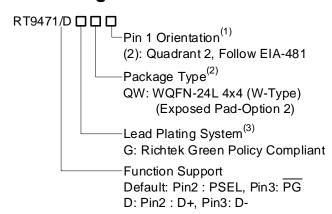


RT9471/D


3A Single Cell Switching Battery Charger

1 General Description

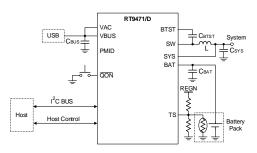
The RT9471/D is a highly-integrated 3A switch mode battery charge management, and system power path management device for single cell Li-lon and Li-Polymer batteries. The low impedance power path optimizes switch-mode operation efficiency, reduces battery charging time, and extends battery life during the discharging phase. The I²C serial interface with charging and system settings makes the device a truly flexible solution.

The recommended junction temperature range is -40° C to 125°C, and the ambient temperature range is -40° C to 85°C.

2 Ordering Information

Note 1.

- Marked with ⁽¹⁾ indicated: Empty means Pin 1 orientation is Quadrant 1.
- Marked with ⁽²⁾ indicated: Compatible with the current requirements of IPC/JEDEC J-STD-020.
- Marked with ⁽³⁾ indicated: Richtek products are Richtek Green Policy compliant.


3 Features

- High Efficiency, 1.5MHz, Synchronous Switch-Mode Buck Charger
 - 92% Charge Efficiency at 2A with 5V Input and 3.8V Battery
 - Support 3.9V to 13.5V Input Voltage Range
 - Average Input Current Regulation (AICR)
 - Minimum Input Voltage Regulation (MIVR)
 - Minimum Input Voltage Regulation Track (MIVR Track)
 - Charge Current Regulation (CCR)
 - Charge Voltage Regulation (CVR)
 - Charge Voltage Regulation Track (CVR Track)
 - Junction Thermal Regulation (JTR)
- Supports USB On-The-Go (OTG)
 - 92% Boost Efficiency at 1A with 3.8V Battery and 5.15V Output
 - OTG Current Limit Regulation (OCLR)
 - OTG Voltage Limit Regulation (OVLR)
- Protection
 - Over-Temperature Protection (OTP)
 - VBUS Overvoltage Protection (VBUS OVP)
 - Battery Overvoltage Protection (VBAT OVP)
 - System Overvoltage Protection (VSYS OVP)
 - System Undervoltage Protection (VSYS UVP)
 - System Over-Load Protection (VSYS OLP)
 - Cycle-by-Cycle Overcurrent Protection (OCP)
 - OTG Low Battery Protection (OTG LBP)

4 Applications

- Smartphones/Tablet PCs
- Personal Information Appliances
- Portable Device and Accessory

5 Simplified Application Circuit

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

RICHTEK

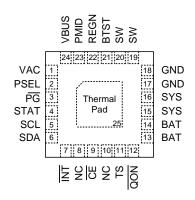
is a registered trademark of Richtek Technology Corporation.

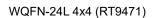
6 Marking Information

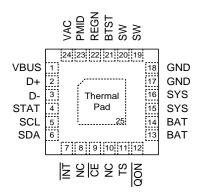
8P=YM DNN

8P=: Product Code YMDNN: Date Code

8Q=: Product Code YMDNN: Date Code


Table of Contents


1	Gener	ral Description1	15	Applic	cation Information	20
2	Order	ing Information1		15.1	Power Up	20
3	Featu	res1		15.2	Watchdog Timer (WDT)	23
4	Applic	cations1		15.3	Power Path Management	23
5	Simpl	ified Application Circuit1		15.4	Battery Charging Management	24
6	Markii	ng Information2		15.5	Status Outputs	30
7	Pin Co	onfiguration4		15.6	Protections	31
8	Funct	ional Pin Description4		15.7	Communicate Interface	33
9	Funct	ional Block Diagram6		15.8	Thermal Considerations	34
	9.1	For the RT94716		15.9	Layout Considerations	34
	9.2	For the RT9471D7	16	Funct	ional Register Description	37
10	Absol	ute Maximum Ratings8	17	Outlin	ne Dimension	50
11	Recor	nmended Operating Conditions8	18	Footp	rint Information	51
12	Electr	ical Characteristics9	19	Packi	ng Information	52
13	Typica	al Application Circuit15		19.1	Tape and Reel Data	52
	13.1	For the RT947115		19.2	Tape and Reel Packing	53
	13.2	For the RT9471D15		19.3	Packing Material Anti-ESD Property	54
14	Typica	al Operating Characteristics17	20	Datas	heet Revision History	55



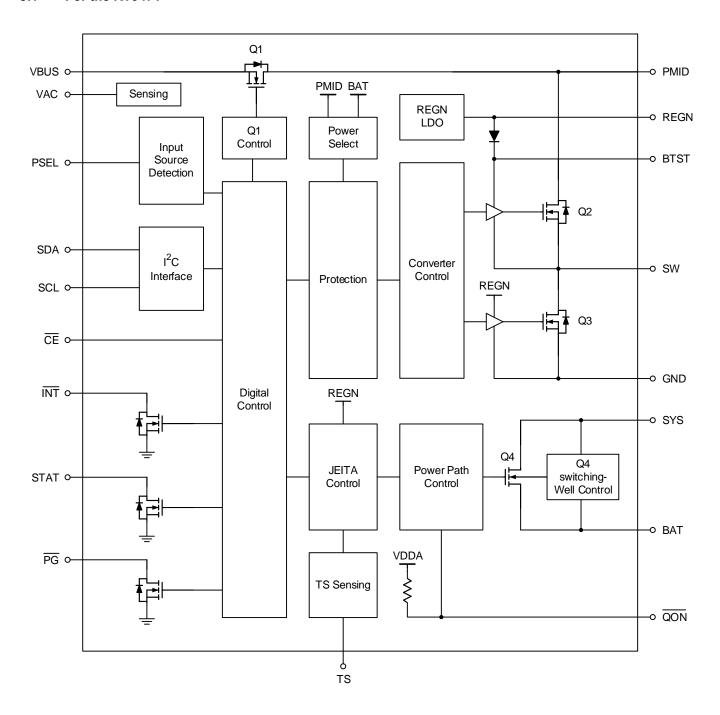
7 Pin Configuration

(TOP VIEW)

WQFN-24L 4x4 (RT9471D)

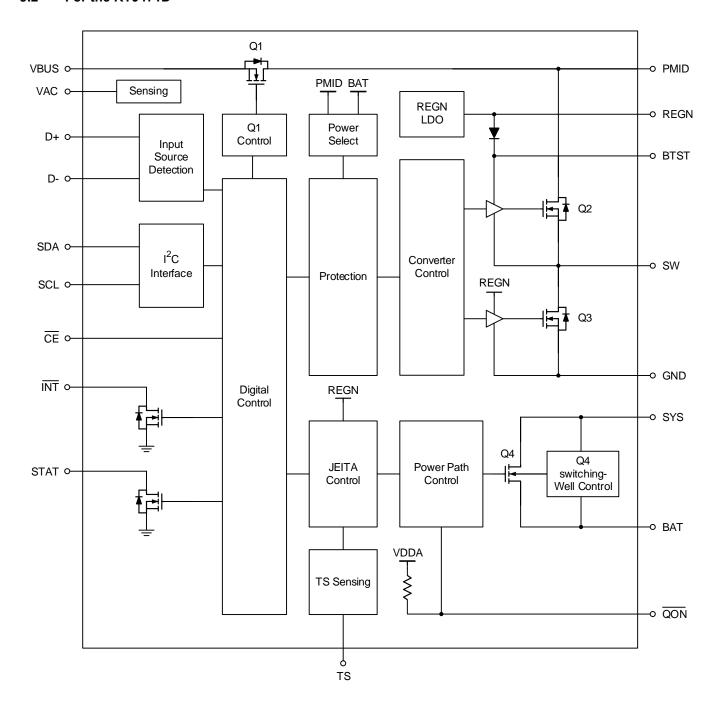
8 Functional Pin Description

Pin No.		Pin Name I/O		Pin Function
RT9471	RT9471D	Pili Naille	1/0	FinFunction
1	24	VAC	Al	Input voltage sensing. This pin must be tied to VBUS.
2		PSEL	DI	Power source selection input. A high level indicates a 0.5A input current limit, while a low level indicates a 2.4A input current limit. Once the device enters host mode, the host can program a different input current limit to the AICR register.
3		PG	DO	Open-drain active-low power-good indicator. Connect the PG $\overline{\text{pin}}$ to a logic rail via a 2.2k Ω to 10k Ω resistor.
	2	D+	AIO	Positive line of the USB data line pair. D+/D- based USB host/charging port detection includes data contact detection (DCD), primary detection, and secondary detection in BC1.2.
	3	D-	AIO	Negative line of the USB data line pair. D+/D- based USB host/charging port detection includes data contact detection (DCD), primary detection, and secondary detection in BC1.2.
4	4	STAT	DO	Open-drain charger status output. Connect the STAT pin to a logic rail via a 2.2k Ω to 10k Ω resistor. The STAT pin indicates the charger status.
5	5	SCL	DI	$\mbox{I}^2\mbox{C}$ interface clock. Connect SCL to the logic rail through a $10\mbox{k}\Omega$ resistor.
6	6	SDA	DIO	$\mbox{I}^2\mbox{C}$ interface clock. Connect SDA to the logic rail through a $10\mbox{k}\Omega$ resistor.
7	7	ĪNT	DO	Open-drain active-low interrupt output. Connect the $\overline{\text{INT}}$ pin to a logic rail through a $10 \text{k}\Omega$ resistor. The $\overline{\text{INT}}$ pin sends an active-low pulse to the host to report charger device status and faults.
8, 10	8, 10	NC		No internal connection.


Pin No. RT9471 RT9471D		Pin Name I/O		Din Function
		Pin Name	2	Pin Function
9	9	CE	DI	Charge enable pin. When this pin is driven low, battery charging is enabled.
11	11	TS AI resistor divider from suspends when the TS the TS pin is not use		Temperature qualification voltage input to support the JEITA profile. Connect a negative temperature coefficient thermistor. Program the temperature window with a resistor divider from REGN to TS to GND. Charging suspends when the TS pin voltage is out of range. When the TS pin is not used, connect a $10 \mathrm{k}\Omega$ resistor from REGN to TS and a $10 \mathrm{k}\Omega$ resistor from TS to GND.
12	12	QON	DI	BATFET (Q4) enable control input. When BATFET is in ship mode, a logic low duration turns on BATFET (Q4) to exit shipping mode. When there is no VBUS, a logic low for tQON_RST turns off the BATFET for tBATFET_RST, and then re-enables BATFET to provide a system reset. Pull-High to the internal bias circuit via a $250 \mathrm{k}\Omega$ resistor.
13, 14	13, 14	BAT	Р	Battery connection point to the positive terminal of the battery pack. The internal current sensing resistor is connected between SYS and BAT. Connect a $10\mu F$ capacitor closely to the BAT pin.
15, 16	15, 16	SYS	Р	Converter output connection point. The internal current sensing resistor is connected between SYS and BAT. Connect two $10\mu F$ capacitors closely to the SYS pin.
17, 18	17, 18	GND	Р	Power ground.
19, 20	19, 20	SW	Р	Switching node connecting to the output inductor. Internally, SW is connected to the source of the high-side switching MOSFET (Q2) and the drain of the low-side switching MOSFET (Q3). Connect a 47nF bootstrap capacitor from SW to BTST.
21	21	BTST	Р	PWM high-side driver positive supply. Internally, BTST is connected to the cathode of the bootstrap diode. Connect the 47nF bootstrap capacitor from SW to BTST.
22	22	REGN	Ρ	PWM low-side driver and internal supply output. Internally, REGN is connected to the anode of the bootstrap diode. Connect a $4.7\mu F$ capacitor from REGN to GND. The capacitor should be placed close to the IC.
23	23	PMID	Р	Connected to the drain of the reverse blocking MOSFET (Q1) and the drain of the high-side switching MOSFET (Q2). Connect a $10\mu F$ capacitor from PMID to GND.
24	1	VBUS	Р	Charger input voltage. The internal reverse block MOSFET (Q1) is connected between VBUS and PMID, with VBUS on the source. Connect a $1\mu F$ capacitor from VBUS to GND and place it as close as possible to the IC.
25 (Exposed Pad)	25 (Exposed Pad)	Thermal Pad	Р	Thermal pad and ground reference. The thermal pad must be connected to GND and well soldered to a large PCB copper area for maximum power dissipation.

