

Evaluation Boards

RICHTEK

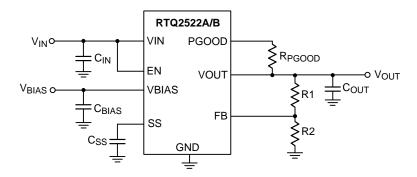
RTQ2522A/B

2A Ultra-Low Dropout Voltage LDO Regulators with Soft-Start

1 General Description

The RTQ2522A/B is a very low dropout linear regulator which operates from input voltage as low as 0.8V. The device is capable of supplying 2A of output current with a typical dropout voltage of only 90mV. A VBIAS supply is required to run the internal reference and LDO circuitry while output current comes directly from the VIN supply for high efficiency regulation. Userprogrammable soft-start limits the input inrush current and minimizes stress on the input power. The enable input and power good output allow easy sequencing with external regulators. This complete flexibility provides an easy-to-use robust power management solution for a wide variety of applications.

The RTQ2522A/B is stable with output capacitor greater than or equal to 2.2μ F. A precise reference and error amplifier deliver 1% accuracy over load, line and temperature. Overcurrent limit and overtemperature protection are also included. The RTQ2522A/B is available in the WDFN-10L 3x3 and WQFN-20L 5x5 packages. The recommended ambient temperature range is -40° C to 105° C and junction temperature range is -40° C to 125° C.


2 Features

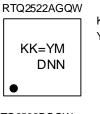
- Ultra low VIN Range: 0.8V to 5.5V
- VBIAS Voltage Range: 2.7V to 5.5V
- VOUT Voltage Range: 0.8V to 3.6V
- Low Dropout: 90mV Typical at 2A, VBIAS = 5V
- 1% Accuracy Over Line/Load/Temperature
- PGOOD Indicator for Easy Sequence Control
- Programmable Soft-Start Provides Linear Voltage
 Startup
- Stable with Any Output Capacitor $\geq 2.2 \mu F$
- Overcurrent and Over-Temperature Protection

3 Applications

- PCs, Servers, Modems, and Set-Top-Boxes
- FPGA Applications
- DSP Core and I/O Voltages
- Instrumentation
- Post-Regulation Applications
- Applications With Sequencing Requirements

4 Simplified Application Circuit

5 Ordering Information


RTQ2522A/B

	Pin 1 Orientation (2) : Quadrant 2, Follow EIA-481 (Empty means Pin1 orientation is Quadrant 1)
	Package Type QW : WDFN-10L 3x3 (W-Type) QW : WQFN-20L 5x5 (W-Type)
l	——Lead Plating System G: Richtek Green Policy Compliant
	—— A : WDFN-10L 3x3 B : WQFN-20L 5x5

Note:

Richtek products are Richtek Green Policy compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.

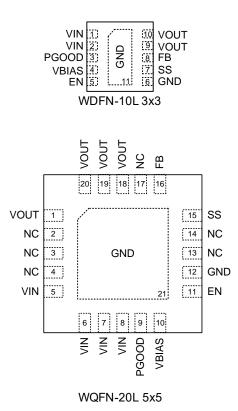
6 Marking Information

KK= : Product Code YMDNN : Date Code

RTQ2522BGQW

RTQ2522BGQW : Product Number YMDNN : Date Code

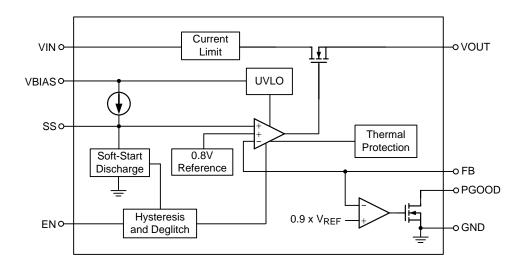
Table of Contents


1	G	eneral Description1
2	F	eatures1
3	Α	pplications1
4	S	implified Application Circuit1
5	0	rdering Information2
6	Μ	larking Information2
7	Ρ	in Configuration4
8	F	unctional Pin Description4
9	F	unctional Block Diagram5
10	Α	bsolute Maximum Ratings6
11	Е	SD Ratings6
12	R	ecommended Operating Conditions6
13		lectrical Characteristics
13 14	Е	- <u>-</u>
-	E Ty	lectrical Characteristics7
14	E Ty Ty	lectrical Characteristics7 ypical Application Circuit9
14 15	E Ty Ty	lectrical Characteristics7 ypical Application Circuit9 ypical Operating Characteristics
14 15	E Ty Ty O	Iectrical Characteristics 7 ypical Application Circuit 9 ypical Operating Characteristics 10 peration 12 VIN and VBIAS Supply 12
14 15	E Ty Ty O 16.1	Iectrical Characteristics 7 ypical Application Circuit 9 ypical Operating Characteristics 10 operation 12 VIN and VBIAS Supply 12 Enable and Shutdown 12
14 15	E Ty Ty 0 16.1 16.2	Iectrical Characteristics 7 ypical Application Circuit 9 ypical Operating Characteristics 10 peration 12 VIN and VBIAS Supply 12 Enable and Shutdown 12 Soft-Start 12
14 15	E Ty Ty 0 16.1 16.2 16.3	Iectrical Characteristics 7 ypical Application Circuit 9 ypical Operating Characteristics 10 operation 12 VIN and VBIAS Supply 12 Enable and Shutdown 12 Soft-Start 12 Power GOOD 12
14 15	E Ty Ty 0 16.1 16.2 16.3 16.4	Iectrical Characteristics7ypical Application Circuit9ypical Operating Characteristics10peration12VIN and VBIAS Supply12Enable and Shutdown12Soft-Start12Power GOOD12Overcurrent Protection12
14 15	E Ty 0 16.1 16.2 16.3 16.4 16.5	Iectrical Characteristics7ypical Application Circuit9ypical Operating Characteristics10peration12VIN and VBIAS Supply12Enable and Shutdown12Soft-Start12Power GOOD12Overcurrent Protection12

