DAT} (Note 8, Note 9) | | 0.2 | -- | 0.9 | ms
Data Setup Time | t_{SU_DAT} (Note 8) | | 100 | -- | -- | ns
Clock Data Rising Time | t_{R} | | 20 | -- | 300 | ns
Clock Data Falling Time | t_{F} | | 20 | -- | 300 | ns
Set-Up Time for STOP Condition | t_{SU_STO} | | 0.6 | -- | -- | μs
Spike Pulse Widths Suppressed by Input Filter | t_{SP} (Note 10) | | 0 | -- | 50 | ns
Capacitive Load for Each Bus Line | C_{B} (Note 11) | | 400 | -- | -- | pF
SCL, SDA Input Capacitance | C_{BIN} | | -- | -- | 60 | pF

Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Note 2. $θ_{JA}$ is measured at $T_A = 25°C$ on a high effective thermal conductivity four-layer test board per JEDEC 51-7. $θ_{JC}$ is measured at the exposed pad of the package.

Note 3. The device is not guaranteed to function outside its operating conditions.

Note 4. Specifications are 100% tested at $T_A = 25°C$. Limits over the operating range are guaranteed by design and characterization.

Note 5. SDA, SCL = GND; QS, ALERT idle.

Note 6. The RT9420 enter sleep mode after SCL and SDA low for longer than 3s.

Note 7. f_{SCL} must meet the minimum clock low time plus the rise/fall time.

Note 8. The maximum t_{HD_DAT} has only to be met if the device does not stretch the low period (t_{LOW}) of the SCL signal.

Note 9. This device internally provides a hold time of at least 75ns for the SDA signal to bridge the undefined region of the falling edge of SCL.

Note 10. Filters on SDA and SCL suppress noise spikes at the input buffers and delay the sampling instant.

Note 11. C_B total capacitance of one bus line in pF.
Typical Application Circuit

Timing Diagram
Typical Operating Characteristics

(T_A = 25°C, battery is Sanyo UF534553F, unless otherwise specified.)

- **Quiescent Current vs. Supply Voltage**
- **Voltage ADC Error vs. Temperature**
- **Constant Discharge C/4 SOC Accuracy**
- **Constant Discharge C/2 SOC Accuracy**
- **Zigzag Discharge C/2 SOC Accuracy**

*: Sample accuracy with custom parameters into the IC.
Application Information

Voltaic Gauge Theory and Performance

The embedded Fuel Gauge calculates and determines the Li+ battery SOC according to battery voltage only.

The algorithm estimates the increasing or decreasing SOC by an iteration model according to the difference between battery voltage and the battery OCV. The dynamic voltaic information can effectively emulate the Li+ battery behavior and determines the SOC(%), but can't report capacity(mAh).

The calculation is based on the battery voltage information and the dynamic difference between battery voltage and relaxed OCV, by using iteration algorithm to estimate the increasing or decreasing SOC to calculate SOC.

Comparing to coulomb counter based fuel gauge solution; voltaic gauge does not accumulate error with time and current. The coulomb counter based fuel gauge suffers from SOC drift due to current-sense error and cell self-discharge. Even there is a very small current sensing error, the coulomb counter accumulates the error from time to time. The accumulated error can be eliminated by only full charged or full discharged. The VoltaicGauge estimates battery SOC by only voltage information and will not accumulate error because it does not rely on battery current information.

Power On

When the IC is powered on by the battery insertion, the IC measures the battery voltage quickly and predicts the first SOC according to the voltage. The first SOC would be accurate if the battery has been well relaxed for over 30 min. Otherwise, the initial SOC error occurs.

However, the initial SOC error will be convergent and the SOC will be adjusted gradually and finally approach to the accurate SOC without accumulation error.

Quick Sensing

A Quick Sensing operation allows the RT9420 to restart sensing and SOC calculation. It has the same behavior as power on. The operation is used to reduce the initial SOC error caused by unwell power-on sequence. A Quick Sensing operation could be performed by either a rising edge on the QS pin or I2C Quick Sensing command to the Control register.

Temperature Compensation

To maximize the SOC performance, the host must measure battery temperature periodically, and compensate the VGCOMP Voltaic-Gauge parameter at least once per minute.

Contact Richtek for instructions for temperature compensation.