DS9471/D-04 May 2024 www.richtek.com

9 Functional Block Diagram


9.1 For the RT9471

DS9471/D-04

9.2 For the RT9471D

May 2024

DS9471/D-04

10 Absolute Maximum Ratings

(Note 2)

Voltage Sense Pin Voltage, VAC	1.4V to 26V
Supply Pin Voltage, VBUS	-1.4V to 26V
Terminal Pin Voltage, PMID	0.3V to 26V
Terminal Pin Voltage, SW	0.3V to 16V
Terminal Pin Voltage, BTST-SW	0.3V to 6V
Terminal Pin Voltage, SYS	0.3V to 6V
Supply Pin Voltage, BAT	0.3V to 6V
• Other Pins Voltage, STAT, SCL, SDA, INT, CE, TS, QON, REGN	0.3V to 6V
Other Pins Voltage for RT9471, PSEL, PG	0.3V to 6V
• Other Pins Voltage for RT9471D, D+, D-	0.3V to 6V
 Power Dissipation, PD @ TA = 25°C 	
WQFN-24L 4x4	- 3.57W
Package Thermal Resistance (Note 3)	
WQFN-24L 4x4, θJA	- 28°C/W
WQFN-24L 4x4, θJC	- 7.1°C/W
• Lead Temperature (Soldering, 10 sec.)	- 260°C
• Junction Temperature	- 150°C
Storage Temperature Range	65°C to 150°C
• ESD Susceptibility (Note 4)	
HBM (Human Body Model)	- 2kV

- Note 2. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 3. θJA is measured under natural convection (still air) at TA = 25°C with the component mounted on a high effective-thermalconductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θ_{JC} is measured at the top of the package.
- Note 4. Devices are ESD sensitive. Handling precautions are recommended.

11 Recommended Operating Conditions

(Note 5)

Voltage Sense Pin Voltage, VAC	- 3.9V to 13.5V
Supply Input Voltage Range, VBUS	- 3.9V to 13.5V
Maximum Input Current, IBUS	- 3.2A
Maximum Input Current, IBUS (VBUS ≥ 12V)	- 2A
Maximum Output Current (SW), ISYS	- 3.2A
Maximum Battery Voltage, VBAT	- 4.7V
Maximum Charge Current, IBAT	- 3.15A

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

- Maximum Discharge Current, IBAT------ 6A

Note 5. The device is not guaranteed to function outside its operating conditions.

12 Electrical Characteristics

(VBUS_MIN_RISE < VAC < VAC_OVP_RISE and VAC > VBAT + VSLEEP_RISE, $T_J = -40^{\circ}C$ to 85°C, unless otherwise specified.) (Note 6)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Quiescent Current							
Battery Discharge Current (BAT) in Q4 Disabled	IBAT_Q4_DIS	VBAT = 4.5V, High-Z mode and I ² C disabled, Q4 disabled	1	15	32	μΑ	
Battery Discharge Current (BAT) in Q4 Enable	IBAT_Q4_EN	$V_{BAT} = 4.5V$, High-Z mode and I^2C disabled, Q4 enabled		55	85	μА	
Input Supply Current	Inuo 1117	VBUS = 5V, High-Z mode and no battery	1	50	86		
(VBUS) in Buck Mode	IBUS_HIZ	V _{BUS} = 12V, High-Z mode and no battery	1	52	88	μΑ	
Input Supply Current (VBUS) in Buck Mode	IBUS_BUCK	VBUS > VBUS_MIN_RISE, VBUS > VBAT, converter switching, VBAT = 3.8V, ISYS = 0A		5	7	mA	
Battery Discharge Current (BAT) in Boost Mode	IBAT_BOOST	V _{BAT} = 4.2V, boost mode, I _{BUS} = 0A, converter switching		4	5	mA	
VAC, VBUS, and BAT Po	wer						
VBUS Operating Range	VBUS_OP	V _B U _S rising	3.9		13.5	V	
REGN Turn Off Level with Only VBUS	VBUS_UVLO	V _B us falling	3.0	3.3	3.6	V	
Sleep Mode Falling Threshold	VSLEEP_FALL	VAC falling, VAC – VBAT	10	60	120	mV	
Sleep Mode Rising Threshold	VSLEEP_RISE	VAC rising, VAC – VBAT	160	250	340	mV	
VAC 5.65V Overvoltage Rising Threshold		VAC rising	5.4	5.65	5.9		
VAC 6.35V Overvoltage Rising Threshold] 	VAC rising	6.1	6.35	6.6		
VAC 10.8V Overvoltage Rising Threshold	VAC_OVP_RISE	VAC rising	10.3	10.8	11.5	V	
VAC 14V Overvoltage Rising Threshold		VAC rising	13.3	14	14.7		

RICHTEK

is a registered trademark of Richtek Technology Corporation.

DS9471/D-04 May 2024

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
VAC 5.65V Overvoltage Hysteresis		Vac falling		300			
VAC 6.35V Overvoltage Hysteresis	VAC OVE UVO	VAC falling		300		- mV	
VAC 10.8V Overvoltage Hysteresis	VAC_OVP_HYS	Vac falling		300		IIIV	
VAC 14V Overvoltage Hysteresis		Vac falling		300			
BAT for Active I ² C, No Adapter	VBAT_UVLO	VBAT rising	1.85	2.2	2.45	٧	
Battery Depletion Falling Threshold	VBAT_DPL_FALL	VBAT falling	2.15	2.38	2.65	V	
Battery Depletion Rising Threshold	VBAT_DPL_RISE	VBAT rising	2.4	2.6	2.8	V	
Battery Depletion Rising Hysteresis	VBAT_DPL_HYS	VBAT rising		220		mV	
Bad Adapter Detection Rising Threshold	VBUS_MIN_RISE	V _B us rising	3.5	3.7	3.9	V	
Bad Adapter Detection Hysteresis	VBUS_MIN_HYS	VBus falling		210		mV	
Bad Adapter Detection Current Source	IBADSRC	Sink current from V _{BUS} to GND		50		mA	
Power Path							
System Regulation	VSYS_MIN	VBAT < VSYS_MIN = 3.5V, Q4 disabled/enable	3.5	3.5 + 0.2			
Voltage	Vsys	Isys = 0A, VBAT > VSYS_MIN = 3.5V, Q4 disabled		VBAT + 0.06		V	
Top Reverse Blocking MOSFET On-Resistance Between VBUS and PMID	Ron(Q1)			28		mΩ	
Top Switching MOSFET On-Resistance Between PMID and SW	Ron(Q2)	VREGN = 5V		42		mΩ	
Bottom Switching MOSFET On-Resistance Between SW and GND	Ron(Q3)	VREGN = 5V		44		mΩ	
SYS-BAT MOSFET On- Resistance	RON(BAT-SYS)	Measured from BAT to SYS, VBAT = 4.2V		18	25	mΩ	
Battery Charger							
Charge Voltage Range	VBAT_REG_RANGE	Default = 4.2V	3.9		4.7	V	
Charge Voltage Step	VBAT_REG_STEP			10		mV	
Charge Voltage Setting Accuracy	VBAT_REG_ACC	$T_J = 25^{\circ}C$ $T_J = -40^{\circ}C \text{ to } 85^{\circ}C$	-0.4 -0.8		0.4	%	
Charge Current Regulation Range	ICHG_REG_RANGE	Default = 2000mA	0		3150	mA	

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Charge Current Regulation Step	ICHG_REG_STEP			50		mA	
		VBAT = 3.8V, ICHG_REG = 50mA	30		75		
		VBAT = 3.8V, ICHG_REG = 100mA	70		135		
Charge Current Regulation Accuracy	ICHG_REG_ACC	VBAT = 3.8V, ICHG_REG = 600mA	540		660	mA	
r togulation / toouraby		VBAT = 3.8V, ICHG_REG = 1300mA	1235		1365		
		VBAT = 3.8V, ICHG_REG = 1500mA	1425		1575		
Pre-Charge Falling Threshold	VPRE_CHG_FALL	ICHG = 200mA, VPRE_CHG = 3.1V	2.75	2.9	3.05	V	
Pre-Charge Rising Threshold	VPRE_CHG_RISE	Pre-charge to fast charge, VPRE_CHG = 3.1V	2.95	3.1	3.25	V	
Pre-Charge Current Range	IPRE_CHG_RANGE	Default = 150mA	50		800	mA	
Pre-Charge Current Step	IPRE_CHG_STEP			50		mA	
Pre-Charge Accuracy	IPRE_CHG_ACC	VBUS = 5V, IPRE_CHG = 150mA	100		200	mA	
End-Of-Charge Current Range	IEOC_CHG_RANGE	Default = 200mA	50		800	mA	
End-Of-Charge Current Step	IEOC_CHG_STEP			50		mA	
	y IEOC_CHG_ACC	ICHG_REG > 700mA, IEOC_CHG = 200mA, VBAT = 4.2V	160		240	mA	
End-Of-Charge Accuracy		ICHG_REG ≤ 700mA, IEOC_CHG = 200mA, VBAT = 4.2V	175		225		
		ICHG_REG = 600mA, IEOC_CHG = 50mA, VBAT = 4.2V	37.5		62.5		
Trickle-Charge Falling Threshold	VTRICKLE_CHG_ FALL	VBAT falling	1.8	2	2.2	٧	
Trickle-Charge Rising Threshold	VTRICKLE_CHG_ RISE	VBAT rising	2.05	2.25	2.45	V	
Trickle-Charge Current	ITRICKLE_CHG	VBAT < VTRICKLE_CHG_RISE	70	100	135	mA	
Re-Charge Threshold	N==	VBAT falling, VRECHG = 100mV	60	100	140	>/	
Below VBAT_REG	VRE_CHG	VBAT falling, VRECHG = 200mV	160	200	240	mV	
System Discharge Load Current	ISYS_LOAD	Vsys = 4.2V		30		mA	
Input Voltage and Curre	nt Regulation		•		•	•	
Minimum Input Voltage Regulation Range	VMIVR_RANGE	Default = 4.5V	3.9		5.4	V	
Minimum Input Voltage Regulation Step	VMIVR_STEP			100		mV	
Minimum Input Voltage Regulation Accuracy	VMIVR_ACC	VMIVR = 3.9V and 4.5V	-1.5		1.5	%	
MIVR Tracking VBAT	VMIVR_BAT_TRACK	VMIVR = 3.9V, VMIVR_BAT_TRACK = 300mV, VBAT = 4V		4.3		V	

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
MIVR Tracking VBAT Accuracy	VMIVR_BAT_TRACK _ACC		-3		3	%	
Average Input Current Regulation Range	IAICR_RANGE	Default = 0.5A	0.05		3.2	Α	
Average Input Current Regulation Step	IAICR_STEP			50		mA	
		VBUS = 5V, IAICR = 500mA	450		500		
Average Input Current Regulation Accuracy	IAICR_ACC	V _{BUS} = 5V, I _{AICR} = 900mA	780		900	mA	
		VBUS = 5V, IAICR = 1500mA	1300		1500		
BAT Overvoltage Protec	tion						
Battery Overvoltage Rising	VBAT_OVP_RISE	VBAT rising, as percentage of VBAT_REG	103	104	105	%	
Battery Overvoltage Falling	VBAT_OVP_FALL	VBAT falling, as percentage of VBAT_REG	101	102	103	%	
Input Reverse Blocking	NFET and Regulati	on					
Junction Thermal Regulation Range	TJ_THREG_RANGE	Default = 120°C	100		120	°C	
Junction Thermal Regulation Step	TJ_THREG_STEP			20		°C	
Thermal Shutdown Rising	Тотр	Temperature rising		160		°C	
Thermal Shutdown Hysteresis	TOTP_HYS	Temperature falling		30		°C	
NTC Monitor (Charger M	ode)						
Battery Temperature COLD Threshold (0°C)	VVTS_COLD	VTS rising, the ratio of VREGN	72.5	73.5	74.5	%	
Battery Temperature COOL Threshold (10°C)	VVTS_COOL	VTS rising, the ratio of VREGN	67.5	68.5	69.5	%	
Battery Temperature WARM Threshold (45°C)	VVTS_WARM	VTS falling, the ratio of VREGN	44	45	46	%	
Battery Temperature HOT Threshold (60°C)	Vvts_hot	VTS falling, the ratio of VREGN	33.5	34.5	35.5	%	
Battery Temperature Hysteresis	VVTS_HYS			1.5		%	
NTC Monitor (OTG Mode)							
Battery Temperature COLD Threshold OTG mode (-20°C)	Vvts_cold_otg	VTS rising, the ratio of VREGN	79	80	81	%	
Battery Temperature HOT Threshold OTG mode (60°C)	Vvts_hot_otg	VTS falling, the ratio of VREGN	33.5	34.5	35.5	%	
Battery Temperature Hysteresis OTG mode	VVTS_HYS_OTG			1.5		%	