17 A	oplication Information	14
17.1	Dropout Voltage	14
17.2	Input, Output, and Bias	
	Capacitor Selection	14
17.3	Adjusting the Output Voltage	14
17.4	Power Up Sequence Requirement	14
17.5	Thermal Considerations	14
17.6	Layout Considerations	15
18 O	utline Dimension	17
18.1	WDFN-10L 3x3 Package	17
18.2	WQFN-20L 5x5 package	18
	War 14 202 0x0 publicago	
	ootprint Information	
		19
19 Fo	ootprint Information	 19 19
19 Fo 19.1 19.2	wDFN-10L 3x3 Package	 19 19 20
19 Fo 19.1 19.2	WDFN-10L 3x3 Package WQFN-20L 5x5 package	19 19 20 21
 19 For 19.1 19.2 20 Particular 	WDFN-10L 3x3 Package WQFN-20L 5x5 package	19 19 20 21 21
 19 For 19.1 19.2 20 Paragentary 20.1 	WDFN-10L 3x3 Package WQFN-20L 5x5 package wQFN-20L 5x5 package acking Information WDFN-10L 3x3 Tape and Reel Data .	19 20 21 21 22
 19 For 19.1 19.2 20 Particular 20.1 20.2 	WDFN-10L 3x3 Package WQFN-20L 5x5 package acking Information WDFN-10L 3x3 Tape and Reel Data . Tape and Reel Packing	19 20 21 21 22 eel
 19 For 19.1 19.2 20 Particular 20.1 20.2 	WDFN-10L 3x3 Package WQFN-20L 5x5 package wQFN-20L 5x5 package acking Information WDFN-10L 3x3 Tape and Reel Data . Tape and Reel Packing WQFN-20L 5x5 package Tape and Reel	19 20 21 21 22 eel 23
 19 For 19.1 19.2 20 Particular 20.1 20.2 20.3 	WDFN-10L 3x3 Package WQFN-20L 5x5 package wQFN-20L 5x5 package wDFN-10L 3x3 Tape and Reel Data . Tape and Reel Packing WQFN-20L 5x5 package Tape and Re Data	19 20 21 21 22 eel 23 24

7 Pin Configuration

(TOP VIEW)


8 Functional Pin Description

Pin No. WDFN-10L 3x3 WQFN-20L 5x5		Pin Name	Din Function	
		Pin Name	Pin Function	
1, 2	5, 6, 7, 8	VIN	Power input of the device.	
9, 10	1, 18, 19, 20	VOUT	Regulated output voltage. A minimum of $2.2\mu F$ capacitor should be placed directly at this pin.	
3	9	PGOOD	Power good indicator. An open-drain, active-high output that indicates the status of VOUT. A pull-up resistor from $10k\Omega$ to $1M\Omega$ should be connected from this pin to a supply of up to 5.5V.	
4	10	VBIAS	Bias input pin. Providing input voltage for internal control circuitry.	
5	11	EN	Chip enable (Active-High). Pulling this pin below 0.4V turns the regulator off, reducing the quiescent current to a fraction of its operating value. Connect to VIN if not being used.	
6 11 (Exposed Pad)	12 21 (Exposed Pad)	GND	Ground. The Exposed Pad must be soldered to a large PCB and connected to GND for maximum power dissipation.	
7	15	SS	Connect a capacitor between this pin and the ground to set the soft-start ramp time of the output voltage.	
8	16	FB	Feedback pin. Connect this pin to an external voltage divider to set the output voltage.	

Pin	Pin No.		Pin Function	
WDFN-10L 3x3	WQFN-20L 5x5	Pin Name	Pin Function	
	2, 3, 4, 13, 14, 17	NC	No internal connection. This pin can be left floating or connected to GND.	