ALERT Interrupt

The RT9420 monitors the SOC and reports the alert condition if the SOC change over 1% or if the SOC falls below the SOCLow which is in the Config (0Dh) register.

When alert condition occurs, the RT9420 outputs logic-low to the ALERT pin and sets 1 to the [Alert] bit in the Config register and sets 1 to the corresponding alert flag in the Status register. The only three ways to recover the alert condition is writing 0 to clear [Alert] bit or writing 0 to clear both [SL] and [SC] bit or power on reset. Before the recovery, the [Alert] bit will keep 1 and the ALERT pin will keep logic-low. It can't recover the alert condition by entering sleep mode.

Please note that the SOC low alert detection function is enable when power on.

Sleep Mode

RT9420 will enter sleep mode if host pulls low both SDA and SCL to logic-low at least 2.5s. All operation such as voltage measurement and SOC calculation are halted and power consumption is reduced under 3μA in sleep mode.

Any rising edge of SDA or SCL will transfer IC back to active mode immediately.

The other way to enter sleep mode is write [Sleep] bit in the Config register to 1 through I2C communication, and the only way to exit sleep mode is to write [Sleep] bit to logic 0 or power on reset the IC.
Initialization
The RT9420 can be reset by writing an initialization command to MFA register. The behavior of initialization is the same as power on reset.

i2C Register
The RT9420 supports the following 16-bit i2C registers: VBAT, SOC, Control, Device ID, Config and MFA.

The register writing is valid when all of 16 bits data are transferred; otherwise, the write data will be ignored. The valid register addresses are defined in Table 1. Other remaining addresses are reserved.

Table 1. i2C Register

<table>
<thead>
<tr>
<th>Address (Hex)</th>
<th>Register</th>
<th>Description</th>
<th>Read/Write</th>
<th>Default (Hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>02h-03h</td>
<td>VBAT</td>
<td>It reports voltage measured from the input of VBAT pin.</td>
<td>R</td>
<td>--</td>
</tr>
<tr>
<td>04h-05h</td>
<td>SOC</td>
<td>It reports the SOC result calculated by voltaic-gauge algorithm.</td>
<td>R</td>
<td>--</td>
</tr>
<tr>
<td>06h-07h</td>
<td>Control</td>
<td>It's the command interface for special function such as Quick Sensing.</td>
<td>W</td>
<td>--</td>
</tr>
<tr>
<td>08h-09h</td>
<td>Device ID</td>
<td>It reports the device ID.</td>
<td>R</td>
<td>--</td>
</tr>
<tr>
<td>0Ah</td>
<td>Status</td>
<td>It reports alert status.</td>
<td>R/W 01h</td>
<td></td>
</tr>
<tr>
<td>0Bh</td>
<td>dSOC</td>
<td>It reports approximately incremental SOC in unit of 1% per hour.</td>
<td>R</td>
<td>--</td>
</tr>
<tr>
<td>0Ch-0Dh</td>
<td>Config</td>
<td>The Config register includes the parameter of compensation, setting of sleep mode and SOCLow threshold. It also indicates the alert status.</td>
<td>R/W 321Ch</td>
<td></td>
</tr>
<tr>
<td>0Eh-0Fh</td>
<td></td>
<td>RSVD</td>
<td>W</td>
<td>--</td>
</tr>
<tr>
<td>FEh-FFh</td>
<td>MFA</td>
<td>Manufacturer Access. Sends special commands to the IC for the manufacturing.</td>
<td>W</td>
<td>--</td>
</tr>
</tbody>
</table>

VBAT

The VBAT register is a read only register that reports the measured voltage at VBAT pin. The VBAT is reported in units of 1.25mV. The first report is made after chip POR with 250ms delay and then updates 1s periodically. Figure 1 shows the VBAT register format.

![Figure 1. VBAT Register](image)

SOC

The SOC register is a read only register that returns the relative state of charge of the cell as calculated by the voltaic gauge algorithm. The result is displayed as a percentage of the cell's full capacity. The high byte is reported in units of %. The low byte is reported in units of 1/256%. Figure 2 shows the SOC register format.

![Figure 2. SOC Register](image)

Control

The Control register allows the host processor to send special commands to the IC (Table2). Valid Control register write values are listed as follows. All other Control register values are reserved.