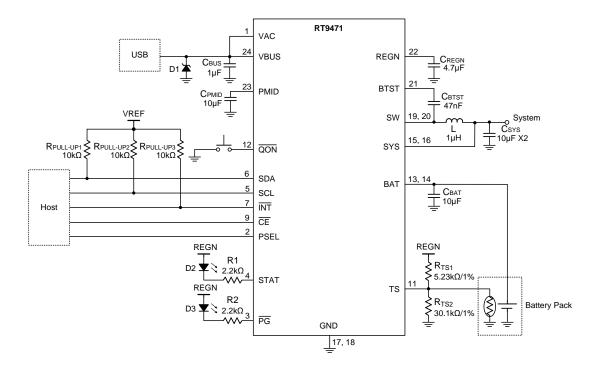
RT9471/D

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Charger Overcurrent Th	reshold					
UGFET Cycle-by-Cycle Overcurrent Threshold	IOCP_UG		4.9	6.6	8.2	А
System Over-Load Threshold	IOCP_BATFET		5.8			А
USB On-The-Go (OTG)						
		VBAT falling, VOTG_LBP = 2.8V	2.65	2.8	2.95	
OTG Low Battery	Voza 155	VBAT rising, VOTG_LBP = 2.8V	2.75	2.9	3.05	$ $ $_{\vee} $ $ $
Protection	VOTG_LBP	VBAT falling, VOTG_LBP = 2.5V	2.35	2.5	2.65]
		VBAT rising, VOTG_LBP = 2.5V	2.45	2.6	2.75	
OTG Voltage Limit Regulation Range	VOTG_CV_RANGE	Default = 5.15V	4.85		5.3	V
OTG Voltage Limit Regulation Step	VOTG_CV_STEP			150		mV
OTG Voltage Limit Regulation Accuracy	VOTG_CV_ACC	VBAT = 3.8V, IPMID = 0A, VOTG_REG = 5.15V	-3		3	%
OTG Current Limit	Іотд_сс	IOTG_LIMIT_REG_SEL = 1.2A	1.2	1.4	1.6	۸
Regulation Accuracy		IOTG_LIMIT_REG_SEL = 0.5A	0.5	0.6	0.7	Α
OTG Overvoltage Threshold	VOTG_OVP	VAC rising, VAC_OVP = 6.35V	6.1	6.35	6.6	V
PWM						
PWM Switching	fsw_buck	Oscillator frequency, buck mode	1350	1500	1650	kHz
Frequency	fsw_boost	Oscillator frequency, boost mode	1350	1500	1650	KI IZ
Maximum PWM Duty Cycle	DMAX		-	97		%
REGN						
REGN LDO Output	VREGN	VBUS = 9V, IREGN = 40mA	4.5	4.9 5.3		V
Voltage	VICEON	VBUS = 5V, IREGN = 20mA	4.5	4.9	5	V
Control I/O Pin (CE, PSE	L, SCL, and SDA)					
Input High Threshold Voltage	VIH_CTRL		1.3			V
Input Low Threshold Voltage	VIL_CTRL				0.4	V
High Level Leakage Current	IBIAS	Pull high to 1.8V			1	μА
Control I/O Pin (PG, STA	T, and INT)					
Output Low Threshold Voltage	VOL_CTRL				0.4	V
INT Pull Low Time	tINT_PULL_LOW	INT pull low time	1	256		μS
D+/D- Detection						
Data Detect Voltage	VDAT_REF		0.25	0.325	0.4	V
D- Current Sink	IDISNK		50	100	150	μА

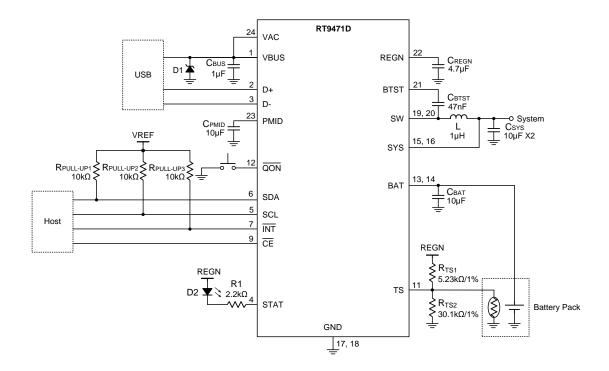
Copyright © 2024 Richtek Technology Corporation. All rights reserved.

DS9471/D-04 May 2024 www.richtek.com

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
D+D- Leakage Current	ID+DLKG		-1		1	μΑ	
D- Pulldown for Connection Check	RD19K		14.25	19.53	24.8	kΩ	
D+D- Threshold for Non- Standard Adapter (1.2V)	VD+D1P2			1.2		V	
D+D- Threshold for Non- Standard Adapter (2.0V)	VD+D2P0			2		V	
D+D- Threshold for Non- Standard Adapter (2.8V)	VD+D2P8			2.8		V	
Timing Requirements							
VAC OVP Reaction Time	tVAC_OVP	(Note 6)		200		ns	
Bad Adapter Detection Duration	tBAD_AD_ DETECTION			30		ms	
Deglitch Time for Charger EOC	tEOC_DGL			256		ms	
Deglitch Time for Re- Charge	tre_chg_dgl			256		ms	
Charge Safe Timer	tCHG_SAFE_TMR	Timer = 10hr	9	10	11	hr	
Back-Ground Charge Timer	tBG_CHG_TMR	Timer = 30min	29	30	31	min	
QON Timing							
QON Low Time to Exit Shipping Mode	tshipmode_exit		0.9	1.1	1.3	s	
QON Low Time to Reset System	tQON_RST		9	10	11	s	
BATFET Reset Time	tBATFET_RST		430	453	480	ms	
Enter Shipping Mode Delay Time	tship_mode_ enter		11	12	13	S	
I ² C Clock and Watchdog Timer							
SCL Clock	fect	CB ≤ 100pF			3.4	MHz	
	fscl 1	100pF < CB ≤ 400pF			1.7	IVIMZ	
Watchdog Timer	twdt	Default = 40s		40		s	
Watchdog Reset Wait Time	twdt_wait			500		ms	


Note 6. Specification is guaranteed by design and/or correlation with statistical process control.

13 Typical Application Circuit


13.1 For the RT9471

(Refer to Table 2 for PSEL Detect Setting Result)

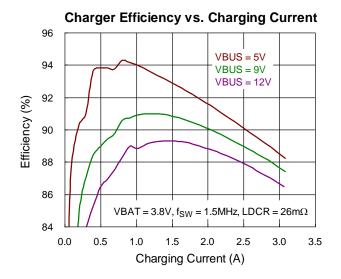
13.2 For the RT9471D

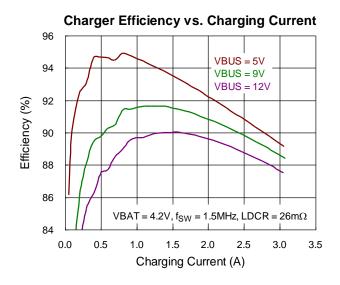
(Refer to Table 3 for D+/D- Detect Setting Result)

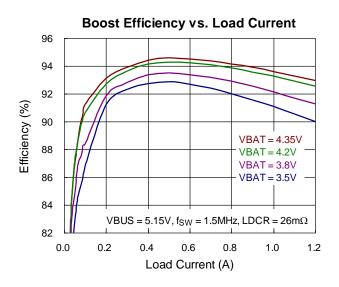
RICHTEK

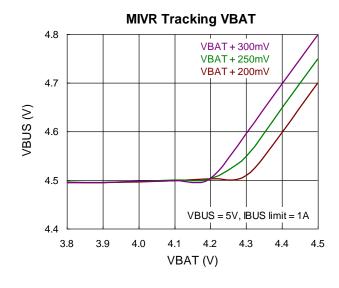
May 2024

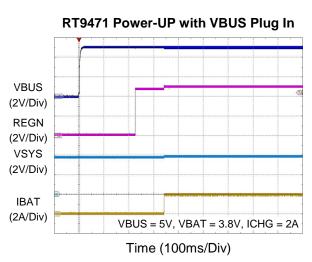
DS9471/D-04

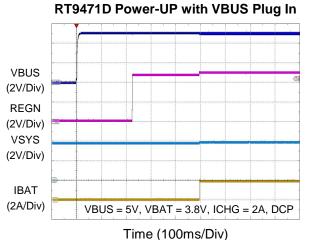



Table 1. Recommended Components Information


Name	Part Number	Description	Package	Manufacturer
CBUS	GRM155R61E105KA12	1μF/25V/X5R	0402	muRata
СРМІО	GRM188R61E106MA73	10μF/25V/X5R	0603	muRata
Свтѕт	GRM033R61C473KE84	47nF/16V/X5R	0201	muRata
Csys	GRM185R60J106ME15	10μF/6.3V/X5R	0603	muRata
Сват	GRM185R60J106ME15	10μF/6.3V/X5R	0603	muRata
CREGN	GRM155R60J475ME47	4.7μF/6.3V/X5R	0402	muRata
L	CIGT252010EH1R0MNE	1μΗ/20%	2.5 x 2.0 x 1.0mm	Samsung
D1	PTVSHC3N12VU	TVS Diode	DFN2x2-3L	Prisemi



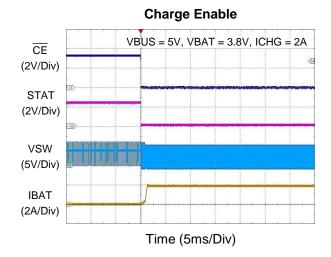

14 Typical Operating Characteristics

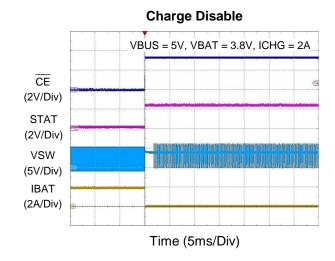


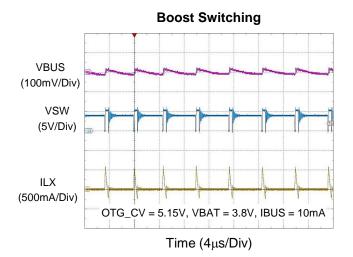
Copyright © 2024 Richtek Technology Corporation. All rights reserved.

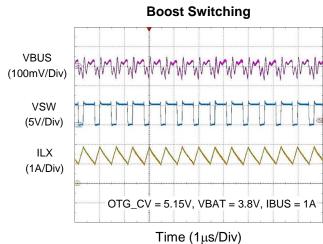
RICHTEK

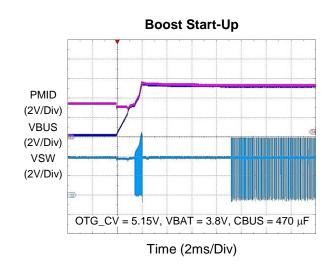
is a registered trademark of Richtek Technology Corporation.

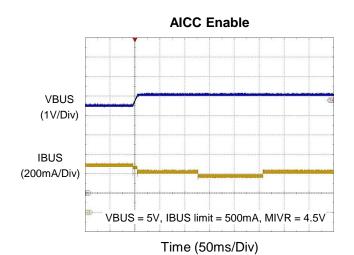

DS9471/D-04 May 2024 www.richtek.com






DS9471/D-04





eserved. RICHTEK

is a registered trademark of Richtek Technology Corporation.

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

DS9471/D-04 May 2024 www.richtek.com

15 Application Information

(Note 7)

15.1 **Power Up**

15.1.1 Power-On-Reset (POR)

Upon power-up, the device initiates its internal bias circuits using the higher voltage sources: VBUS or VBAT. The Power-On-Reset sequence begins when VBUS exceeds 1.8V, or when VBAT rises above VBAT UVLO. Once the POR sequence starts, the I²C interface becomes operational, allowing for communication. Simultaneously, all registers are reset to the default values.

Device Power Up from Battery Only 15.1.2

When a battery is connected and the voltage at VBAT exceeds the threshold VBAT_DPL_RISE, the BATFET is activated. The activation connects VBAT to VSYS. The REGN stays off to minimize the quiescent current. The low quiescent current on VBAT and the low RDS(ON) of the BATFET reduce the device power consumption and conduction losses, thereby extending the battery life.

The device continuously monitors the discharge current passing through the BATFET in Battery Supply Mode. If the system experiences an overload or a short circuit condition (IBAT > IBATFET OCP), the device immediately deactivates the BATFET and sets BATFET_DIS = 1. This action initiates Shipping Mode, which persists until VBUS is reconnected or specific procedures are followed to exit Shipping Mode to reactivate the BATFET.

Device Power Up from VBUS 15.1.3

When VBUS is connected, the device initiates the power-up sequence as follows:

- 1. Activate the REGN LDO.
- 2. Initiate Poor Source Detection.
- 3. Determine PORT_STAT based on PSEL or the type of input source, and configure the default setting of the Average Input Current Regulation (AICR) register.
- 4. Set the Minimum Input Voltage Regulation (MIVR) setting.
- 5. Engage the Buck Converter.

15.1.4 Power-Up REGN LDO

The REGN LDO provides power to the gate drives of both high-side and low-side MOSFETs. Additionally, it supplies bias to the external TS resistor and the pull-up rail for the STAT pin. The REGN is activated under the following conditions:

- 1. VAC exceeds VBAT + VSLEEP_RISE in buck mode, or the OTG bit is set in boost mode.
- 2. After a delay of 220ms, VAC remains above VBAT + VSLEEP RISE.
- 3. The REGN LDO is deactivated when the device enters HZ mode, sleep mode, experiences VBUS overvoltage, or when OTG is disabled.

15.1.5 Poor Source Detection

After REGN is powered up, the device evaluates the current capability of the input source. The input source must meet the following requirements to enable the buck converter.