9 Functional Block Diagram

5

10 Absolute Maximum Ratings

(<u>Note 1</u>)

Supply Input Voltage, VIN	–0.3V to 6V
Other Pins	–0.3V to 6V
Output Voltage, VOUT	
 Power Dissipation, PD @ TA = 25°C 	
WDFN-10L3x3	3.27W
WQFN-20L 5x5	3.54W
Package Thermal Resistance (<u>Note 2</u>)	
WDFN-10L 3x3, θJA	30.5°C/W
WDFN-10L 3x3, θJC	7.5°C/W
WQFN-20L 5x5, θJA	28.2°C/W
WQFN-20L 5x5, 0JC	7.1°C/W
Junction Temperature	150°C
Lead Temperature (Soldering, 10 sec.)	260°C
Storage Temperature Range	–65°C to 150°C

- **Note 1.** Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- **Note 2.** θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}C$ with the component mounted on a high effectivethermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θ_{JC} is measured at the exposed pad of the package.

11 ESD Ratings

(<u>Note 3</u>)

• ESD Susceptibility

• HBM (Human Body Model) ------2kV

Note 3. Devices are ESD sensitive. Handling precautions are recommended.

12 Recommended Operating Conditions

(<u>Note 4</u>)

 Supply Input Voltage 		-0.8V to 5.5V
Ambient Temperature	e Range	- –40°C to 105°C
Junction Temperature	e Range	- –40°C to 125°C

Note 4. The device is not guaranteed to function outside its operating conditions.

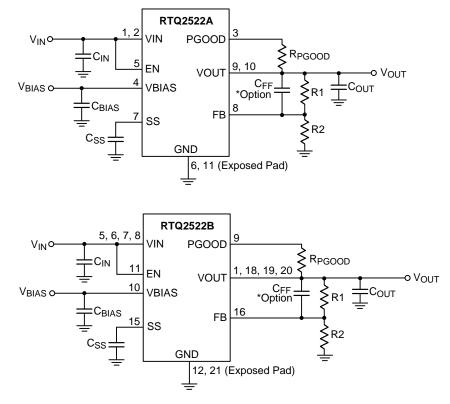
13 Electrical Characteristics

 $(V_{EN} = 1.1V, V_{IN} = V_{OUT} + 0.3V, V_{BIAS} = 5V, C_{BIAS} = 0.1\mu$ F, $C_{IN} = C_{OUT} = 10\mu$ F, $C_{SS} = 1$ nF, $I_{OUT} = 50$ mA, $T_A = -40$ °C to 105°C, unless otherwise specified. Typical values are at $T_A = 25$ °C)

Paran	neter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Input Voltage		VIN		Vout + Vdrop		5.5	V	
VBIAS Pin Vol	tage	VBIAS		2.7		5.5	V	
Internal Refere	ence	Vref	T _A = 25°C	0.796	0.8	0.804	V	
Output Voltage	e Range	Vout	VIN = 5V, IOUT = 2A	VREF		3.6	V	
Accuracy			$\begin{array}{l} 2.97V \leq V_{BIAS} \leq 5.5V, \\ 50mA \leq I_{OUT} \leq 2A \end{array}$	-1	±0.5	1	%	
Line Regulatio	n	ΔV LINE	VOUT (Normal) + $0.3 \le VIN \le 5.5V$		0.03		%/V	
Load Regulation	n	ΔV LOAD	50mA ≤ I _{OUT} = 2A		0.09		%/A	
VIN Dropout V	oltage	VDROP_VIN	$\begin{array}{l} \text{IOUT = 2A,} \\ \text{VBIAS} - \text{VOUT (Normal)} \geq 3.25 \text{V} \end{array}$		90	140	mV	
			IOUT = 2.0A, VIN = VBIAS			1.3		
VBIAS Dropou	t Voltage	VDROP_VBIAS	IOUT = 1.0A, VIN = VBIAS			1.2	V	
			IOUT = 0.5A, VIN = VBIAS			1.1	7	
Current Limit		ILIM	Vout = 80% × Vout (Normal)	2.5		5.5	А	
Bias Pin Curre	nt	IBIAS			1	2	mA	
Shutdown Supply Current (IGND)		ISHDN	V _{EN} = 0.4V		1	50	μA	
Feedback Pin	Current	IFB		-1	0.15	1	μA	
Power-Supply	Rejection		1kHz, IOUT = 1.5A, VIN = 1.8V, VOUT = 1.5V		60		dB	
(VIN to VOUT)		PSRR	300kHz, Iout = 1.5A, Vin = 1.8V, Vout = 1.5V		30		UD	
Power-Supply	•	(<u>Note 5</u>)	1kHz, Iout = 1.5A, Vin = 1.8V, Vout = 1.5V		50		dB	
(VBIAS to VO	JT)		300kHz, Iout = 1.5A, Vin = 1.8V, Vout = 1.5V		30		uD	
Output Noise	/oltage	Noise (<u>Note 5</u>)	100Hz to 100kHz, IOUT = 1.5A, Css = $0.001 \mu F$		25 х Vout	-	μVRMS	
Minimum Star	up Time	tSTR (<u>Note 5</u>)	R_{LOAD} for $I_{OUT} = 1A$, $C_{SS} = open$		200	-	μs	
Soft-Start Cha Current	rging	Iss	V _{SS} = 0.4V		440	-	nA	
Enable Input	Logic_High	VIH		1.1		5.5	V	
Voltage Logic_Low		VIL		0		0.4	v	
Enable Pin Hy	steresis	VEN_HYS			50		mV	
Enable Pin De	glitch Time	Ven_dg			20	-	μs	
Enable Pin Cu	rrent	I _{EN}	V _{EN} = 5V		0.1	1	μA	
PGOOD Trip T	hreshold	VIT	VOUT decreasing	85	90	94	%Vout	
PGOOD Trip H	lysteresis	VHYS			3		%Vout	