Table 2. Control Register Commands

<table>
<thead>
<tr>
<th>Value</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000h</td>
<td>Quick Sensing</td>
<td>Restart sensing and SOC calculation</td>
</tr>
</tbody>
</table>
Device ID

The Device ID register is a read only register that contains a value indicating the production ID of the RT9420.

dSOC

The dSOC register is a read only register that reports the approximately incremental SOC in units of 1% per hour.

Config

The Config register includes the parameter of compensation, setting of sleep mode and SOCLow threshold. It also indicates the alert status. The format of Config is shown in Figure 3.

VGCOMP is the setting to optimize IC performance for different cell chemistries or temperatures. Contact Richtek for instructions for optimization. The power on reset value for VGCOMP is 32h.

<table>
<thead>
<tr>
<th>Register</th>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0C</td>
<td>7-0</td>
<td>VGCOMP</td>
</tr>
<tr>
<td>0x0D</td>
<td>7</td>
<td>Sleep</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>SCEN</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Alert</td>
</tr>
<tr>
<td></td>
<td>4-0</td>
<td>SOCLow</td>
</tr>
</tbody>
</table>

Figure 3. Config Register

[Sleep]

Writing [Sleep] to logic 1 forces the IC to enter Sleep mode. Writing [Sleep] to logic 0 forces the IC to exit Sleep mode. The power on reset value for [Sleep] is logic 0.

[SCEN]

Writing [SCEN] to logic 1 to enable SOC Change Alert. When SOC Change Alert is enabled, the [SC] flag is set to 1 if SOC is changed at least 1%. The power on reset value for [SCEN] is logic 0.

[Alert]

The [Alert] bit is set by the IC when the alert condition occurs. The [Alert] bit is cleared by either host writing 0 to clear or a reset condition occurs.

The power on reset value for [Alert] is logic 0.

SOCLow

The SOCLow is a 5-bit value for setting the low battery alert threshold and defined as 2’s-complement form. The programming unit is 1% and range is 32% to 1%. (00000 = 32%, 10001 = 15%, 11100 = 4%, 11111 = 1%). The power on reset value for SOCLow is 4% or 1Ch.

MFA

The MFA register allows the host processor to send special commands to the chip for manufacturing.

<table>
<thead>
<tr>
<th>Table 3. MFA Register Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>5400h</td>
</tr>
</tbody>
</table>

Status

The Status register reports the alert status of RT9420. When any alert flag of Status register is set, the [Alert] flag of Config register will be set.

[SC]

The [SC] flag is set when SOC changes at least 1%. The [SC] flag is cleared by either host writing 0 to clear or a reset condition occurs. The power on reset value of [SC] is logic 0.

[SL]

The [SL] flag is set when SOC is lower than SOC threshold set by [SOCLow] bits. The [SL] flag is cleared by either host writing 0 to clear or a reset condition occurs. The power on reset value of [SL] is logic 0.

[RI]

The [RI] flag is set at POR and could be cleared after configuration. The power on reset value of [RI] is logic 1.

<table>
<thead>
<tr>
<th>Register</th>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0A</td>
<td>7-6</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>SL</td>
</tr>
<tr>
<td></td>
<td>3-1</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>RI</td>
</tr>
</tbody>
</table>

Figure 4. Status Register
Figure 5 presents a single cell battery-powered system application. The RT9420 is used on system side and direct powered from the battery.

The RC filter saves the noise for IC power supply and voltage measurement on VBAT pin.

To reduce the I-R drop effect, make the connection of VBAT as close as possible to the battery pack.

The ALERT pin provides a battery low interrupt signal to system processor when capacity low is detected.

The QS pin is unused in this configuration, so it needs to be tied to GND.

I²C Bus Interface

Figure 6 shows the timing diagram of the I²C interface.

The RT9420 communicates with a host (master) by using the standard I²C 2-wire interface. After the START condition, the I²C master sends 8-bit data, consisting of 7-bit slave address and a following data direction bit (R/W).

A byte of data consists of 8 bits ordered MSB first and the LSB followed by the Acknowledge bit.

The RT9420 address is 0110110 (6Ch) and is a receive only (slave) device. The second word selects the register to which the data will be written. The third word contains data to write to the selected register.