- VBUS must be below the VAC_OVP_RISE threshold.
- 2. VBUS must be above the VBUS_BAD_ADP threshold, which then triggers the device to pull IBADSRC (typical = 40mA).

When the input source satisfies these conditions, the ST_VBUS_GD and the FL_VBUS_GD signals go high, and the device generates a pulse on the $\overline{\text{INT}}$ pin to trigger an interrupt on the host. If ST_VBUS_GD does not go high, the device will retry the poor source detection process every 2 seconds.

15.1.6 VBUS Source Type Detection

After ST_VBUS_GD goes high, the device initiates VBUS source type detection (for the RT9471D) or checks the status of the PSEL pin (for the RT9471). After the detection process is completed, both ST_CHG_RDY and FL_CHG_RDY signals turn to high, and the INT pin pulsed to interrupt the host system.

Then the following registers are changed:

- 1. The Average Input Current Regulation (AICR) register is automatically changed to the result of the VBUS source type detection or the PSEL pin status, provided that AUTO_AICR = 1.
- 2. The PORT_STAT bit is revised to indicate the detected VBUS source type.

15.1.7 Average Input Current Regulation (AICR)

The charger input current is limited by the AICR register with a range from 50mA to 3.2A and a resolution 50mA.

- If the AUTO_AICR bit is set to 0, the device cannot adjust the AICR value automatically after detecting the VBUS source type.
- The host can overwrite the AICR register to set a new input current limit.
- For the RT9471, the PSEL value updates the AICR settings. In the RT9471D, the AICR is updated according to Table 2 or based on D+/D- line detection (including standard USB BC 1.2). Refer to Table 3.
- In the RT9471, the AICR is updated in real-time with changes to the PSEL value.
- In the RT9471D, the AICR is updated by the D+/D- detection value after BC12_EN is disabled and then re-enabled, or when VBUS is reconnected.

Table 2. AICR Setting from PSEL

PSEL Pin	AICR Setting	PORT_STAT
High	0.5 A	1101
Low	2.4 A	1111

RICHTEK is a registered trademark of Richtek Technology Corporation.

Table 3. AICR Setting from D+/D- Detection

Detection	AICR Setting	PORT_STAT
Device 1	2.1A	1000
Device 2	2A	1001
Device 3	1A	1010
Device 4	2.4A	1011
Unknown/NSDP	0.5A	1100
SDP	0.5A	1101
CDP	1.5A	1110
DCP	2.4A	1111

15.1.8 Minimum Input Voltage Regulation (MIVR)

The MIVR function is designed to prevent input voltage drops that occur when the input power source cannot provide sufficient current. The VBUS voltage decreases to the level set by the VMIVR setting level when an overcurrent condition arises from the input power source. The default value of the VMIVR register is 4.5V. The value can be adjusted via the I²C interface, with a range from 3.9V to 5.4V in increments of 0.1V. Additionally, the device provides a MIVR tracking function that can be enabled through the VMIVR_BAT_TRACK register bits. When this tracking function is enabled, the MIVR will be set to the higher value between the VMIVR register setting and the VBAT+VMIVR_BAT_TRACK offset.

15.1.9 Buck Converter Power-Up

After the AICR is set, the converter is enabled, initiating the switching process. BATFET remains active unless the charger is disabled (CHG_EN = 0) or the device enters shipping mode (BATFET_DIS = 1).

The device integrates a synchronous PWM controller with a 1.5MHz switching frequency for high-accuracy current and voltage regulation. Additionally, the device supports PFM control to enhance efficiency under light-load conditions. The BUCK_PFM_DIS register bit allows users to disable PFM operation in the buck converter configuration.

15.1.10 Boost Mode Operation (OTG)

The device supports OTG (On-The-Go) mode by utilizing a boost converter to facilitate power delivery from the battery to other portable devices. The maximum output current in boost mode is 1.2A, which satisfies the USB OTG requirement of 500mA.

The boost operation can be enabled by the following conditions:

- 1. VBAT must be above the VOTG LBP threshold.
- 2. VBUS must be less than VBAT + VSLEEP_FALL value.
- 3. OTG_EN must be set to high.
- 4. The voltage at the TS pin must be within the acceptable range, specifically VvTs_HOT < VTS < VvTs_COLD.
- 5. A 30ms delay must pass after setting OTG_EN to high before the boost converter powers up.

In boost mode, the IC_STAT register bits are updated to 1111, the VBUS output voltage is 5.15V, and the output limit current is 1.2A by default. Both the output voltage (OTG_CV) and the output current limit (OTG_CC) can be configured via I²C. The boost output remains active as long as VBAT stays above the Votg_LBP threshold.

23

Watchdog Timer (WDT) 15.2

When the device is controlled by the host, most of the registers can be programmed by the host. The host must write WDT_CNT_RST = 1 to reset the counter before the watchdog timeout, and it can also disable the WDT function by setting the WDT bits to 00.

When the watchdog timer expires, ST WDT and FL WDT go high, and the INT pin is pulsed to interrupt the host. After a delay of 512ms, the related registers are reset to their default values (refer to Functional Register Description for details). If the device is in a watchdog timeout status, the host can write to any registers or set WDT_CNT_RST = 1 to reset the counter.

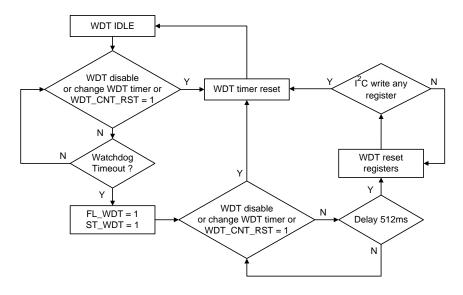


Figure 1. WDT Flow Chart

15.3 **Power Path Management**

The device provides an automatic power path selection mechanism that enables the system power supply (VSYS) to be sourced from either VBUS, VBAT (battery), or both.

15.3.1 Entering Shipping Mode (BATFET Disable)

To extend the battery life during shipping or storage, the device can disable BATFET to minimize the battery leakage current. The host can configure the BATFET_DIS bit to disable BATFET immediately, or set the BATFET_DIS_DLY bit to introduce a delay tSHIP_MODE_ENTER before disabling the BATFET.

15.3.2 Exiting Shipping Mode (BATFET Enable)

When the device is in shipping mode, one of the following methods can be used to exit shipping mode and restore power to the system:

- 1. Connect VBUS.
- 2. Set the BATFET_DIS bit to 0.
- Set the REG_RST bit to reset all registers to their default values.
- 4. Activate the QON pin by transitioning it from high to low for a duration exceeding tshipmode exit.

is a registered trademark of Richtek Technology Corporation. DS9471/D-04 May 2024 www.richtek.com

15.3.3 **QON** Pin Operations

The QON pin serves two functions to control BATFET.

- 1. BATFET Enable: Transitioning the $\overline{\text{QON}}$ pin from high to low for a duration exceeding the tshipmode_exit deglitch time threshold will turn on BATFET, allowing the device to exit shipping mode.
- 2. SYSTEM Reset: If the QON pin transitions from high to low for a duration exceeding the tQON_RST deglitch time threshold, and if VBUS is not connected, BATFET is turned off for tBATFET_RST. Subsequently, BATFET is re-enabled. This functionality allows the system connected to VSYS to perform a power-on reset. This feature can be deactivated by setting the QON_RST_EN bit to 0.

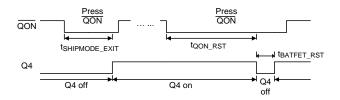


Figure 2. QON Timing

15.4 Battery Charging Management

The device supports a maximum charge current of 3.15A and incorporates an $18m\Omega$ BATFET to enhance charging efficiency and reduce voltage drop during battery discharge.

15.4.1 Charging Cycle

When battery charging is enabled (the \overline{CE} pin is set to low and CHG_EN = 1), the device autonomously completes a charging cycle without host controls. The default parameters for the device are detailed in $\underline{Table\ 4}$. Additionally, the host can modify the charging parameters via I^2C .

Default Mode	RT9471/D	
Charging Voltage	4.2V	
Charging Current	2A	
Pre-Charge Current	150mA	
End of Charge (EOC) Current	200mA	
Temperature Profile	JEITA	
Fast Charge Safety Timer	10 Hours	

Table 4. Default Charging Parameters

A charging cycle starts with the following conditions:

- 1. The buck converter initiates operation.
- 2. Battery charging is enabled (the \overline{CE} pin is low, CHG_EN = 1, and ICHG_REG is not 0mA).
- 3. There are no thermal faults detected on TS.
- 4. There is no safety timer fault.
- 5. BATFET is active (BATFET_DIS = 0).

The charger reaches the end-of-charge status when the charging current falls below the EOC current threshold, the battery voltage exceeds the recharge voltage threshold, and the device is not in AICR, MIVR, or thermal regulation.

If the battery voltage drops below the recharge threshold (threshold setting through the VRE_CHG register bits), the device automatically initiates a new charging cycle. Once charging is complete, a new charging cycle can be started by toggling either the $\overline{\text{CE}}$ pin or the CHG_EN bit.

15.4.2 Battery Charging Profile

The device charges the battery in five statuses: trickle charge, pre-charge, constant current, constant voltage, and back-ground charge (optional).

Current Parameter	Default Current Setting	IC_STAT
ITRICKLE_CHG	100mA	0010
IPRE_CHG	150mA	0011
ICHG_REG	2A	0100
IEOC_CHG	200mA	0111

Table 5. Charging Current Setting

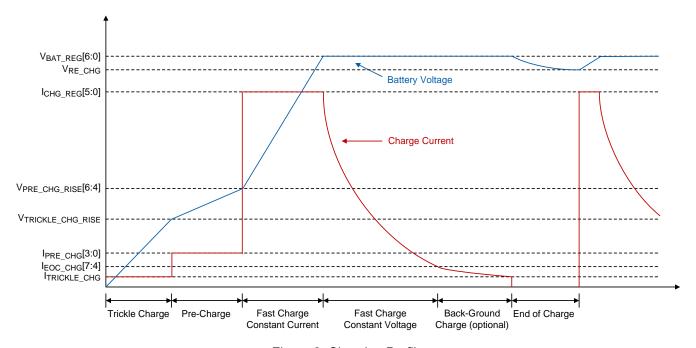


Figure 3. Charging Profile

15.4.3 End of Charge (EOC)

The charger enters the end of charge status when the battery voltage exceeds the recharge threshold and the charge current falls below IEOC_CHG. The IEOC_CHG can be set within a range from 50mA to 800mA in increments of 50mA. Upon reaching EOC, the BATFET is turned off with TE = 1 and BG_CHG_TMR = 00. Meanwhile, the buck converter continues to switch, providing power to the system. The BATFET will be re-enabled when the battery voltage drops below the recharge voltage threshold or when the device enters Battery Supply Mode during EOC.

When EOC is triggered, there are four conditions:

RICHTEK is a registered trademark of Richtek Technology Corporation.

Table 6. E00 Status Scenario				
	TE = 1 BG_CHG_TMR (Disable)	TE = 1 BG_CHG_TMR (Counting)	TE = 1 BG_CHG_TMR (Timeout)	TE = 0 BG_CHG_TMR (Disable)
ST_EOC	1	1	1	1
ST_CHG_DONE	1	0	1	0
ST_BG_CHG	0	1	0	0
STAT Pin	High	High	High	Low
IC_STAT	0111	0110	0111	0101
BATFET	OFF	ON	OFF	ON

Table 6. EOC Status Scenario

- 1. If the device triggers AICR, MIVR, JEITA, or thermal regulation status during charging, the actual charging current will be less than the programmed value. In this condition, the EOC function will be disabled, and the safety timer's counting rate will be halved.
- 2. Background charging can be initiated after EOC detection. To enable background charging, set both BG_CHG_TMR and TE = 1. When background charging is active, IC_STAT is set to 0110, and the BATFET will turn off once the background charge timer expires.
- 3. The BG_CHG_TMR is reset under any of the following conditions:
 - CHG_EN is disabled and then re-enabled.
 - · EOC status is triggered again.
 - EOC_RST bit is set.
 - REG_RST bit is set.
 - The value of BG_CHG_TMR changes.

An INT pulse is sent to the host upon entering background charge mode and when the background charge timer expires.

15.4.4 Optimized VDS on BATFET

The device incorporates a power path function featuring a BATFET that separates system from the battery. The minimum system voltage is determined by the VSYS_MIN bits (default 3.5V).

When the battery voltage exceeds VSYS_MIN, the BATFET is fully activated to minimize RDS(ON), thereby optimizing VDS (voltage difference between VSYS and VBAT) on the BATFET.

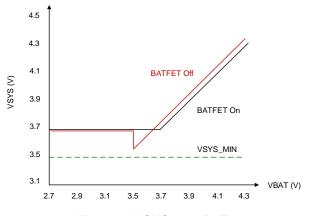


Figure 4. VSYS vs. VBAT

DS9471/D-04

When the BATFET is off and the battery voltage is above VSYS MIN, the system voltage is regulated to be typically 50mV higher than the battery voltage. The status register ST SYS MIN = 1 to indicate that the system is operating under the minimum system voltage regulation.