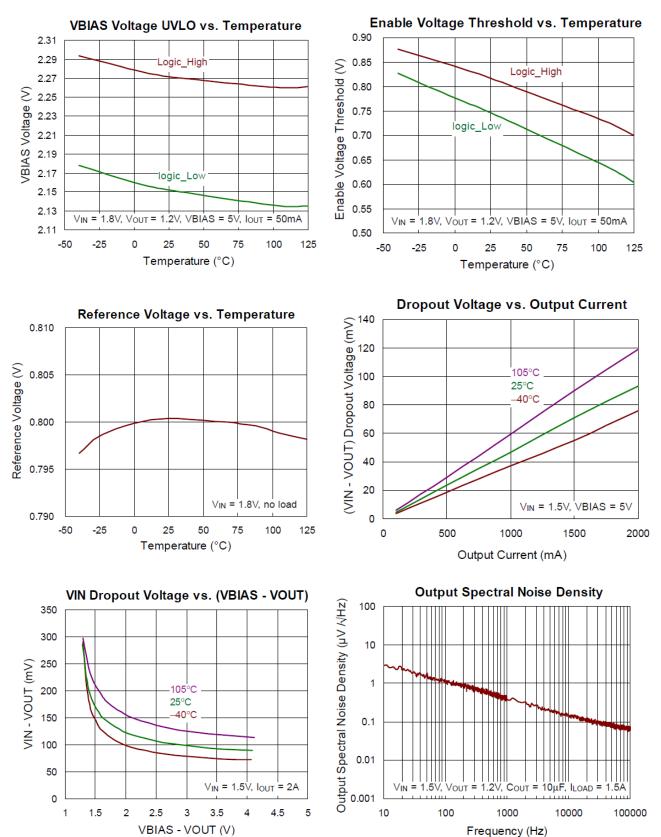
Copyright © 2024 Richtek Technology Corporation. All rights reserved.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
PGOOD Output Low Voltage	Vpgood_l	IPGOOD = 1mA (sinking), VOUT < VIT			0.3	V
PGOOD Leakage Current	IPGOOD_LK	Vpgood = 5.25 V, Vout > Vit		0.1	1	μA
Thermal Shutdown	T _{SD}	Shutdown, temperature increasing		165	1	°C
Temperature		Reset, temperature decreasing		140		


Note 5. Guaranteed by design.

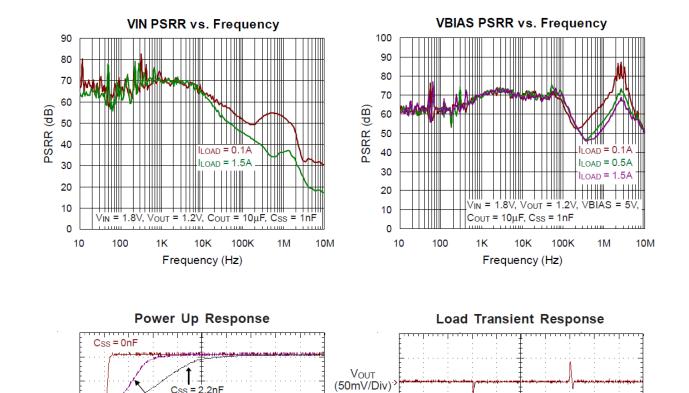
Copyright © 2024 Richtek Technology Corporation. All rights reserved.

14 Typical Application Circuit


*: The feedforward capacitor is optional for the transient response and circuit stability improvement.

Vout (V)	R1 (k Ω)	R2 (k Ω)			
0.8	Short	Open			
0.9	0.619	4.99			
1.0	1.13	4.53			
1.05	1.37	4.42			
1.1	1.87	4.99			
1.2	2.49	4.99			
1.5	4.12	4.75			
1.8	3.57	2.87			
2.5	3.57	1.69			
3.3	3.57	1.15			

Table 1. Suggested Component Value



15 Typical Operating Characteristics

lout (1A/Div)

1.

VIN = 2.5V, VOUT = 1.5V, IOUT = 100mA to 1.5A . La construcción de la construc

Time (50µs/Div)

 $C_{SS} = 2.2 nF$

Time (1ms/Div)

Css ÷ 1nF

V_{OUT} (500mV/Div)

ΕN (2V/Div)

11

www.richtek.com

16 Operation

The RTQ2522A/B is a very low dropout linear regulator which operates from input voltage as low as 0.8V. It provides a highly accurate output that is capable of supplying 2A of output current with a typical dropout voltage of only 90mV. Output voltage range is from 0.8V to 3.6V.