Table 4 applies to the transaction formats.
Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula:

\[PD_{\text{MAX}} = \frac{T_{J\text{(MAX)}} - T_A}{\theta_{JA}} \]

where \(T_{J\text{(MAX)}} \) is the maximum junction temperature, \(T_A \) is the ambient temperature, and \(\theta_{JA} \) is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is 125°C. For WDFN-8L 2x3 package, the thermal resistance, \(\theta_{JA} \), is 31.5°C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at \(T_A = 25°C \) can be calculated by the following formula:

\[PD_{\text{MAX}} = \frac{(125°C - 25°C)}{(31.5°C/W)} = 3.17W \text{ for WDFN-8L 2x3 package} \]

The maximum power dissipation depends on the operating ambient temperature for fixed \(T_{J\text{(MAX)}} \) and thermal resistance, \(\theta_{JA} \). The derating curve in Figure 7 allow the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Table 4. 2-Wire Protocol

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>START bit</td>
<td>Sr</td>
<td>Repeated START</td>
</tr>
<tr>
<td>SAddr</td>
<td>Slave address (7bit)</td>
<td>R/W</td>
<td>Read : R/W = 1; Write : R/W = 0</td>
</tr>
<tr>
<td>CAddr</td>
<td>Command address (byte)</td>
<td>P</td>
<td>STOP bit</td>
</tr>
<tr>
<td>Data</td>
<td>Data byte written by master</td>
<td>Data</td>
<td>Data byte returned by slave</td>
</tr>
<tr>
<td>A</td>
<td>Acknowledge bit written by master</td>
<td>A</td>
<td>Acknowledge bit returned by slave</td>
</tr>
<tr>
<td>N</td>
<td>No acknowledge bit written by master</td>
<td>N</td>
<td>No acknowledge bit returned by slave</td>
</tr>
</tbody>
</table>

![Figure 7. Derating Curve of Maximum Power Dissipation](image)

Four-Layer PCB
Layout Considerations

VDD and GND need direct connect to Battery for preventing the affect of I-R drop.

Input filter must be placed as close as possible to the VDD and VBAT.

VDD and GND need direct connect to Battery for preventing the affect of I-R drop.

Connect to GND, if not used.

Input filter must be placed as close as possible to the VDD and VBAT.

Battery PACK

Positive Power Bus

PMIC_VBAT

Negative Power Bus

PMIC_GND

Figure 8. PCB Layout Guide
Outline Dimension

Dimensions in Millimeters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions In Millimeters</th>
<th>Dimensions In Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Min: 0.700 Max: 0.800</td>
<td>Min: 0.028 Max: 0.031</td>
</tr>
<tr>
<td>A1</td>
<td>Min: 0.000 Max: 0.050</td>
<td>Min: 0.000 Max: 0.002</td>
</tr>
<tr>
<td>A3</td>
<td>Min: 0.175 Max: 0.250</td>
<td>Min: 0.007 Max: 0.010</td>
</tr>
<tr>
<td>b</td>
<td>Min: 0.200 Max: 0.300</td>
<td>Min: 0.008 Max: 0.012</td>
</tr>
<tr>
<td>D</td>
<td>Min: 1.900 Max: 2.100</td>
<td>Min: 0.075 Max: 0.083</td>
</tr>
<tr>
<td>D2</td>
<td>Min: 1.550 Max: 1.650</td>
<td>Min: 0.061 Max: 0.065</td>
</tr>
<tr>
<td>E</td>
<td>Min: 2.900 Max: 3.100</td>
<td>Min: 0.114 Max: 0.122</td>
</tr>
<tr>
<td>E2</td>
<td>Min: 1.650 Max: 1.750</td>
<td>Min: 0.065 Max: 0.069</td>
</tr>
<tr>
<td>e</td>
<td>Min: 0.500 Max: 0.500</td>
<td>Min: 0.020 Max: 0.020</td>
</tr>
<tr>
<td>L</td>
<td>Min: 0.350 Max: 0.450</td>
<td>Min: 0.014 Max: 0.018</td>
</tr>
</tbody>
</table>

W-Type 8L DFN 2x3 Package

Note: The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

DETAIL A

Pin #1 ID and Tie Bar Mark Options