15.4.5 Power Management System

To apply the maximum current and avoid overloading the power source on VBUS, the device's Power Management System continuously monitors the voltage and current of the power source. If the power source becomes overloaded, indicated by the current exceeding the AICR limit or the voltage dropping below MIVR, the device will reduce the charging current to prioritize power for the system's operations.

If the charging current is reduced to zero and the power source still triggers the AICR or MIVR conditions, VSYS begins to drop. Once VSYS falls below VBAT, the device automatically switches to battery supply mode. In this mode, the BATFET turns fully on, and the battery starts to discharge so that the system is supported from both the battery and the power source.

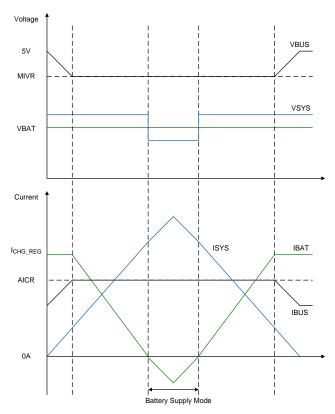


Figure 5. Power Management System

15.4.6 **Battery Supply Mode**

When the voltage difference between VBAT and VSYS is above 50mV, the BATFET turns on, and the BATFET gate is regulated to keep VBAT-VSYS at 40mV to prevent frequent entry and exit from the battery supply mode. When the voltage of VBAT-VSYS drops below 0mV, the charger exits the battery supply mode and starts to charge the battery.

JEITA Protection During Charge Mode 15.4.7

The device incorporates a dedicated thermistor input for precise temperature monitoring.

To ensure battery thermal protection, the device adheres to the JEITA guidelines established in 2007.

DS9471/D-04 May 2024 www.richtek.com

is a registered trademark of Richtek Technology Corporation.

To initiate a charging cycle, the voltage on the TS pin must fall within the T1 to T4 range. The device will stop charging if the battery temperature drops below T1 (Cold) or rises above T4 (Hot) when JEITA_COLD = 0 and JEITA_HOT = 0

In this case, the IC_STAT = 1000 to signal a charging fault, and an $\overline{\text{INT}}$ will be sent to the host.

In the cool temperature range (T1 to T2), the charge current is reduced to either 50% or 25% of ICHG_REG, as determined by JEITA_COOL_ISET.

In the warm temperature range (T3 to T4), the voltage setting of VBAT_REG is lowered to 4.1V or maintained at the VBAT_REG value, as determined by JEITA_WARM_VSET.

The device offers configuration options that exceed the standard JEITA requirements for added flexibility.

Within the cool temperature range (T1 to T2), the charger can set the voltage of VBAT_REG down to 4.1V, as set by JEITA_COOL_VSET.

Within the warm temperature range (T3 to T4), the charge current can be reduced to 50% of ICHG_REG, as set by JEITA_WARM_ISET.

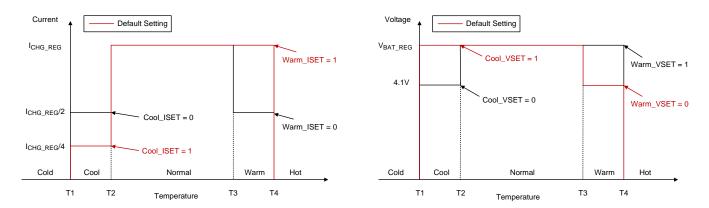


Figure 6. JEITA Protect for Charging Current and Voltage

The JEITA protection feature is comprised of four sections. Herein, RHOT represents the NTC resistance at the battery over-temperature threshold, and RCOLD represents the NTC resistance at the battery under-temperature threshold. Based on RHOT and RCOLD, RTS1 and RTS2 can be calculated using equations (1) and (2).

$$R_{TS1} = V_{REGN} \times [(1/V_{T1} - 1/V_{T4})/(1/R_{COLD} - 1/R_{HOT})].....(1)$$

$$R_{TS2} = R_{TS1} \times [1/(V_{REGN} / V_{T1} - R_{T1} / R_{COLD} - 1)].....(2)$$

15.4.8 Thermal Protect During Boost Mode

To initiate boost mode to discharge from the battery, the voltage on the TS pin must fall within the T0 to T4 range. The device will stop the converter if the battery temperature falls below T0 (COLD_OTG) or rises above T4 (HOT_OTG). In this case, the IC_STAT = 1000 for a charge fault, and an INT is asserted to the host.

Once the temperature re-enters the normal range, the boost mode will resume.

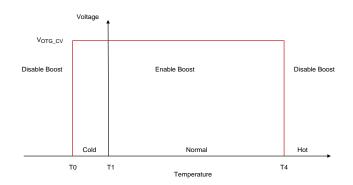


Figure 7. Thermal Protect During Boost Mode

15.4.9 Charging Safety Timer

The device incorporates a safety timer to prevent abnormal charging times due to a poor battery condition. The device can be set with the CHG_SAFE_TMR bits to change the timer for the fast charge cycle. When the safety timer expires, several events occur to ensure device safety. Firstly, the device stops charging process. Then, the IC_STAT becomes 1000 to indicate a charge fault. Simultaneously, ST_CHG_TOUT is set to 1. Finally, an INT is asserted to the host. The safety timer can be disabled by setting CHG_SAFE_TMR_EN to 0.

VBAT Safety Timer

< VPRE_CHG 2 Hours

> VPRE_CHG 5 Hours, 10 Hours (Default),
15 Hours, 20 Hours

Table 7. Charging Safety Timer

When the charger is in AICR, MIVR, JEITA cool, JEITA warm, or thermal regulation mode, the safety timer's counter clock rate will be halved. For example, if the charger is in AICR status and the timer setting is 10 hours, the actual safety timer will expire in 20 hours. The extended charge timer setting can be disabled by setting CHG_SAFE_TMR_2XT to 0. The safety timer can be reset by any of the following actions:

- 1. Toggling the \overline{CE} pin.
- 2. Disabling and then enabling CHG_EN.
- 3. Disabling and then enabling CHG_SAFE_TMR
- Setting REG_RST.

15.4.10 MediaTek Pump Express+ (MTK, PE+)

The device can provide an input current pulse to communicate with an MTK-PE+ high voltage adapter. When the PE_EN bit is enabled, the device can increase or decrease the adapter output voltage by setting PE10_INC to the desired value. After enabling the PE function, the device will generate a VBUS current pattern for the MTK-PE+ adapter to automatically identify whether to increase or decrease the output voltage. After the PE pattern is completed, the PE_EN bit will be cleared to 0, and an INT will be asserted to the host to indicate that the PE_DONE event has occurred.

15.4.11 Adaptive Input Current Control (AICC)

The AICC function provides an adaptive AICR setting to prevent input voltage drops. When the input power source experiences an overcurrent and the VBUS drops to the MIVR level, setting the AICC_EN bit to 1 will cause the device

RICHTEK is a registered trademark of Richtek Technology Corporation.

to automatically decrease the AICR level step by step until the MIVR event is exited. After the AICC process is completed, the AICC_EN bit will be cleared to 0, and an $\overline{\text{INT}}$ will be asserted to the host to indicate the AICC_DONE has occurred.

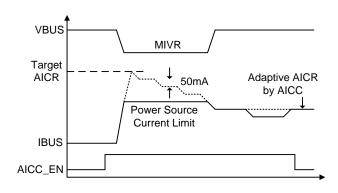


Figure 8. AICC Enable

15.5 Status Outputs

15.5.1 Power Good Indicator (PG Pin and ST CHG RDY Bit)

The PG pin goes low to indicate a good power source under the following conditions:

- 1. VBUS is above the VBUS_MIN_RISE threshold, and IBADSRC is applied.
- 2. VBUS is above VBAT (not in sleep mode).
- 3. VBUS is below the VAC OVP threshold setting.
- 4. HZ = 0 (not in HZ mode).
- 5. The charger's temperature is under the THREG threshold setting.
- 6. VBUS Source Type Detection is completed.

15.5.2 Charging Status Indicator (STAT Pin)

The device indicates charging status IC_STAT on the STAT pin. The STAT pin is an open-drain output that can be used to drive an LED. The STAT pin function can be disabled by setting STAT_EN = 0.

IC_STAT

Trickle, Pre, Fast charge, IEOC-charge (EOC and TE = 0)

Charge done, Back-Ground charge

High

HZ/SLEEP, VBUS ready for charge, OTG

Charge fault

Blinking at 1Hz

Table 8. STAT Pin State

15.5.3 Interrupt to Host (INT Pin)

The device reports IRQ to the host via the INT pin, which is configured as an open-drain output.

The INT pin generates a low pulse with 256µs when an IRQ event occurs. All IRQ events are masked by default.

When a fault occurs, the device triggers an $\overline{\text{INT}}$ pulse to the host and retains the IRQ event details in registers 0x20 to 0x23. These details remain in the registers until the host reads the IRQ registers. The device will not send another $\overline{\text{INT}}$ pulse until the host clears the IRQ events by reading the registers, unless a new event occurs.

Table 9 STATUS, FLAG, and MASK Register Map

Name	STAT	IRQ	MASK
VBUS_GD	Υ	Y	Y
CHG_RDY	Υ	Y	Υ
IEOC	Υ	Y	Υ
BK_CHG	Υ	Y	Y
CHG_DONE	Υ	Y	Y
RECHG	N	Y	Y
DETACH	N	Y	Y
BC12_DONE	Y	Y	Y
MIVR	Y	Y	Y
AICR	Y	Y	Y
CHG_THREG	Υ	Y	Y
CHG_BUSUV	Υ	Y	Y
CHG_TOUT	Υ	Y	Y
CHG_SYSOV	Υ	Y	Y
CHG_BATOV	Υ	Y	Y
JEITA_HOT	Υ	Υ	Y
JEITA_WARM	Υ	Y	Y
JEITA_COOL	Υ	Y	Y
JEITA_COLD	Υ	Υ	Y
SYS_MIN	Υ	Y	Υ
SYS_SHORT	N	Y	Υ
OTP	Υ	Υ	Y
VAC_OV	Υ	Y	Y
WDT	Υ	Y	Y
OTG_CC	Y	Y	Y
OTG_LBP	N	Y	Y
OTG_FAULT	N	Υ	Y

15.6 Protections

15.6.1 VBUS Overvoltage Protection in Buck Mode

If the VBUS voltage is over the VAC_OVP setting (programmable by the VAC_OVP bits), the device stops switching immediately and asserts an INT pulse to the host. When the VBUS overvoltage occurs, the status ST_VAC_OV is set to 1 and the IC_STAT is set to 1000 to indicate a charge fault. The device resumes normal operation when the VBUS voltage drops below the VAC_OVP threshold.

15.6.2 VBUS Overvoltage Protection in Boost Mode

When in boost mode, the VAC_OVP setting is locked at 6.35V, even if the VAC_OVP threshold is set at 10.8V or 14V. When the output voltage (VBUS) exceeds the VAC_OVP threshold, the device stops switching immediately,

Copyright @ 2024 Richtek Technology Corporation. All rights reserved.

RICHTEK

is a registered trademark of Richtek Technology Corporation.

DS9471/D-04 May 2024 www.richtek.com

clears the OTG_EN bit to 0, and exits boost mode. The fault (OTG_FAULT) is set to high, and an INT pulse is asserted to the host. When the output voltage falls below VAC_OVP_HYS, the OTG_EN bit can be set to 1 by the host.

15.6.3 IBUS Overload Protection in Boost Mode

The device monitors the boost output voltage and current to provide VBUS short circuit protection. The device also includes built-in constant current regulation to allow OTG to adapt to various types of loads. If a short circuit is detected on VBUS, the boost will hiccup 7 times. If the boost retries are not successful, the OTG_EN bit will be set to 0 to disable boost mode, and an INT pulse will be asserted to the host to indicate OTG_FAULT.

15.6.4 **VBUS Soft-Start**

When the boost function is enabled, the device initiates a soft-start from VBUS to avoid inrush current.

15.6.5 VSYS Overvoltage Protection

The SYSOVP threshold is set at 5.2V. Once VSYS is above the SYSOVP level, the buck stops switching immediately, and an INT pulse is asserted to the host to indicate a CHG_SYSOV fault. The device provides a 30mA current sink on VSYS to bring down the VSYS voltage.

15.6.6 **VSYS Overcurrent Protection**

When the system is shorted or overloaded (IBAT > IOCP_BATFET), the device latches off the BATFET (forcing entry into shipping mode), and an INT pulse is asserted to the host to indicate a SYS SHORT fault. Exiting shipping mode can reset the latch-off condition and turn on the BATFET.

Battery Overvoltage Protection

The BAT_OVP threshold is set at 4% above the VBAT_REG setting. If the battery voltage exceeds this overvoltage threshold, the device immediately disables charging, and asserts an INT to the host to indicate a CHG_BATOV event.