16.1 VIN and VBIAS Supply

The VBIAS input supplies the internal reference and LDO circuitry while all output current comes directly from the VIN input for high efficiency regulation. With external VBIAS 3.25V above VOUT, offers the RTQ2522A/B very low dropout performance (140mV Max. at 2A) which allows the device to be used in place of a DC-DC converter and still achieve good efficiency. This provides designers to achieve the smallest, simplest, and lowest cost solution.

For applications where an auxiliary bias voltage is not available or low dropout is not required. In these applications, VBIAS is suggested be 1.3V above VOUT and attention on power rating and thermal is needed.

16.2 Enable and Shutdown

The EN pin is active high. Apply a voltage above 1.1V ensures the LDO regulator turns on, while the regulator turns off if the VEN belows 0.4V. The enable circuitry has typical 50mV hysteresis and deglitching for use with relatively slowly ramping analog signals. That helps avoid on-off cycling as a result of small glitches in the VEN signal. A fast rise-time signal must be used to enable the RTQ2522A/B if precise turn-on timing is required. If not used, EN can be connected to either VIN or VBIAS. If EN is connected to VIN, it should be connected as close as possible to the largest capacitance on the input to prevent voltage droops on that line from triggering the enable circuit.

16.3 Soft-Start

The RTQ2522A/B includes a soft-start feature to prevent excessive current flow during start-up. When the LDO is enabled, an internal soft-start current (ISS) charges the external soft-start capacitor (CSS) to build a ramp-up voltage internally. The RTQ2522A/B achieve a linear and monotonic soft-start by tracking the voltage ramp until the voltage exceeds the internal reference. The soft-start ramp time can be calculated using Equation 1:

$$t_{SS}(s) = \frac{V_{REF} \times C_{SS}}{I_{SS}} = \frac{0.8V \times C_{SS}(F)}{0.44\mu A}$$
(1)

16.4 Power GOOD

When the output voltage is greater than VIT + VHYS, the output voltage is considered good and the open-drain PGOOD pin goes high impedance and is typically pulled high with external resistor. If VOUT drops below VIT or if VBIAS drops below 1.9 V, the open-drain output turns on and pulls the PGOOD output low. The PGOOD pin also asserts when the device is disabled, OCP or OTP triggered.

16.5 Overcurrent Protection

The RTQ2522A/B has built-in overcurrent protection. When overcurrent (typ. 3A) is detected, the RTQ2522A/B foldback and limit the current at typical 2.25A. It allows the device to supply surges of up to 3A and prevent the device over-heating if short circuit happened.

16.6 Thermal Shutdown and Over-temperature Protection

At higher temperatures, or in cases where internal power dissipation causes excessive self heating on chip, the thermal shutdown circuitry will shut down the LDO when the junction temperature exceeds approximately 160°C. It will re enable the LDO once the junction temperature drops back to approximately 140°C. The RTQ2522A/B will cycle in and out of thermal shutdown without latch-up or damage until the overstress condition is removed. Long term overstress (TJ > 125°C) should be avoided as it can degrade the performance or shorten the life of the part.

Note that the over-temperature protection is intended to protect the device during momentary overload conditions. The protection is activated outside of the absolute maximum range of operation as a secondary fail-safe and

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

RICHTEK

therefore should not be relied upon operationally. Continuous operation above the specified absolute maximum operating junction temperature may impair device reliability or permanently damage the device.

17 Application Information

Richtek's component specification does not include the following information in the Application Information section. Thereby no warranty is given regarding its validity and accuracy. Customers should take responsibility to verify their own designs and reserve suitable design margin to ensure the functional suitability of their components and systems.

The RTQ2522A/B is a low dropout regulator that features soft-start capability. It provides EN and PGOOD for easily system sequence control, and built-in overcurrent & thermal protection for safe operation.

17.1 Dropout Voltage

Because of two power supply inputs VIN and VBIAS and one VOUT regulator output, there are two Dropout voltages specified. The first is the VIN Dropout voltage is the voltage difference (VIN – VOUT) when VOUT starts to decrease by percent specified in the Electrical Characteristics table.

The second, VBIAS dropout voltage is the voltage difference (VBIAS-VOUT) when VIN and VBIAS pins are joined together and VOUT starts to decrease. This option allows the device to be used in applications where an auxiliary bias voltage is not available or low dropout is not required. In these applications, VBIAS is suggested be 1.3V above VOUT and attention on power rating and thermal is needed.

17.2 Input, Output, and Bias Capacitor Selection

The device is designed to be stable for all available types and values of output capacitors $\ge 2.2\mu$ F. The device is also stable with multiple capacitors in parallel, which can be of any type or value. The capacitance required on the VIN and VBIAS pins strongly depends on the input supply source impedance. To counteract any inductance in the input, the minimum recommended capacitor for VIN is 1μ F and minimum recommended capacitor for VBIAS is 0.1μ F. If VIN and VBIAS are connected to the same supply, the recommended minimum capacitor for VBIAS is 4.7μ F. Good quality, low ESR capacitors should be used on the input; ceramic X5R and X7R capacitors are preferred. These capacitors should be placed as close the pins as possible for optimum performance.

17.3 Adjusting the Output Voltage

The output voltage of the RTQ2522A/B is adjustable from 0.8V to 3.6V by external voltage divider resisters as shown in Typical Application Circuit. R1 and R2 can be calculated the output voltage. In order to achieve the maximum accuracy specifications, R2 should be \leq 4.99k Ω .

17.4 Power Up Sequence Requirement

The RTQ2522A/B supports power on the input VIN, VBIAS, and EN pins in any order without damage the device. Generally, connecting the EN and VIN for most application is acceptable, as long as VIN and VEN is greater than the EN threshold (typ. = 1.1V) and the input ramp rate of VIN and VBIAS is faster than the output settled soft-start ramp rate. If the VIN/BIAS input source ramp rate is slower than the output settled soft-start time, the output will track the input supply ramp up level and minus the dropout voltage until it reaches the settled output voltage level. For the other case, If EN is connected with VBIAS, and the provided VIN is present before VBIAS, the output soft-start will as programmed. While VBIAS and VEN are present before VIN is applied also the settled soft-start time has expired, then VOUT tracks VIN ramp up. If the soft-start time has not expired, output tracks VIN ramp up until output reaches the value set by the charging soft- start capacitor.

17.5 Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature TJ(MAX), listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the

RICHTEK

difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

 $PD(MAX) = (TJ(MAX) - TA) / \theta JA$

where TJ(MAX) is the maximum junction temperature, TA is the ambient temperature, and θ JA is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θ JA, is highly package dependent. For a WDFN-10L 3x3 package, the thermal resistance, θ JA, is 30.5°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. For a WQFN-20L 5x5 package, the thermal resistance, θ JA, is 28.2°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at TA = 25°C can be calculated as below:

 $PD(MAX) = (125^{\circ}C - 25^{\circ}C) / (30.5^{\circ}C/W) = 3.27W$ for a WDFN-10L 3x3 package.

 $PD(MAX) = (125^{\circ}C - 25^{\circ}C) / (28.2^{\circ}C/W) = 3.54W$ for a WQFN-20L 5x5 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed TJ(MAX) and the thermal resistance, θ JA. The derating curves in <u>Figure 1</u> allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

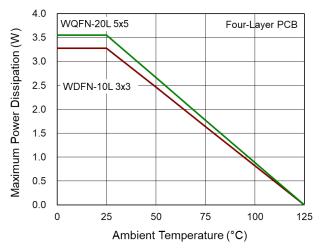
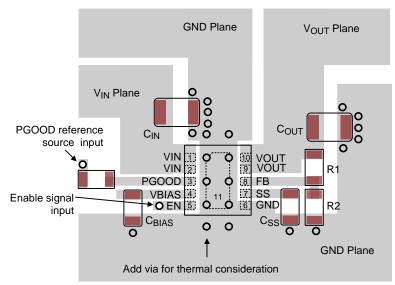


Figure 1. Derating Curve of Maximum Power Dissipation

17.6 Layout Considerations

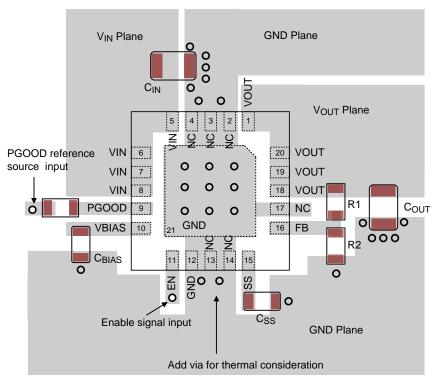
For best performance of the RTQ2522A/B, the PCB layout suggestions below are highly recommended:

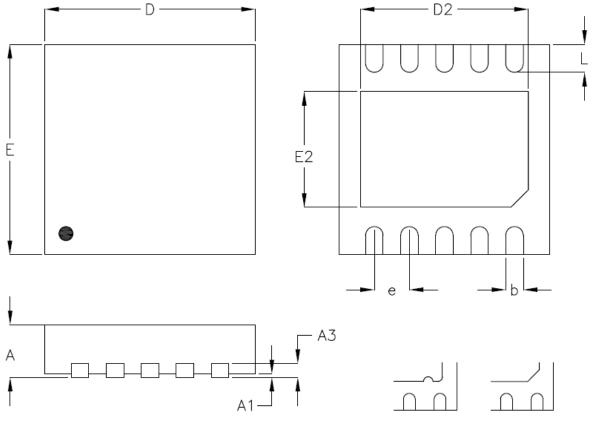
- ▶ Input capacitor must be placed as close as possible to IC to minimize the power loop area.
- Minimize the power trace length and avoid using vias for the input and output capacitors connection.


<u>Figure 2</u> and <u>Figure 3</u> shows the examples for the layout reference which helps the inductive parasitic components minimization, load transient reduction and good circuit stability.

16

GND layout trace should be wider for thermal consideration.