15.6.8 **Battery Over-Discharge Protection**

If the battery is discharged below VBAT_DPL_FALL, the BATFET turns off to prevent over-discharge. Upon connection of VBUS, the BAFET is activated to allow battery charging.

15.6.9 Over-Temperature Protection in Buck Mode

The device continuously monitors the internal junction temperature to prevent overheating. In buck mode, the thermal regulation threshold is set at 120°C (programmable by the register THREG bits). If the junction temperature rises above the thermal regulation threshold, the device reduces the charging current. During thermal regulation, the EOC function is disabled, the safety timer's counting rate is reduced by half, and an INT signal is asserted to the host to indicate CHG THREG.

Additionally, the device features a thermal shutdown mechanism that turns off the converter if the IC surface temperature exceeds ToTP (160°C). An INT signal is also asserted to the host to indicate an OTP fault. The converter resumes normal operation once the surface temperature falls below the recovery threshold, which is TOTP (160°C) -TOTP_HYS (30°C).

15.6.10 Over-Temperature Protection in Boost Mode

The device has over-temperature protection during boost mode. In boost mode, when the IC surface temperature exceeds Totp (160°C), the OTG EN bit is set to 0 to disable boost mode, and an INT is asserted to the host to indicate an OTP fault.

15.7 Communicate Interface

The RT9471/D uses an I²C-compatible interface with a 2-wire line (SCL and SDA) to communicate with the host. The SCL and SDA pins are open drain and need to be connected to the supply voltage by pull-up resistors. The RT9471/D operates as an I²C slave device with a 7-bit address of 53H and supports up to 3.4Mbits conditionally. To start an I²C communication, the process begins with a START (S) condition, and then the host sends the slave address. This address is 7 bits long, followed by an eighth bit which is a data direction bit (R/W). The second byte is the register address. The third byte contains data for the selected register, and the communication ends with a STOP (P) condition.

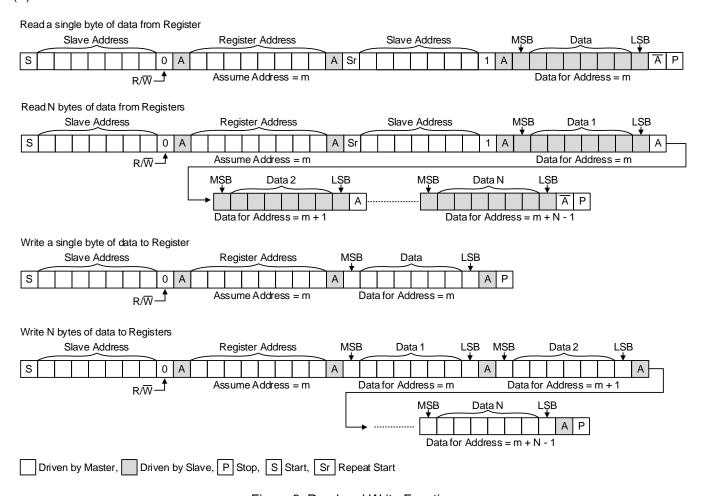


Figure 9. Read and Write Function

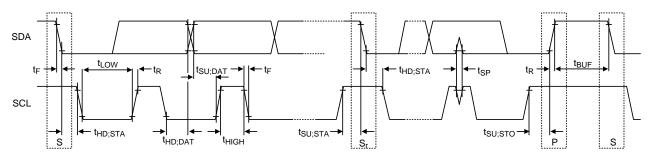


Figure 10. I²C Waveform Information

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

I²C Time-Out Reset 15.7.1

To avoid I²C hang-ups, a timer runs during I²C activity. If the SDA remains low for longer than 1 second, the RT9471/D will reset the I²C to release SDA and return it to a high state. The I²C hang-ups reset function can be disabled by setting bit 3 of register 0x01.

Thermal Considerations 15.8

The junction temperature should never exceed the absolute maximum junction temperature TJ(MAX), listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

 $PD(MAX) = (TJ(MAX) - TA) / \theta JA$

where TJ(MAX) is the maximum junction temperature, TA is the ambient temperature, and θ JA is the junction-toambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θJA, is highly package dependent. For a WQFN-24L 4x4 package, the thermal resistance, θJA, is 28°C/W on a standard JEDEC 51-7 high effective-thermalconductivity four-layer test board. The maximum power dissipation at T_A = 25°C can be calculated as follows:

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (28^{\circ}C/W) = 3.57W$ for a WQFN-24L 4x4 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed T_{J(MAX)} and the thermal resistance, θJA. The derating curve in Figure 11 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

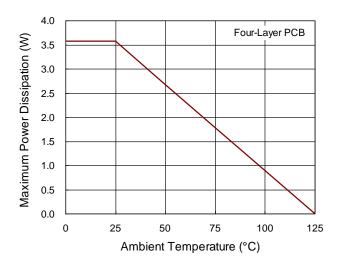


Figure 11. Derating Curve of Maximum Power Dissipation

15.9 **Layout Considerations**

The layout guidelines for the RT9471/D are provided below, along with several recommendations:

- Place the capacitor connected to the PMID pin as close as possible to the RT9471/D to minimize impedance and enhance performance.
- Position the inductor connected to the SW pin as close as possible to the RT9471/D. The trace should be routed as short as possible to reduce EMI, and the copper area of the trace must be adequate for the operating current.

RT9471/D

- Connect the GND pins to the Thermal Pad pin on the TOP layer to minimize parasitic inductance and reduce EMI.
- The Thermal Pad pin should be connected to the ground plane through multiple vias to enhance thermal performance.
- Capacitors connected to IC pins should be placed as close as possible to the RT9471/D to ensure stability and reduce noise.

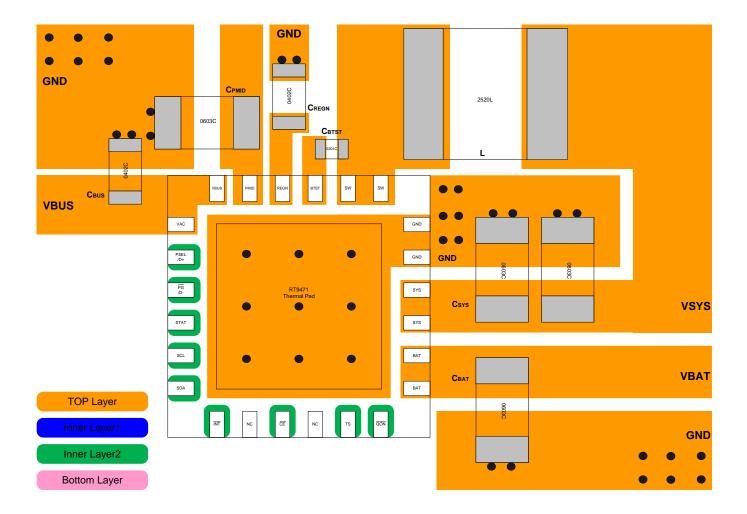


Figure 12. PCB Layout Guide for the RT9471

DS9471/D-04 May 2024 www.richtek.com

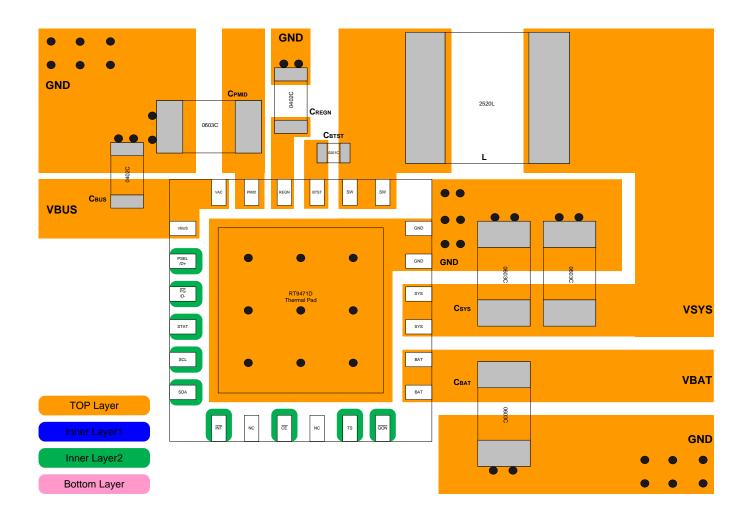


Figure 13. PCB Layout Guide for the RT9471D

Note 7. The information provided in this section is for reference only. The customer is solely responsible for the designing, validating, and testing your product incorporating Richtek's product and ensure such product meets applicable standards and any safety, security, or other requirements.

16 Functional Register Description

I²C Slave Address: 1010011 (53H)

R: Read only

R/W: Read and write

RWSC: Read and write, also automatically set/clear by a particular condition

Register Address: 0x00, Register Name: OTG_CONFIG

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7:6	OTG_CV	10	N	Y	R/W	OTG voltage limit regulation 00: 4.85V 01: 5.0V 10: 5.15V (default) 11: 5.3V
5:2	Reserved	0000	NA	NA	R	Reserved
1	OTG_LBP	0	N	Y	R/W	OTG low battery protection 0: 2.8V (default) 1: 2.5V
0	OTG_CC	1	Y	Y	R/W	OTG current limit regulation 0: 0.5A 1: 1.2A (default)

Register Address: 0x01, Register Name: TOP

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7	QON_RST_ EN	1	Y	Y	R/W	0: QON = 0 for 10s will NOT have any effect 1: QON = 0 for 10s will turn off BATFET (default)
6	STAT_EN	1	N	Y	R/W	0: The STAT pin function disabled 1: The STAT pin function enabled (default)
5:4	Reserved	00	NA	NA	R	Reserved
3	DIS_I2C_TO	0	Y	Y	R/W	0: Enable I ² C time-out function (default) 1: Disable I ² C time-out function
2	WDT_CNT_ RST	0	Y	Y	RWSC	No action Reset watchdog counter (Back to 0 after watchdog reset)
1:0	WDT	01	Y	Y	R/W	00: Disable watchdog timer reset function 01: 40s (default) 10: 80s 11: 160s

Register Address: 0x02, Register Name: FUNCTION

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7	BATFET_DIS	0	N	Y	RWSC	0: Allow BATFET to turn on (default) 1: Force BATFET to turn off (Clear by VBUS plug-in or QON = 0 for 1s, auto-set BATFET_DIS = 1 by system overload from BAT to SYS)
6	BATFET_DIS_ DLY	1	N	Y	R/W	0: BATFET turns off immediately while BATFET_DIS = 0 1: BATFET turns off with 12s delay while BATFET_DIS = 1 (default)
5	HZ	0	Y	Y	RWSC	0: Normal mode (default) 1: HZ mode (Clear by VBUS plug-in)
4	Reserved	0	NA	NA	R	Reserved
3	BUCK_PFM_ DIS	0	N	Υ	R/W	0: Enable PFM (default) 1: Disable PFM
2	UUG_FULLON	0	N	Y	R/W	0: Q1 turns on by condition (default) 1: Force Q1 full on
1	OTG_EN	0	Y	Y	RWSC	0: Disable OTG (default) 1: Enable OTG (Clear by HZ = 1, OTP, OTG_LBP, VBUS_OV, QON reset, BATFET_DIS = 1, or auto 7 times hiccup for soft-start failure or overload)
0	CHG_EN	1	Υ	Υ	R/W	0: Disable charge 1: Enable charge (default)

Register Address: 0x03, Register Name: IBUS

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7	AICC_EN	0	Υ	Y	RWSC	Disable AICC function (default) Enable AICC function (Auto clear after AICC function is complete)
6	AUTO_AICR	1	Υ	Y	R/W	0: No action 1: Auto set IAICR by BC1.2 done or PSEL change (default)
5:0	IAICR	001010	N	Y	RWSC	Average input current regulation 000000: 50mA 000001: 50mA 000010: 100mA 001010: 500mA (default) 111101: 3050mA 111110: 3100mA 111111: 3200mA (Auto set by BC1.2 done or PSEL change if AUTO_AICR = 1)

Register Address: 0x04, Register Name: VBUS

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7:6	VAC_OVP	01	N	Y	R/W	VAC OVP threshold 00: 5.65V 01: 6.35V (default) 10: 10.8V (6.35V while OTG) 11: 14V (6.35V while OTG)
5:4	VMIVR_BAT_ TRACK	00	N	Y	R/W	00: VMIVR by 0x04[3:0] (default) 01: VMIVR = VBAT + 200mV 10: VMIVR = VBAT + 250mV 11: VMIVR = VBAT + 300mV
3:0	VMIVR	0110	N	Y	R/W	Minimum input voltage regulation 0000: 3900mV 0001: 4000mV 0110: 4500mV (default) 1110: 5300mV 1111: 5400mV

Register Address: 0x05, Register Name: PRECHG

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7	Reserved	0	NA	NA	R	Reserved
6:4	VPRE_CHG	100	Υ	Y	R/W	Pre-charge voltage threshold 000: 2700mV 001: 2800mV 010: 2900mV 011: 3000mV 100: 3100mV (default) 101: 3200mV 110: 3300mV 111: 3400mV
3:0	IPRE_CHG	0010	Y	Y	R/W	Pre-charge current 0000: 50mA 0001: 100mA 0010: 150mA (default) 1110: 750mA 1111: 800mA