Figure 3. RTQ2522B PCB Layout Guide

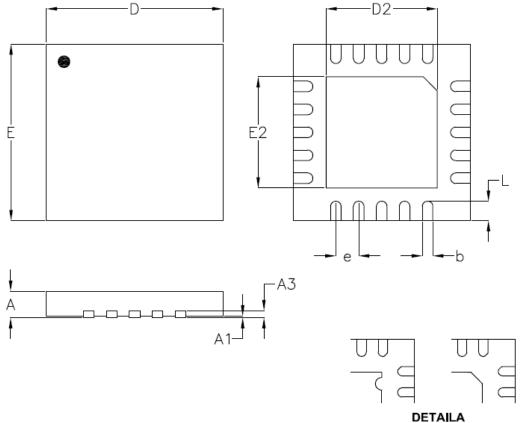
RICHTEK

18 Outline Dimension

18.1 WDFN-10L 3x3 Package

DETAILA Pin #1 ID and Tie Bar Mark Options

Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.


Symbol	Dimensions I	In Millimeters	Dimension	s In Inches
Symbol	Min	Max	Min	Max
А	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
A3	0.175	0.250	0.007	0.010
b	0.180	0.300	0.007	0.012
D	2.950	3.050	0.116	0.120
D2	2.300	2.650	0.091	0.104
E	2.950	3.050	0.116	0.120
E2	1.500	1.750	0.059	0.069
е	0.500		0.0)20
L	0.350	0.450	0.014	0.018

W-Type 10L DFN 3x3 Package

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. RTQ2522A/B-05 March 2024 www.richtek.com

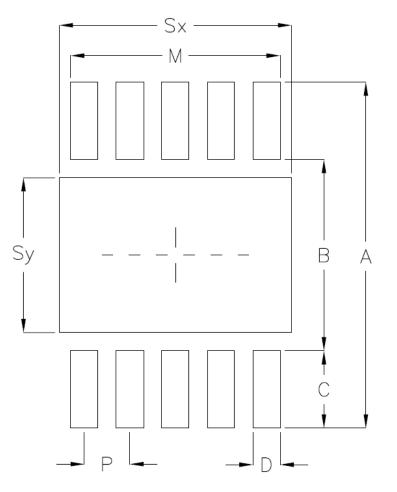
18.2 WQFN-20L 5x5 package

Pin #1 ID and Tie Bar Mark Options

Sumbal	Dimensions	In Millimeters	Dimension	s In Inches
Symbol	Min	Max	Min	Max
А	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
A3	0.175	0.250	0.007	0.010
b	0.250	0.350	0.010	0.014
D	4.900	5.100	0.193	0.201
D2	3.100	3.200	0.122	0.126
E	4.900	5.100	0.193	0.201
E2	3.100	3.200	0.122	0.126
е	0.650		0.0)26
L	0.500	0.600	0.020	0.024

Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

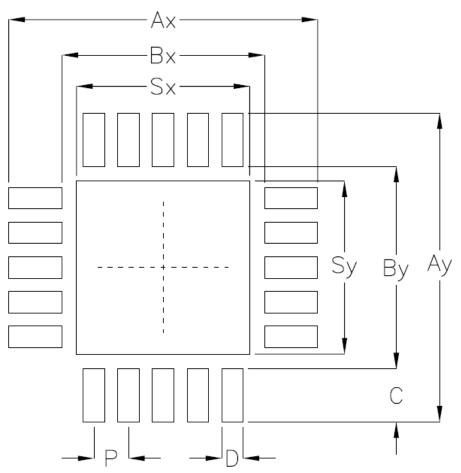
W-Type 20L QFN 5x5 Package


Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

19 Footprint Information

19.1 WDFN-10L 3x3 Package

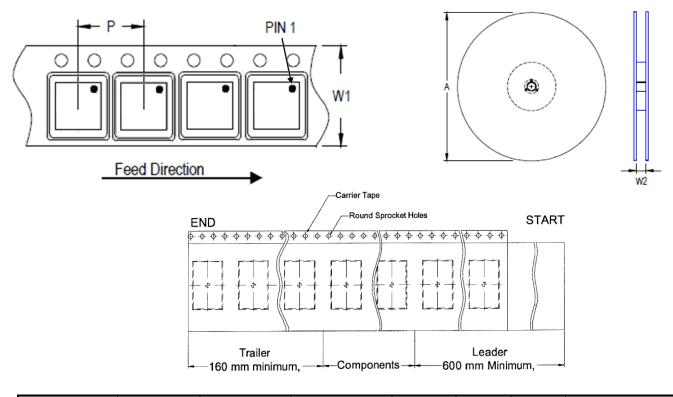
Dookogo	Number of			Talaranaa						
Package	Pin	Ρ	А	В	С	D	Sx	Sy	М	Tolerance
V/W/U/X/ZDFN3*3-10	10	0.50	3.80	2.10	0.85	0.30	2.55	1.70	2.30	±0.05

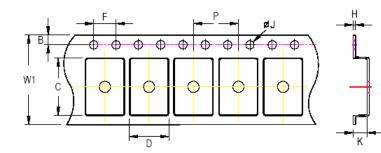

19

www.richtek.com

19.2 WQFN-20L 5x5 package

Package	Number of	Footprint Dimension (mm)									Toloranco
Раскауе	Pin	Р	Ax	Ay	Вx	Ву	С	D	Sx	Sy	Tolerance
V/W/U/XQFN5*5-20	20	0.65	5.80	5.80	3.80	3.80	1.00	0.40	3.25	3.25	±0.05


Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.