DS9471/D-04 May 2024 www.richtek.com

Register Address: 0x06, Register Name: REGU

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7	Reserved	0	NA	NA	R	Reserved
6	THREG	1	Υ	Υ	R/W	Junction thermal regulation threshold 0: 100°C 1: 120°C (default)
5:4	Reserved	00	NA	NA	R	Reserved
3:0	VSYS_MIN	1001	N	Y	R/W	System minimum voltage 0000: 2600mV 0001: 2700mV 1001: 3500mV (default) 1110: 4000mV 1111: 4100mV

Register Address: 0x07, Register Name: VCHG

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7	VRE_CHG	0	Y	Y	R/W	Re-charge voltage threshold 0: 100mV (default) 1: 200mV
6:0	VBAT_REG	0011110	Y	Y	R/W	Charge voltage 0000000: 3900mV 0000001: 3910mV 0011110: 4200mV (default) 1010000: 4700mV 1010000 to 1111111: 4700mV

Register Address: 0x08, Register Name: ICHG

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7:6	Reserved	00	NA	NA	R	Reserved
5:0	ICHG_REG	101000	Y	Y	R/W	Charge current 000000: 0mA (disable charge) 000001: 50mA 000010: 100mA 000011: 150mA 101000: 2000mA (default) 111101: 3100mA 111111: 3150mA

Register Address: 0x09, Register Name: CHG_TIMER

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7	CHG_SAFE_ TMR_EN	1	Υ	Υ	R/W	Disable charge safe timer Enable charge safe timer (default)
6	CHG_SAFE_ TMR_2XT	1	Y	Y	R/W	Double the charge safe timer during MIVR, AICR, thermal regulation, and JEITA to reduce ICHG 0: Disable 2x extended charge safe timer 1: Enable 2x extended charge safe timer (default)
5:4	CHG_SAFE_ TMR	01	Y	Y	R/W	Charge safe timer 00: 5hr 01: 10hr (default) 10: 15hr 11: 20hr
3:0	Reserved	0000	NA	NA	R	Reserved

Register Address: 0x0A, Register Name: EOC

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7:4	IEOC_CHG	0011	Υ	Υ	R/W	End-of-charge current threshold 0000: 50mA 0001: 100mA 0010: 150mA 0011: 200mA (default) 1110: 750mA 1111: 800mA
3:2	BG_CHG_ TMR	00	Y	Y	R/W	EOC back-ground charge timer 00: 0min (default) 01: 15min 10: 30min 11: 45min
1	TE	1	Y	Υ	R/W	Disable charge current termination Enable charge current termination (default)
0	EOC_RST	0	Y	Y	RWSC	0: No action 1: Reset EOC (Back to 0 after reset EOC done)

Register Address: 0x0B, Register Name: INFO

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7	REG_RST	0	NA	NA	RWSC	0: No action 1: Reset register (Back to 0 after register reset)
6:3	DEVICE_ID	1101	NA	NA	R	1101: RT9471 (PSEL, PGB) 1110: RT9471D (D+, D-)
2:0	DEVICE_RE	NA	NA	NA	R	Revision

Register Address: 0x0C, Register Name: JEITA

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7	JEITA_EN	1	Y	Y	R/W	0: JEITA disabled 1: JEITA enabled (default)
6	JEITA_COLD	0	Y	Y	R/W	0: COLD do NOT charging/OTG (default) 1: COLD still charging/OTG
5	JEITA_COOL_ ISET	1	Y	Y	R/W	0: 50% of ICHG 1: 25% of ICHG (default)
4	JEITA_COOL_ VSET	1	Y	Y	R/W	0: VBAT_REG = 4.1V 1: VBAT_REG = Register setting (default)
3	JEITA_WARM _ISET	1	Y	Y	R/W	0: 50% of ICHG 1: ICHG = Register setting (default)
2	JEITA_WARM _VSET	0	Y	Y	R/W	0: VBAT_REG = 4.1V (default) 1: VBAT_REG = Register setting
1	JEITA_HOT	0	Y	Y	R/W	0: HOT do NOT charging/OTG (default) 1: HOT still charging/OTG
0	Reserved	0	NA	NA	R	Reserved

Register Address: 0x0D, Register Name: PUMP_EXP

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7	PE_EN	0	Y	Y	RWSC	0: Idle (default) 1: Trigger MTK Pump Express process (Auto clear while PE is done or no VBUS)
6	PE_SEL	0	Y	Y	R/W	0: PE 1.0 process select (default) 1: PE 2.0 process select
5	PE10_INC	0	Υ	Y	R/W	0: PE 1.0 Voltage down (default) 1: PE 1.0 Voltage up
4:0	PE20_CODE	00000	Y	Y	R/W	MTK PE 2.0 Voltage Request Setting 00000: 5.5V (default) 00001: 6V 11101: 20V 11110: Adapter healthy self-testing 11111: Disable cable drop compensation

Register Address: 0x0E, Register Name: DPDM_DET

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7	BC12_EN	1	Y	Y	R/W	0: Disable BC1.2 detection 1: Enable BC1.2 detection while VBUS > 3.8V (default) (For the RT9471D only)
6:5	DCDT_SEL	01	Y	Y	R/W	00: Disable DCD timeout function 01: Enable 300ms DCD timeout function (default) 10: Enable 600ms DCD timeout function 11: Wait data contact
4	SPEC_TA_EN	1	Y	Υ	R/W	0: Disable Samsung/Apple TA detection 1: Enable Samsung/Apple TA detection (default)
3:1	Reserved	000	NA	NA	R	Reserved
0	DCP_DP_OPT	0	Y	Y	R/W	DCP DP behavior option 0: DP = 0V after BC 1.2 done (default) 1: DP keep 0.6V while DCP port detected

Register Address: 0x0F, Register Name: IC_STATUS

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7:4	PORT_STAT	0000	NA	NA	R	0000: No information 0001 to 0111: Reserved 1000: VBUS = device 1 (2100mA-APPLE- 10w) 1001: VBUS = device 2 (2000mA- SAMSUNG-10w) 1010: VBUS = device 3 (1000mA-APPLE-5w) 1011: VBUS = device 4 (2400mA-APPLE- 12w) 1100: VBUS = unknown/NSDP (500mA) 1101: VBUS = SDP (500mA)/PSEL = High 1110: VBUS = CDP (1500mA) 1111: VBUS = DCP (2400mA)/PSEL = Low
3:0	IC_STAT	0000	NA	NA	R	0000: HZ/SLEEP 0001: VBUS ready for charge 0010: Trickle-charge 0011: Pre-charge 0100: Fast-charge 0101: IEOC-charge (EOC and TE = 0) 0110: Back-Ground charge (EOC and TE = 1 and before turning off power path) 0111: Charge done (EOC and TE = 1 and power path off) 1000: Charge fault (VAC_OV/CHG_BUSUV/CHG_TOUT/CHG_ SYSOV/CHG_BATOV/JEITA_HOT/JEITA_C OLD/OTP) 1001 to 1110: Reserved 1111: OTG

 $\label{lem:copyright} \textbf{ @ 2024 Richtek Technology Corporation. All rights reserved.}$

RICHTEK is a registered trademark of Richtek Technology Corporation.

DS9471/D-04 May 2024 www.richtek.com

Register Address: 0x10, Register Name: STAT0

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7	ST_VBUS_GD	0	NA	NA	R	0: VBUS is not good 1: VBUS is good (After current capability of the input source detection, HZ = 0, VAC_OV = 0, and VBUS > 3.8V)
6	ST_CHG_RDY	0	NA	NA	R	0: VBUS is not ready for charging 1: VBUS is ready for charging (After port detection, HZ = 0, VAC_OV = 0, and VBUS > 3.8V)
5	ST_IEOC	0	NA	NA	R	0: Not in EOC state 1: While in EOC state (Charge current < IEOC level)
4	ST_BG_CHG	0	NA	NA	R	0: Not in EOC state or TE = 0 or BG_CHG_TMR = 00 1: While in EOC state and TE = 1 and BG_CHG_TMR ≠ 00
3	ST_CHG_ DONE	0	NA	NA	R	Not in EOC state or BATFET on While in EOC state and BATFET off
2:1	Reserved	00	NA	NA	R	Reserved
0	ST_BC12_ DONE	0	NA	NA	R	0: BC1.2 process is not ready 1: While BC1.2 process is done

Register Address: 0x11, Register Name: STAT1

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7	ST_CHG_ MIVR	0	NA	NA	R	0: Not in MIVR loop 1: While in MIVR loop
6	ST_CHG_ AICR	0	NA	NA	R	0: Not in AICR loop 1: While in AICR loop
5	ST_CHG_ THREG	0	NA	NA	R	0: Not in THERMAL loop 1: While in THERMAL loop
4	ST_CHG_ BUSUV	0	NA	NA	R	0: Not VBAT < VBUS < 3.8V 1: While VBAT < VBUS < 3.8V
3	ST_CHG_ TOUT	0	NA	NA	R	O: Not in charge safety time-out 1: While in charge safety time-out
2	ST_CHG_ SYSOV	0	NA	NA	R	0: Not in SYS OV 1: While in SYS OV
1	ST_CHG_ BATOV	0	NA	NA	R	0: Not in BAT OV 1: While in BAT OV
0	Reserved	0	NA	NA	R	Reserved

Register Address: 0x12, Register Name: STAT2

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7	ST_JEITA_ HOT	0	NA	NA	R	0: Not in BAT is hot 1: While in BAT is hot
6	ST_JEITA_ WARM	0	NA	NA	R	0: Not in BAT is warm 1: While in BAT is warm
5	ST_JEITA_ COOL	0	NA	NA	R	0: Not in BAT is cool 1: While in BAT is cool
4	ST_JEITA_ COLD	0	NA	NA	R	0: Not in BAT is cold 1: While in BAT is cold
3:2	Reserved	00	NA	NA	R	Reserved
1	ST_SYS_MIN	0	NA	NA	R	0: Not in VBAT < VSYS_MIN 1: While in VBAT < VSYS_MIN
0	Reserved	0	NA	NA	R	Reserved

Register Address: 0x13, Register Name: STAT3

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7	ST_OTP	0	NA	NA	R	0: Not OTP 1: OTP
6	ST_VAC_OV	0	NA	NA	R	0: Not VAC_OV 1: VAC_OV (charge or OTG mode)
5	ST_WDT	0	NA	NA	R	0: WDT is counting 1: WDT reset will occur after 500ms
4:3	Reserved	00	NA	NA	R	Reserved
2	ST_OTG_CC	0	NA	NA	R	0: Not in OTG_CC 1: While in OTG_CC
0	Reserved	0	NA	NA	R	Reserved

Register Address: 0x20, Register Name: IRQ0

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7	FL_VBUS_GD	0	NA	NA	R	0: ST_VBUS_GD is not rising 1: While ST_VBUS_GD is rising, read clear
6	FL_CHG_RDY	0	NA	NA	R	0: ST_CHG_RDY is not rising 1: While ST_CHG_RDY is rising, read clear
5	FL_IEOC	0	NA	NA	R	0: ST_IEOC is not rising 1: While ST_IEOC is rising, read clear
4	FL_BG_CHG	0	NA	NA	R	0: ST_BG_CHG is not rising 1: While ST_BG_CHG is rising, read clear
3	FL_CHG_ DONE	0	NA	NA	R	0: ST_CHG_DONE is not rising 1: While ST_CHG_DONE is rising, read clear
2	FL_RECHG	0	NA	NA	R	0: While VBAT > VRECHG after EOC 1: While VBAT < VRECHG after EOC, read clear
1	FL_DETACH	0	NA	NA	R	0: ST_VBUS_GD is not rising or in ST_VBUS_GD 1: While ST_VBUS_GD is falling, then VBUS < VBAT or VBUS < 3.3V, read clear
0	FL_BC12_ DONE	0	NA	NA	R	0: BC1.2 process is not ready 1: While BC1.2 process is done

Register Address: 0x21, Register Name: IRQ1

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7	FL_CHG_ MIVR	0	NA	NA	R	0: ST_CHG_MIVR is not rising 1: While ST_CHG_MIVR is rising, read clear
6	FL_CHG_ AICR	0	NA	NA	R	0: ST_CHG_AICR is not rising 1: While ST_CHG_AICR is rising, read clear
5	FL_CHG_ THREG	0	NA	NA	R	0: ST_CHG_THREG is not rising 1: While ST_CHG_THREG is rising, read clear
4	FL_CHG_ BUSUV	0	NA	NA	R	0: ST_CHG_BUSUV is not rising 1: While ST_CHG_BUSUV is rising, read clear
3	FL_CHG_ TOUT	0	NA	NA	R	0: ST_CHG_TOUT is not rising 1: While ST_CHG_TOUT is rising, read clear
2	FL_CHG_ SYSOV	0	NA	NA	R	0: ST_CHG_SYSOV is not rising 1: While ST_CHG_SYSOV is rising, read clear
1	FL_CHG_ BATOV	0	NA	NA	R	0: ST_CHG_BATOV is not rising 1: While ST_CHG_BATOV is rising, read clear
0	Reserved	0	NA	NA	R	Reserved