RICHTEK

20 Packing Information

20.1 WDFN-10L 3x3 Tape and Reel Data

	Tape Size	Pocket Pitch	ocket Pitch Reel Size (A)		Units	Trailer	Leade	Reel Width (W2)
Package Type	(W1) (mm)	(P) (mm)	(mm)	(in)	per Reel	(mm)	r(mm)	Min./Max. (mm)
QFN/DFN 3x3	12	8	180	7	1,500	160	600	12.4/14.4

C, D, and K are determined by component size. The clearance between the components and the cavity is as follows: - For 12mm carrier tape: 0.5mm max.

Tape Size	W1	I	C	В		F		ØJ		н
•	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
12mm	12.3mm	7.9mm	8.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

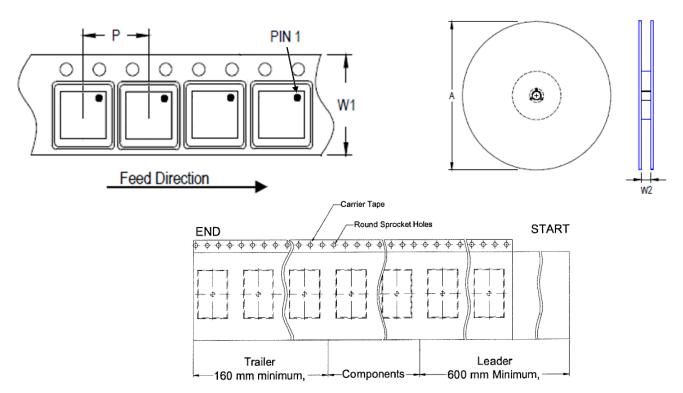
Copyright © 2024 Richtek Technology Corporation. All rights reserved.

21

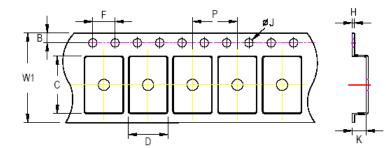
www.richtek.com

20.2 Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1	Reel 7"	4	3 reels per inner box Box A
			Steels per linder box box A
2		5	
	HIC & Desiccant (1 Unit) inside		12 inner boxes per outer box
3		6	
	Caution label is on backside of Al bag		Outer box Carton A


Container	R	Reel		Box			Carton			
Package	Size	Units	Item	Size(cm)	Reels	Units	Item	Size(cm)	Boxes	Unit
	7"	1,500	Box A	18.3*18.3*8.0	3	4,500	Carton A	38.3*27.2*40.0	12	54,000
QFN/DFN 3x3	-	.,	Box E	18.6*18.6*3.5	1	1,500		For Combined or F	Partial Reel.	

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.


RICHTEK

RTQ2522A/B

20.3 WQFN-20L 5x5 package Tape and Reel Data

	Tape Size	ize Pocket Pitch		Reel Size (A)		Trailer	Leade	Reel Width (W2)	
Package Type	(W1) (mm)	(P) (mm)	(mm)	(in)	per Reel	(mm)	r(mm)	Min./Max. (mm)	
QFN/DFN 5x5	12	8	180	7	1,500	160	600	12.4/14.4	

C, D, and K are determined by component size. The clearance between the components and the cavity is as follows: - For 12mm carrier tape: 0.5mm max.

Tape Size	W1	F	C	В		F		ØJ		Н
	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
12mm	12.3mm	7.9mm	8.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

www.richtek.com

20.4 Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1		4	
	Reel 7"		3 reels per inner box Box A
2		5	
	HIC & Desiccant (1 Unit) inside		12 inner boxes per outer box
3		6	RICHTEK IZ JANZAR BERTER ZOTAL
	Caution label is on backside of Al bag		Outer box Carton A

Container	R	leel			Box			Carton			
Package	Size	Units	Item	Size(cm)	Weight(Kg)	Reels	Units	Item	Size(cm)	Boxes	Unit
	7"	1,500	Box A	18.3*18.3*8.0	0.1	3	4,500	Carton A	38.3*27.2*40.0	12	54,000
QFN/DFN 5x5	•	.,500	Box E	18.6*18.6*3.5	0.03	1	1,500		For Combined or Pa	artial Reel.	

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

20.5 Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω/cm^2	10 ⁴ to 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patients or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries

RICHTEK Copyright © 2024 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.

RTQ2522A/B-05 March 2024

21 Datasheet Revision History

Version	Date	Description	Item
04	2023/8/7	Modify	General Description on P1 Features on P1 Ordering Information on P1 Operation on P3 Electrical Characteristics on P5 Application Information on P10
05	2024/3/25	Modify	Features on P1 General Description on P1 Ordering Information on P2 Recommended Operating Conditions on P6 Electrical Characteristics On p7 Operation on P12, 13 Application Information on P14 Packing Information on P21, 22, 23, 24, 25

RICHTEK is a registered trademark of Richtek Technology Corporation. Copyright © 2024 Richtek Technology Corporation. All rights reserved.