Register Address: 0x22, Register Name: IRQ2

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7	FL_JEITA_ HOT	0	NA	NA	R	0: ST_JEITA_HOT is not rising 1: While ST_JEITA_HOT is rising, read clear
6	FL_JEITA_ WARM	0	NA	NA	R	0: ST_JEITA_WARM is not rising 1: While ST_JEITA_WARM is rising, read clear
5	FL_JEITA_ COOL	0	NA	NA	R	0: ST_JEITA_COOL is not rising 1: While ST_JEITA_COOL is rising, read clear
4	FL_JEITA_ COLD	0	NA	NA	R	0: ST_JEITA_COLD is not rising 1: While ST_JEITA_COLD is rising, read clear
3	FL_PE_DONE	0	NA	NA	R	0: FL_PE_DONE is not rising 1: While PE processing is done, read clear
2	FL_AICC_ DONE	0	NA	NA	R	0: FL_AICC_DONE is not rising 1: While AICC processing is done, read clear
1	FL_SYS_MIN	0	NA	NA	R	0: ST_SYS_MIN is not rising 1: While ST_SYS_MIN is rising, read clear
0	FL_SYS_ SHORT	0	NA	NA	R	0: FL_SYS_SHORT is not rising 1: While FL_SYS_SHORT is rising, read clear

Register Address: 0x23, Register Name: IRQ3

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7	FL_OTP	0	NA	NA	R	0: ST_OTP is not rising 1: While ST_OTP is rising, read clear
6	FL_VAC_OV	0	NA	NA	R	0: ST_VAC_OV is not rising 1: While ST_VAC_OV is rising, read clear
5	FL_WDT	0	NA	NA	R	0: ST_WDT is not rising 1: While ST_WDT is rising, read clear
4:3	Reserved	00	NA	NA	R	Reserved
2	FL_OTG_CC	0	NA	NA	R	0: ST_OTG_CC is not rising 1: While ST_OTG_CC is rising, read clear
1	FL_OTG_LBP	0	NA	NA	R	0: FL_OTG_LBP is not rising 1: While VBAT < OTG_LBP, read clear
0	FL_OTG_ FAULT	0	NA	NA	R	0: FL_OTG_FAULT is not rising 1: While FL_OTG_FAULT is rising, read clear

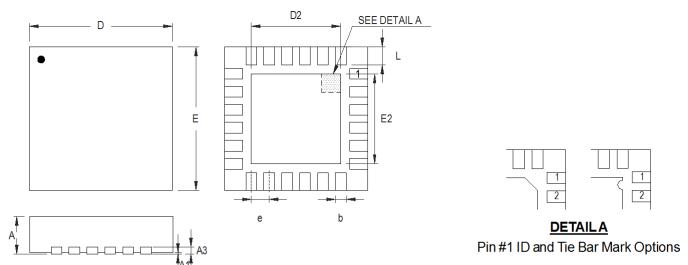
Register Address: 0x30, Register Name: MASK0

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7	MK_VBUS_ GD	1	N	Y	R/W	0: Not mask IRQ of FL_VBUS_GD 1: Mask IRQ of FL_VBUS_GD (default)
6	MK_CHG_ RDY	1	N	1 Y R////		0: Not mask IRQ of FL_CHG_RDY 1: Mask IRQ of FL_CHG_RDY (default)
5	MK_IEOC	1	N	Y	R/W	0: Not mask IRQ of FL_IEOC 1: Mask IRQ of FL_IEOC (default)
4	MK_BG_CHG	1	N	Y	R/W	0: Not mask IRQ of MK_BG_CHG 1: Mask IRQ of MK_BG_CHG (default)
3	MK_CHG_ DONE	1	N	Y	R/W	0: Not mask IRQ of FL_CHG_DONE 1: Mask IRQ of FL_CHG_DONE (default)
2	MK_RECHG	1	N	Y	R/W	0: Not mask IRQ of FL_RECHG 1: Mask IRQ of FL_RECHG (default)
1	MK_DETACH	1	N	Y	R/W	0: Not mask IRQ of FL_DETACH 1: Mask IRQ of FL_DETACH (default)
0	MK_BC12_ DONE	1	N	Y	R/W	0: Not mask IRQ of FL_BC12_DONE 1: Mask IRQ of FL_BC12_DONE (default)

Register Address: 0x31, Register Name: MASK1

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7	MK_CHG_ MIVR	1	N	Y	R/W	0: Not mask IRQ of FL_CHG_MIVR 1: Mask IRQ of FL_CHG_MIVR (default)
6	MK_CHG_ AICR	1	N	Y	R/W	0: Not mask IRQ of FL_CHG_AICR 1: Mask IRQ of FL_CHG_AICR (default)
5	MK_CHG_ THREG	1	N	Y	R/W	0: Not mask IRQ of FL_CHG_THREG 1: Mask IRQ of FL_CHG_THREG (default)
4	MK_CHG_ BUSUV	1	N	Υ	R/W	0: Not mask IRQ of FL_CHG_BUSUV 1: Mask IRQ of FL_CHG_BUSUV (default)
3	MK_CHG_ TOUT	1	N	Υ	R/W	0: Not mask IRQ of FL_CHG_TOUT 1: Mask IRQ of FL_CHG_TOUT (default)
2	MK_CHG_ SYSOV	1	N	Υ	R/W	0: Not mask IRQ of FL_CHG_SYSOV 1: Mask IRQ of FL_CHG_SYSOV (default)
1	MK_CHG_ BATOV	1	N	Y	R/W	0: Not mask IRQ of FL_CHG_BATOV 1: Mask IRQ of FL_CHG_BATOV (default)
0	Reserved	1	NA	NA	R	Reserved

Register Address: 0x32, Register Name: MASK2

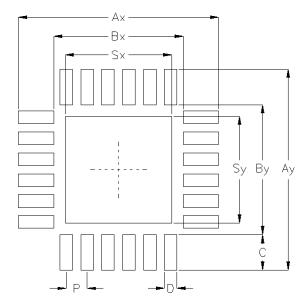

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description
7	MK_JEITA_ HOT	1	N	Y	R/W	0: Not mask IRQ of FL_JEITA_HOT 1: Mask IRQ of FL_JEITA_HOT (default)
6	MK_JEITA_ WARM	1	N	Y	R/W	0: Not mask IRQ of FL_JEITA_WARM 1: Mask IRQ of FL_JEITA_WARM (default)
5	MK_JEITA_ COOL	1	N	Y	R/W	0: Not mask IRQ of FL_JEITA_COOL 1: Mask IRQ of FL_JEITA_COOL (default)
4	MK_JEITA_ COLD	1	N	Y	R/W	0: Not mask IRQ of FL_JEITA_COLD 1: Mask IRQ of FL_JEITA_COLD (default)
3	MK_PE_ DONE	1	N	Y	R/W	0: Not mask IRQ of FL_PE_DONE 1: Mask IRQ of FL_PE_DONE (default)
2	MK_AICC_ DONE	1	N	Y	R/W	0: Not mask IRQ of FL_AICC_DONE 1: Mask IRQ of FL_AICC_DONE (default)
1	MK_SYS_MIN	1	N	Y	R/W	0: Not mask IRQ of FL_SYS_MIN 1: Mask IRQ of FL_SYS_MIN (default)
0	MK_SYS_ SHORT	1	N	Y	R/W	0: Not mask IRQ of FL_SYS_SHORT 1: Mask IRQ of FL_SYS_SHORT (default)

Register Address: 0x33, Register Name: IRQ3

Bit	Bit Name	Default	WDT RST	REG RST	Туре	Description		
7	MK_OTP	1	N			0: Not mask IRQ of FL_OTP 1: Mask IRQ of FL_OTP (default)		
6	MK_VAC_OV	1	N			0: Not mask IRQ of FL_VAC_OV 1: Mask IRQ of FL_VAC_OV (default)		
5	MK_WDT	1	N	V R////		0: Not mask IRQ of FL_WDT 1: Mask IRQ of FL_WDT (default)		
4:3	Reserved	11	NA	NA	R	Reserved		
2	MK_OTG_CC	1	N	Y	R/W	0: Not mask IRQ of FL_OTG_CC 1: Mask IRQ of FL_OTG_CC (default)		
1	MK_OTG_LBP	1	N	Y	R/W	0: Not mask IRQ of FL_OTG_LBP 1: Mask IRQ of FL_OTG_LBP (default)		
0	MK_OTG_ FAULT	1	N	Y	R/W	0: Not mask IRQ of FL_OTG_FAULT 1: Mask IRQ of FL_OTG_FAULT (default)		

17 Outline Dimension

Note: The configuration of the Pin#1 identifier is optional, but must be located within the zone indicated.


	vmb ol	Dimensions I	n Millimeters	Dimension	s In Inches	
3	ymbol	Min	Max	Min	Max	
	Α	0.700	0.800	0.028	0.031	
	A1	0.000	0.050	0.000	0.002	
	A3	0.175	0.250	0.007	0.010	
	b	0.180	0.300	0.007	0.012	
	D	3.950	4.050	0.156	0.159	
D2	Option 1	2.400	2.500	0.094	0.098	
DZ	Option 2	2.650	2.750	0.104	0.108	
	E	3.950	4.050	0.156	0.159	
E2	Option 1	2.400	2.500	0.094	0.098	
EZ	Option 2	2.650	2.750	0.104	0.108	
	е	0.5	500	0.020		
	L	0.350	0.450	0.014	0.018	

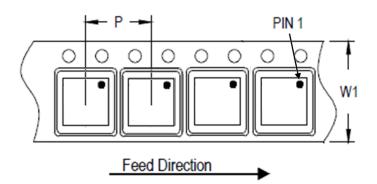
W-Type 24L QFN 4x4 Package

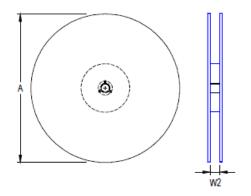
Note 8. The package of the RT9471/D uses Option 2.

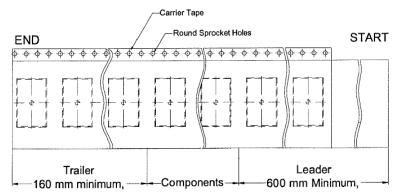
18 Footprint Information

Dookogo	Package		of Footprint Dimension (mm)									Toloropoo
Раскаде			Р	Ax	Ау	Вх	Ву	С	D	Sx	Sy	Tolerance
V/W/U/XQFN4*4-24	Option1		0.50	4.00	4.00	3.10	2.40	0.05	0.20	2.55	2.55	.0.05
V/VV/U/AQFN4 4-24	Option2	24	0.50	4.80	4.80	3.10	3.10	0.85	0.30	2.60	2.60	±0.05

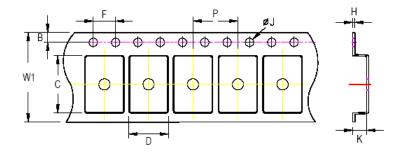
Note 9. The package of the RT9471/D uses Option 2.


May 2024


DS9471/D-04



19 Packing Information


19.1 **Tape and Reel Data**

Package Type	Tape Size (W1) (mm)	Pocket Pitch (P) (mm)	Reel Si	ze (A) (in)	Units per Reel	Trailer (mm)	Leader (mm)	Reel Width (W2) Min./Max. (mm)
QFN/DFN 4x4	12	8	180	7	1,500	160	600	12.4/14.4

C, D, and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 12mm carrier tape: 0.5mm max.

Tana Siza	W1	Р		В		F		Ø٦		Н
Tape Size	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
12mm	12.3mm	7.9mm	8.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

19.2 Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1	Reel 7"	4	3 reels per inner box Box A
2	HIC & Desiccant (1 Unit) inside	5	12 inner boxes per outer box
3	Caution label is on backside of Al bag	6	Outer box Carton A

Container	R	eel		Вох		Carton		
Package	Size	Units	Item	Reels	Units	Item	Boxes	Unit
OFN/DEN 4×4	7"	4.500	Box A	3	4,500	Carton A	12	54,000
QFN/DFN 4x4	4x4 7" 1,500		Box E	Box E 1 1,500		For Combined or Partial Reel.		

RICHTEK is

19.3 **Packing Material Anti-ESD Property**

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω /cm ²	10 ⁴ to 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C.

Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

RICHTEK is a registered trademark of Richtek Technology Corporation.

20 Datasheet Revision History

Version	Date	Description	Item
03	2023/11/1	Modify	General Description on P1 Ordering Information on P1 Absolute Maximum Ratings on P6 Recommended Operating Conditions on P6 Application Information on P32, 44 Outline Dimension on P47 Footprint Information on P48 Packing Information on P49, 50, 51
04	2024/5/10	Modify	Electrical Characteristics on P9 to 13 Functional Register Descriptions on P22 Application Information on P49 Packing Information on P53